Leveraging Correlations in Utility Learning

Presenter: Ming Jin ACC 2017

Ioannis C. Konstantakopoulos, Lillian J. Ratliff, Ming Jin, and Costas J. Spanos

People-Building-Grid Nexus

sotiefacting Detection

Internet of Things (IoT)

Smart building

Agile operations in buildings → Occupants take real time control → Building "senses" grid – occupants actions Building respects comfort, productivity, wellbeing, satisfaction

People-Building-Grid Nexus

<u>The M\$ question</u> – How to learn about people's preference from their actions?

Leveraging social coalitions can better understand/influence people's behaviors

Engaging people in a game improves energy efficiency and occupant comfort **Motivation**

Energy efficiency via gamification

Utility learning framework

Leveraging correlations

Conclusion and on-going works

Energy efficiency via gamification

Social Game for Building Energy Efficiency: Incentive Design - (Allerton 2014)

Social game for building energy efficiency

- Social game for changing occupant energy – related behaviors.
- □ 20 occupants
- □ Weekly lottery w/ Amazon cards

Social game for building energy efficiency

Real time control for shared lights and HVAC

Social Game			How will you save energy?				
Comfort	Points	Energy Use	Energy Commitment	Game Rule	Winners		

Summer 2014 - Week 12

Light Group B Target: 90.0%	Climate Group North Target: 74.0°F				
Brighten	Warm				
52.0%	76.1°F				
Other Votes	Other Votes				
Dim	Cool				

		Quota	Commitment	Actual	Points	Bonus	Running Poir	nt lota
Energy	Aug. 15, 2014	130 Wh	Wh	1.24 Wh	0	5		
Lights	Aug. 15, 2014	90.0%		0.5%	5,427	100		5,52
HVAC	Aug. 15, 2014	74.0°F		78.0°F	3,031	100		3,13
Grand Point Total	1							8,66
			† Update ↓					
	Energy	Lig	hts	HVA	C		Total	
10k								
7.5k								
5k								
oints								
2.5k				_				
0k		lapolo						
				1				
-2.5k							Highcharts.co	m

 Points are used to determine probability of winning in lottery

"Use less to gain more"

People play Nash equilibrium

Each occupant selects

 θ_i : tradeoff between comfort and desire to win

Definition

A collection of lighting settings $x = (x_1, \dots, x_n)$ is a Nash equilibrium if no occupant can increase his utility by selecting a different lighting setting x'_i i.e. for each $i \in \{1, \dots, n\}$

 $f_i(x_i, x_{-i}) \ge f_i(x'_i, x_{-i},) \ \forall \ x'_i \in [0, 100]$

(1)

Nash characterized by KKT conditions

Occupant i's parameterized utility function:

$$f_i(x_1^{(k)}, x_2^{(k)}, \cdots, x_n^{(k)}) = -(\frac{1}{n} \sum_{j=1}^n x_j^{(k)} - x_i^{(k)})^2 - \theta_i \underbrace{\rho(\frac{x_i^{(k)}}{100})^2}_{\text{desire to win}}$$

- Each x_i^(k) is approximately a Nash equilibrium point.
- Residuals defined by the stationarity and complementary slackness conditions:

$$\begin{split} r_{s,i}^{(k)}(\theta_i,\mu_i) &= D_i \; f_i(x_1^{(k)},x_2^{(k)},\cdots,x_n^{(k)}) + \sum_{j=1}^2 \mu_j^j D_i h_{i,j}(x_i^{(k)}) \\ r_{c,i}^{j,(k)}(\mu_i) &= \mu_i^j h_{i,j}(x_i^{(k)}), \;\; j \in \{1,2\} \\ \end{split}$$
where $h_{i,1}(x_i^{(k)}) &= 100 - x_i^{(k)}, h_{i,2}(x_i^{(k)}) = x_i^{(k)}$

Least Squares (cOLS)

From the KKT conditions of Nash, one can formulate cOLS:

$$Y = X\beta + \epsilon, \ \beta \in \mathcal{B}$$

where $E(\varepsilon|X) = 0^{n_d \times 1}, \operatorname{cov}(\varepsilon|X) = \sigma^2 I^{n_d \times n_d}$ is "spherical" noise.

However, this estimator often performs "poorly", due to this strong assumption on *"spherical noise structure"*.

Besides, data is often expensive and *limited*!

People often vote as a group..

We can design *utility with player coalition* based on the *correlation matrix*.

Leveraging correlations among players

Estimate correlations between occupants

	2	6	8	14	20
	0.04	0.06	-2.80	-5.19	0.03
	0.06	7.84	-16.8	0.84	-0.02
	-2.80	-16.8	6.4×10^4	4.28 ×10 ⁴	-7.60
ŀ	-5.19	0.84	4.28×10 ⁴	8.84×10^{4}	-12.6
)	0.03	-0.02	-7.60	-12.6	0.07

Contributions

- Boost performance using OLS
- Reduce computational complexity
- □ Transfer to online learning

(Submitted to IEEE Transactions on Control Systems Technology)

Utility function based on correlation

$$\widehat{g}_{i}(x_{i}, x_{-i}) = \sum_{l \in Q_{i}} \frac{\alpha_{il}}{c_{il}} \widehat{f}_{l}(x_{i}, x_{-i})$$

$$\widehat{g}_{i}(x_{i}, x_{-i}) = \sum_{l \in Q_{i}} \frac{\alpha_{il}}{c_{il}} \widehat{f}_{l}(x_{i}, x_{-i})$$
Coalition utility
$$\widetilde{g}_{M_{i}}(x_{M_{i}}, x_{-M_{i}}) = \sum_{j \in M_{i}} f_{j}(x_{M_{i}}, x_{-M_{i}})$$
Happiness Metric: $\mathbf{H} = \widehat{f}_{i}^{\mathrm{coal}}(x^{(k)}; \widehat{\theta}_{i}^{\mathrm{coal}}) - \widehat{f}_{i}(x^{(k)}; \widehat{\theta}_{i}^{\mathrm{coal}})$
Coalition utility per player: $\widehat{f}_{i}^{\mathrm{coal}}(x^{(k)}; \widehat{\theta}_{i}^{\mathrm{coal}}) = \frac{1}{|M_{1}|} \widetilde{g}_{M_{i}}(x^{(k)}; \widehat{\theta}_{M_{i}}^{\mathrm{coal}})$

Η

Experimental

Results

Gradient boosting gives unbiased estimator

Histogram of cFGLS for Player 2 (dynamic)

Leveraging correlation improves forecasting

Happiness metric indicates collusion between users 8 and 14

Conclusion

NEW GAMES, MORE GAMES !!!

Shared lighting experiment at Sutardja Dai Hall with 200 occupants (4th and 7th floor)

Shared lighting – personal desk electrical equipment experiment at CREATE Tower (11th floor) in Singapore with 50 occupants

Personal room lighting at Graduate Hall dorms in Eco Campus in Singapore with 100++ occupants

Acknowledgement

Singapore-Berkeley Building Efficiency and Sustainability in the Tropics (SinBerBEST) Program

