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The M$ question —

How to learn about people’s
preference from their actions?
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1. Social games

Energy efficiency via gamification
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Social Game for Building Energy Efficiency: Incentive Design - (Allerton 2014)



1. Social games

Social game for building energy efficiency

 Social game for changing
occupant energy — related
behaviors.

d 20 occupants

 Weekly lottery w/ Amazon cards

Total Energy Today: 7.99kWh |
Total Current Power: 432.0W |

max:76.9

73.8

max:76.9

27.5% energy reduction
from shared lights



1. Social games

Social game for building energy efﬂmency

Real time control for
shared lights and HVAC

Light Group B

Target: 90.0%

Brighten

52.0%

Other Votes

Social Game  iowwiiyousew eneray

Comfort Points Energy Use Energy Commitmen

Summer 2014 - Week 12

Quota Commitment Actual Points Bonus Running Point Total
| Energy Aug. 15,2014 130 Wh Wh 124Wh 0 5 5
[ Lights | Aug. 15,2014 90.0% 05% 5427 100 5,527
[ HVAC | Aug. 15,2014 74.0°F 780°F 3,031 100 3,131
. Grand Point Total 8,663
Climate Group North
Target: 74.0°F
Energy Lights HVAC Total

—

76.1°F

Other Votes

o Points are used to determine
probability of winning in lottery

“Use less to gain more”
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2. Utility learning

People play Nash equilibrium

Each occupant selects

vote € [min IIQIE setting, max light setting]

X 0 100
in order to maximize

occupant utility = comfort 4 0; desire to win

fl'(X‘I 5X23"'7Xn) _(%Zjn:'i xi_xi)2 _p(%)z

0; : tradeoff between comfort and desire to win

A collection of lighting settings x = (x1,---, Xn) is a Nash equilibrium if
no occupant can increase his utility by selecting a different
lighting setting x; i.e. foreachie {1,...,n}

fi(Xiax—i) > f,'(X,{,X_,',) v Xi, S [071001 (1)

11




2. Utility learning

Nash characterized by KKT conditions
w Occupant /i's parameterized utility function:

(k)
k k k k K X;
fi(x1( ).X;g ),“ ( ) Zx( ) ( ))2—6, (
100
~ ~~ ol desnretowm

comfort
m Each x,“‘) Is approximately a Nash equilibrium point.

m Residuals defined by the stationarity and complementary
slackness conditions:

(“(9’ 1) = D, f(X(k),Xék),-- (k) +Z“ID hj (k))
.' _ . |
il w) = wihiy (), je{1,2)

where h;1(x"?) =100 — x" h; o (x*)) = x*

I
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2. Utility learning

Learning with constrained Ordinary ¢
Least Squares (cOLS) -

From the KKT conditions of Nash, one can formulate cOLS:

Y =XB8+4+¢€ €B

where E(g|X) =0"%*1 cov(g|X) = c?I"*"d s “spherical” noise.

However, this estimator often performs “poorly”, due to this
strong assumption on “spherical noise structure”.

Besides, data is often expensive and limited!
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We can design utility with player coalition
based on the correlatlon matrlx
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3. Leveraging correlations

Leveraging correlations among players

4 Estimate correlations
between occupants

|l 2 | 6 | 8 | 14 | 20 |
2 ][ 004 | 0.06 | -2.80 519 | 0.03
6 |[ 006 [ 784 | -1638 084 [ -0.02
8 || -2.80 [ -16.8 | 6.4x107 | 4.28x10" [ -7.60
14 |[ 519 [ 0.84 | 4.28x10" | 8.84x10T | -12.6
20 |[0.03 [-0.02] -7.60 126 | 007

Contributions

J Boost performance using
OLS

d Reduce computational
complexity

d Transfer to online learning
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3. Leveraging correlations

Gradient Boosting to estimate noise structure
Original fitting

residuals %FGLS
e +— Y — Xﬁboost

3. Residuals
update

B — (X'"X)tX e

1. Residual

o AIC criterion fitting
O Fixed

terations 2. Update with
5 P t shrinkage

reven i
. parameter v in
overfitting Bboost = Pboost + Vi (0,1]

Robust Utility Learning with Applications to Social Games in Smart Buildings
(Submitted to IEEE Transactions on Control Systems Technology) 16



3. Leveraging correlations

Utility function based on correlation

N ey
7 i ) Correlation utility
= OL’\J\\’ ot
gﬁ | 9i(wi,x—i) = 3 1cq, ot fi(@i, ;)
o
T Coalition utility
27, £
. gMz(xwa—Mz) — Z fj(xwa—Mz’)
N0 JEM;
v
: . rcoal k 1 ¢ k OLS
Happiness Metric: H = ffoa (g;( ); 9503 ) _ fz(x( ); 9;3 )
1

Coalition utility per player: fcol(z(*); geoaly —

S (k),écoal
|Ml|gMz(x ) M,L)
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3. Leveraging correlations

Experimental

S

R®

Results
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3. Leveraging correlations

Gradient boosting gives unbiased estimator

Asymptotic bias estimation via bootstrapping

Histogram of cFGLS for Player 2 (dynamic)
300 (I | "y
: ] : : mmm CcFGLS
250 " ' === bumping
; i === bagging
200 : ’ cFGLS estimator "= = boosting
] "y )
: ™ almost unbiased
150 ; : :
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3. Leveraging correlations

Leveraging correlation improves

forecasting
6O: + + 1+ No coalitions —— cOLS

g 505 """ - correlation
6 == coalition
5405 ----- @ ground truth
@) :
>30.
©
| -
> 20 |
© <Y ;

X P @

L @

vote index



3. Leveraging correlations

Happiness metric indicates collusion
between users 8 and 14

@)

No coalitions
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4. Conclusion

Conclusion

Unknown structure

Limite@le size
Correlateds’ actions
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4. Conclusion

NEW GAMES, MORE GAMES !!!

Shared lighting experiment
at Sutardja Dai Hall with 200
occupants (4th and 7t floor)

Shared lighting — personal
desk electrical equipment
experiment at CREATE Tower
(11th floor) in Singapore with
50 occupants

Personal room lighting at
Graduate Hall dorms in Eco
Campus in Singapore with
100++ occupants
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