
Certifiably Robust Neural ODE with Learning-based Barrier Function

Runing Yang1, Ruoxi Jia1, Xiangyu Zhang2, and Ming Jin1,∗

Abstract— Neural Ordinary Differential Equations (ODEs)
have gained traction in many applications. While recent studies
have focused on empirically increasing the robustness of neural
ODEs against natural or adversarial attacks, certified robust-
ness is still lacking. In this work, we propose a framework for
training a neural ODE using barrier functions and demonstrate
improved robustness for classification problems. We further
provide the first generalization guarantee of robustness against
adversarial attacks using a wait-and-judge scenario approach.

I. INTRODUCTION

Neural ordinary differential equations (NODEs) approx-
imate nonlinear mappings by modeling the dynamics of
hidden states by an ODE solver [7]. By extending discrete
layerwise architectures to continuous-time dynamical sys-
tems, NODEs open up a wealth of applications, enjoy many
desirable properties, such as parametric efficiency, constant
memory requirements, and invertibility [7, 19, 23], and allow
researchers to tap into the vast literature on control theory
to achieve certain output requirements [19, 23].

This study aims to enhance the robustness of NODEs.
Robustness is the ability of a model to maintain integrity
in the face of input perturbations, either natural or adversar-
ial. The vulnerability (lack of robustness) of deep learning
to adversarial attacks is well-studied [18, 20, 8]. Recent
study [21] indicates that, unlike conventional deep learning,
NODEs have a certain level of inherent robustness due to
the non-intersecting property of integral curves (see also
[14] for another interesting view). Existing work to improve
robustness can be classified (with overlaps) below:

1) Regularization methods inject random noise into each
layer [17], randomly sample the end time of the ODE
during training [17], or introduce additional penalty
terms on weights [11];

2) Control-theoretic approaches design the training loss
to promote certain properties of the dynamical system,
such as steady-state constraint [21], contraction [23],
reachability [13], and Lyapunov stability [16, 19].

While regularization methods are inspired by deep learning
experiences (dropout, stochastic depth, and random smooth-
ing in the case of [17, 11]), control-theoretic approaches
directly promote certain aspects of the underlying dynamical
systems—this is also the approach we take in this study.

Our key insight for classification problems, which are
targeted in existing work, is that not all input-perturbation-
induced output changes are adverse or need to be penalized;

1Department of Electrical and Computer Engineering, Virginia Tech,
Blacksburg, VA 24061, USA

2National Renewable Energy Laboratory, Golden, CO 80401, USA.
*Corresponding author: jinming@vt.edu

NODE B-NODE

Fig. 1: Comparison between vanilla NODE and B-NODE
(our method). The quiver plot shows the flows of trained
NODEs, the propagation of the training data (solid lines), and
how perturbed inputs (solid dots) are mapped to perturbed
outputs (crosses) for both classes (red and blue). Grey line:
decision boundary.

robustness depends only on those points near the boundary
that are most susceptible to adversarial perturbations along
certain directions (see Fig. 1 for an illustration, detailed in
Sec. V-A). Hence, our method differs from the prior art
in the following respects: instead of aiming to make the
output for each data point to be a steady-state [21] or within
a neighborhood of some Lyapunov-stable equilibrium [16,
19], we focus only on vulnerable points and penalize output
changes along adverse directions. Our second insight lies in
the difference between the notion of robustness for classifi-
cation problems and similar concepts for control systems: for
classification problems with a complex underlying mapping,
outputs are expected to be different despite a small difference
in inputs, which is not the case for robust/contractive systems
[23]. To bring these insights to bear, we develop a framework
that learns NODE parameters together with a robustness
certificate based on control-barrier functions [1]. Our key
contributions are as follows:

• Development of a framework for training robust NODEs
using learning-based barrier functions;

• Establishment of the first generalization guarantee of
robustness using a wait-and-judge approach;

• Demonstration of robustness against natural and adver-
sarial perturbations for a range of benchmarks.

Contextualization of contributions. In comparison to stud-
ies that enhance the empirical robustness of NODEs [21, 17,
11, 23, 16, 19, 14], our study provides a rigorous analysis
of the robustness guarantee. Unlike recent works on certified
robustness that only analyze a given point [13, 15], we extend
the certified robustness analysis to an unseen in-distribution
point (Theorem 2). The difference can be interpreted as the
extension from the training performance to the generalization

performance (i.e., from robust rate to robust probability in
Def. 1). In our study, we pursue an approach based on
scenario optimization [4, 5], while extending existing works
in scenario optimization to the case of agnostic PAC (see a
contemporary work that also achieves this [6]).

Next, we discuss preliminaries in Sec. II. Sec. III presents
the robustness certificate based on barrier functions and the
proposed robust training procedure. Theoretical analysis of
robustness is performed in Sec. IV. Numerical results are
discussed in Sec. V and the conclusion is drawn in Sec. VI.
For the proof and additional experiments, please refer to [22].

Notations. We represent [n] = {1, ..., n}, [k, n] =
{k, ..., n}, [a]+ = max(0, a), and 1(·) as the indicator
function (outputs 1 if the argument is true and 0 otherwise).

II. PRELIMINARIES

A. Neural ODEs

As a nonlinear mapping, a NODE specifies the relation
between input z(0) = ϕ(x) and output y = ψ(z(T), x) by
the following differential equation:

ż(t) = fθ(z(t), t), (1)

where x is the input data, z(t) is the ODE state (hidden
layer values) at time t, y is the output, and fθ is a nonlinear
function parameterized by θ.

The initial condition z(0) is derived from the input by
a feature mapping ϕ (i.e., input layer) and the output y is
obtained from z(T) through a function ψ (i.e., output layer).
We slightly overload the notation z(T, x) to make explicit the
dependence of z(T) on the initial state x. The input layer
can be learned from scratch or fine-tuned based on some
robust feature extractors [21, 16]. The output layer is a simple
function, such as the softmax function for classification.
Following common practice (e.g., [21]), we consider a time-
invariant NODE (so we will write fθ(z(t)) throughout).

Classification. For classification problems, an affine trans-
formation is applied to the final state of NODE to obtain
an embedding Wz(T) ∈ RK of the same dimension as the
number of classes K, where W ∈ RK×d is the parameters to
be learned. Then, the embedding can be passed through either
an argmax function argmaxk[Wz(T)]k, where [Wz(T)]k is
the k-th coordinate of the vector, or a softmax function to
obtain a probability vector. To make explicit the dependence
on the input data and the neural ODE system, we represent
the output y = ψ(z(T), x) = gW (x, fθ). Unless otherwise
specified, we denote θ to also include the parameter W and
omit the dependency of gW on W for notational simplicity.

Forward/backward process. Forward pass can be per-
formed using standard ODE solvers (such as Euler’s method
or Runge–Kutta method) to obtain the final state z(T). For
training, we need to calculate the derivative of the loss
function with respect to NODE parameters, which can be
obtained by either auto-differentiation or the adjoint sensi-
tivity method [7].

B. Attack model and adversarial training

Attack model. In this study, we consider evasion attacks,
where the attacks occur at the time of inference after the
model has already been trained [12].

We consider a range of capabilities, from a random attack
scenario, where noise of certain variance is added to the input
data, to a whitebox attack, where the attacker can have full
access to model parameters to reduce model performance.

Adversarial training. Suppose we have a training dataset
D = {(xi, yi)}i∈[n]. Standard training solves the following
empirical risk minimization (ERM) problem:

min
θ

∑
(x,y)∈D

ℓ(g(x, fθ), y), (2)

where ℓ is the loss function, such as the cross-entropy loss.
A family of adversarial training techniques can be seen as
solving the following min-max optimization:

min
θ

 ∑
(x,y)∈D

max
δ∈∆

ℓ(g(x+ δ, fθ), y)

 , (3)

where δ is the perturbation, ∆ is the set of feasible per-
turbations (e.g., vectors with bounded ℓ1, ℓ2, or ℓ∞ norm).
Typical algorithms to solve inner maximization include pro-
jected gradient descent (PGD) [18] and fast sign gradient
method (FSGM) [12]. During each iteration of the outer
minimization, the inner maximization is approximated by
either PGD or FSGM. Let Dθ = {(x′i, yi)}i∈[n] denote
the adversarial data, where x′i is obtained by some attack
algorithm (e.g., PGD, FSGM) on the data (x, y). Then, the
adversarial training procedure can be seen as performing
standard training on augmented datasets:

min
θ

∑
(x,y)∈D∪Dθ

ℓ(g(x, fθ), y), (4)

where Dθ is a set that depends on both the current model
θ and the attack algorithm. In our experiments, we also
consider generating Dθ by simply adding Gaussian noises
to each input to emulate natural perturbations, in which case
the dependence on θ is no longer needed.

III. METHODOLOGY

A. Robustness certificate

Robust set. Suppose that the input x takes values in a
compact metric space X and the output y ∈ Y = {1, ...,K}.
For a given x and a fixed NODE with parameter θ, let
Ξθ(x) = {z(T) : z(0) = x + δ, ż(t) = fθ(z(t)), t ∈
[0, T], δ ∈ ∆} denote the output perturbation set, i.e., the set
of final states of NODE when the initial state is perturbed
by any δ ∈ ∆. Let Cy = {z : [Wz]y ≥ [Wz]y′ ,∀y′ ∈ Y}
represent the set of embeddings that lead to the selection
of class y under the argmax rule applied after an affine
transformation. Then, for any data sample (x, y), the robust
set Sθ(x, y) is given by

Sθ(x, y) := Ξθ(x) ∩ Cy, (5)

which represents the set of perturbed final states that still
lead to a correct result. Consider the following two cases:

1) Ξθ(x)\Sθ(x, y) ̸= ∅ implies that there is a δ ∈ ∆ that
falsifies the output, i.e., argmaxk[Wz(T)]k ̸= y;

2) Ξθ(x) = Sθ(x, y) implies that NODE θ can provide a
correct decision under any perturbation.

We also note that Sθ(x, y) ⊆ Cy always holds.

Robustness certificate. Recall that an extended class K∞
function is a function α : R → R that is strictly increasing
and with α(0) = 0. The following result provides a certificate
for a given point (x, y) against arbitrary perturbation δ ∈ ∆.

Theorem 1 (Robustness certificate). Suppose there exists
a continuous and almost everywhere differentiable function
hy : Cy → R such that (1) Sθ(x, y) ⊆ Hy ⊆ Cy , where
Hy = {z : hy(z) ≥ 0}, and (2) there exists an extended
class K∞ function α such that for NODE (1):

ḣy(z(t)) ≥ −α(hy(z(t))) (6)

for all z(t) ∈ Ξθ(x) and t ∈ [0, T], then, for any δ ∈ ∆,
there exists a finite T ′ > 0 such that z(t, x+ δ) ∈ Cy for all
t ≥ T ′. We call the function hy a robustness certificate (for
point (x, y) under NODE θ).

Remark 1. A natural candidate for hy is the family of func-
tions parameterized by W : hy(z) = [Wz]y−maxk ̸=y[Wz]k,
which is continuous, differentiable everywhere, and satisfies
condition (1) because in this case Hy = Cy .

Remark 2. The robustness certificate defined above enforces
the invariance of Hy that includes the robust set Sθ(x, y) but
excludes the remaining perturbation set Ξθ(x)\Sθ(x, y) that
corresponds to a corrupted result. In addition, it also ensures
that for perturbed final states in Ξθ(x)\Sθ(x, y), the NODE
will be able to recover to a correct decision asymptotically,
that is, Sθ(x, y) ⊆ Cy if we run the underlying NODE long
enough (with T large enough).

The following corollary extends the certificate to a dataset.

Corollary 1. Given a dataset D = {(xi, yi)}i∈[n], suppose
there exists a continuous and almost everywhere differen-
tiable function hy : Cy → R such that satisfies conditions
(1) and (2) in Theorem 1. Then, for any (x, y) ∈ D and any
δ ∈ ∆, there exists a finite T ′ > 0 such that z(t, x+ δ) ∈ Cy
for all t ≥ T ′.

Remark 3. While barrier functions have been widely used in
control systems to establish safety, avoidance, or eventuality
properties [1], this study is the first to adapt the method for
a classification problem with new notions of robust set and
robustness certificate.

B. Training with robustness certificate

To integrate the robustness certificate into training, ideally,
we can solve the following optimization:

min
θ,{hy}y∈Y

∑
(x,y)∈D

ℓ(g(x, fθ), y), (7a)

s.t. hy ∈ C1(Rd,R), ∀y ∈ Y (7b)
{z : hy(z) ≥ 0} ⊆ Cy, ∀y ∈ Y (7c)
Sθ(x, y) ⊆ {z : hy(z) ≥ 0}, ∀(x, y) ∈ D (7d)

ḣy(z(t)) ≥ −α(hy(z(t))), (7e)
∀z(t) ∈ Ξθ(x), (x, y) ∈ D

where objective (7a) can be the usual cross-entropy loss,
(7b) enforces that hy is continuous and almost everywhere
differentiable, (7c), (7d) and (7e) correspond to conditions
(1) and (2) in Corollary 1, respectively. For comparison,
TisODE [21] and SODEF [16] impose stability or steady-
state constraints on NODE dynamics fθ, whereas robustness
is enforced by the existence of a certificate function.

Learning-based certificate. Since optimization over func-
tions {hy}y∈Y can be intractable, we specify a parametric
form of hy(z) = [Wz]y − maxk ̸=y[Wz]k for a given W
shared among {hy}y∈Y . This immediately satisfies con-
straints (7b)–(7d) (see Remark 1). We also tie this parameter
to the parameter of gW because their goals are aligned; in this
case, the certificate coincides with the last layer transforma-
tion. Note that constraint (7e) is specified over a set. While
sum-of-squares provides a principled approach [1], compu-
tation becomes quickly intractable for higher-dimensional
systems. Along the line of learning-based certificates [9],
we propose two complementary ways to approximate this
constraint with data:

• Random samples: For each data point (x, y), we ran-
domly sample a set of perturbations; for each pertur-
bation δ, we forward propagate NODE to obtain z(T).
The set of such z(T)’s is collected by Ξ̂θ(x), which is
used to replace Ξθ(x) in (7e).

• Adversarial examples: Similar to the above, except that
for each data (x, y), we apply an attack algorithm to
find a set of δ’s. The corresponding z(T)’s together
with the original z(T) without input perturbation are
collected by Ξ̂θ(x) used to replace Ξθ(x) in (7e).

In general, we can expect that a sufficient number of random
samples can bring Ξ̂θ(x) close to Ξθ(x); in the case of
adversarial samples, the constraint is more biased towards
attack cases, where the robustness certificate is most likely
to be violated. We use Dθ(x, y) and Dθ = ∪(x,y)∈DDθ(x, y)
to represent perturbed input sets for each data (x, y) and the
entire dataset, respectively, which can be a mixture of random
samples and adversarial examples. Therefore, instead of
directly optimizing (7), in our implementation, we optimize
the following empirical Lagrangian:

min
θ

L(θ) := L0(θ) + λ1L1(θ) + λ2L2(θ) + λ3L3(θ), (8)

where L0(θ) =
∑

(x,y)∈D ℓ(g(x, fθ), y) is the usual training

loss, L1(θ) =
∑

(x,y)∈Dθ
[−hy(z(T, x))+ϵ1]+ is the loss that

penalizes mistakes due to random/adversarial perturbations,
L2(θ) =

∑
(x,y)∈D∪Dθ

[−ḣy(z(T, x)) − hy(z(T, x)) + ϵ2]+
is the regularization term for constraint (7e) with the simple
choice of α(a) = a, L3(θ) =

∑
(x,y)∈D∪Dθ

[|ḣy(z(T, x))| −
ϵ3]+ for some constant {ϵi > 0}i∈[3], and {λi ≥ 0}i∈[3] are
regularization coefficients (can be seen as dual variables for
the Lagrangian relaxation of (7)).

Remark 4 (Reverse-time robustness.). The term L3(θ) is
not needed if we are able to enforce constraint (7e) exactly
(i.e., over the entire set Ξθ(x)). However, it is necessary in
the case of sample-based constraints. Intuitively, consider an
input (x, y) that leads to a final state z(T, x) lies within
but close to the boundary of {z : hy(z) ≥ 0}. If the rate
|ḣ(z(T, x))| is large and if the constraint (7e) is not enforced
on all points along the trajectory z(t) ∈ Ξθ(x), then it is
plausible that a small time shift t′ = t−δt can drive the state
out of Sθ(x, y). Such an attack, called revserse-time attack,
has not been discussed in the literature due to the specific
nature of NODE; nevertheless, it can be performed easily
because perturbation on the input δ = z(0, x) − z(−δt, x)
can be small if δt is small (here, z(−δt, x) is the state after
running NODE for δt in reverse time).

IV. THEORETICAL ANALYSIS

We present a theoretical framework to analyze to what
extent the level of robustness of a trained NODE generalizes
to unseen samples from the same distribution.

A. Certified robustness bound

Let ξi := (xi, yi) be a random sample drawn from proba-
bility space (Ω,F ,P), which is endowed with a σ-algebra F
and a probability measure P. A dataset Dn := {ξi}i∈[n] ∈ Ωn

consists of n observations drawn independently from Ω
according to P. Formally, solving (8) for a given dataset
can be regarded as a numerical procedure Ar : Ωr → Θ,
indexed by the sample size r ∈ [n], which returns a NODE
parameter θ along with a robustness certificate. We use A(S)
to denote Ar(S) for any subset S ⊆ Dn, where we omit the
subscript r = |S|, i.e., the cardinality of S. For every data
sample ξ = (x, y), define

Θξ :=
{
θ ∈Θ : hy(z(T, x)) ≥ 0, |ḣy(z(t))| ≤ ϵ,

ḣy(z(t)) ≥ −α(hy(z(t))),∀z(t) ∈ Ξθ(x)
}

as the set of NODE parameters that renders the data ξ cor-
rectly classified (due to hy(z(T, x)) ≥ 0) and certifiably ro-
bust to any perturbation in ∆ (due to Theorem 1). Similarly,
we define an empirical estimate of the set Θ̂ξ by replacing
the conditions above with hy(z(T, x)) ≥ ϵ1, ḣy(z(t)) ≥
−α(hy(z(t)))+ϵ2, and |ḣy(z(t))| ≤ ϵ3 for all z(t) ∈ Ξ̂θ(x),
which coincide with the loss terms in {Li(θ)}i∈[3] for (x, y).

The goal of the analysis is to study how the robustness
of a NODE θn = A(Dn) returned by A on a dataset Dn

generalizes to a yet unseen data ξ ∈ Ω.

Definition 1. The robustness probability (RP) of a given
parameter θ ∈ Θ is defined as V (θ) := P(ξ ∈ Ω : θ ∈ Θξ).
The robustness rate (RR) on an evaluation subset S ⊆ Dn is
V̂ (θ;S) := 1

n

∑
ξ∈Dn

1(θ ∈ Θ̂ξ)− 1
n

∑
ξ∈Dn\S 1(θ ̸∈ Θ̂ξ).

Note that RP V (θ) should be interpreted as a lower bound
on the true robustness probability of a given NODE θ, since
θ ∈ Θξ implies that the data ξ is certifiably robust to all
δ ∈ ∆ but a data ξ′ may be robust even if θ /∈ Θξ′ (i.e., the
condition θ ∈ Θξ is a sufficient but not necessary condition
for certified robustness). We use V̂ (δ) for V̂ (δ;Dn) if the
evaluation dataset is Dn for notational simplicity.

We make the following assumptions.

Assumption 1. For any data ξ ∈ Dn in the training set, we
have that Θ̂ξ ⊆ Θξ.

Assumption 2. The algorithm A : Ωn → Θ to solve (8)
yields a unique output. Suppose the output is θn = A(Dn).
For any subset S ⊆ Dn where the membership ξ ∈ S implies
that θn ∈ Θ̂ξ, we have that θn = A(Dn \ S).

Assumption 1 implies that a point that is shown to be
robust against adversarial examples is robust for all pertur-
bations in ∆; under the condition that NODE dynamics fθ is
bounded, this can be satisfied by choosing margins {ϵi}[i∈[3]

large enough. The uniqueness requirement in Assumption 2
can be satisfied by a simple tie-break rule in the case of
multiple solutions, e.g., selecting the one with the minimum
norm. The second requirement is reminiscent of support
vector machines: if we consider the set S defined there as
non-support data, the assumption stipulates that removing the
non-support data does not change the solution.1

Main result. In the following, we focus the analysis on
proving a PAC (probably approximately correct)-type of
result: V (θn) ≥ V̂ (θn) − κ for some parameter κ ∈ (0, 1)
with a probability at least 1 − β. A probability bound of
1 − β is necessary as θn = A(Dn) is a random variable
defined over Ωn. Before stating our main result, consider
a function In : Ωn → {1, .., n} that returns S = In(Dn)
for a given dataset Dn, where S ⊆ {1, ..., n} is a subset of
indices such that Dn(S), namely, the subset of data indexed
by S , has the property that A(Dn) = A(Dn(S))) and
V̂ (A(Dn);Dn) = V̂ (A(Dn(S));Dn(S)).2

Theorem 2. For the given A that solves (8), it holds that

Pn
(
V (θn) ≥ V̂ (θn)− κ(rn)

)
≥ 1− β, (9)

where rn = |In(Dn)| and θn = A(Dn). Here, κ(r) :
{0, . . . , n} → [0, 1] is any function such that κ(0) = 1 and

n∑
r=1

(
n

r

)
(1− κ(r))

n−r ≤ β.

1Indeed, for these data in S, given the obtained solution θn, the terms
in {Li(θn)}i∈[3] corresponding to these data are zero.

2As an example of such function, we can construct a set S such that
ξi ∈ S if and only if ξi ∈ Dn and θn ̸∈ Θξi . We collect the original
indices of all points in S as S as the output of In(Dn). The validity of
this function is implied by Assumption 2. However, note that the existence
of such a function does not rely on Assumption 2.

Remark 5. To compute the bound, a simple choice is to split
β evenly among the n terms in the summation:

κ(r) =


1 if r = n[
1−

(
β

n(nr)

)1/(n−r)
]
+

o.w.
, (10)

where
(
n
r

)
is the n-choose-r binomial coefficient.

Remark 6. Note that (8) is a computationally tractable
relaxation of (7) from constrained optimization with expecta-
tion constraints to unconstrained optimization with empirical
data. Theorem 2 is derived for the solution obtained by
(8), where the robustness is evaluated against the constraints
from (7). In particular, for a given NODE parameter θ, a
point ξ that satisfies the constraints from (7) (i.e., θ ∈ Θξ)
is certifiably robust by Theorem 1. Hence, a point ξ that
satisfies the empirical version θ ∈ Θ̂ξ (which leads to zero
loss incorporated in (8)) is certifiably robust (in view of
Assumption 1). Since Theorem 2 establishes a lower bound
of the RP of the solution obtained from (8) using RR, this
lower bound also holds according to the constraints from (7).
Remark 7. The theoretical bound in (9) differs from common
generalization bounds in learning theory in that the bound
is evaluated a-posteriori after the solution is computed. This
“wait-and-judge” type of result has been developed in convex
optimization [4]. In addition, we note that existing methods
apply primarily to feasibility problems [4, 5], which translate
to the assumption that there exists a NODE parameter θ ∈ Θ
such that θ ∈ Θξ for all ξ ∈ Dn. In other words, they
require the assumption to achieve zero loss during training
of (8). This is unrealistic because we cannot expect a NODE
that is robust for all data. Our method is broadly applicable
to the relaxed setting. To put into context, the difference
is analogous to the extension of standard PAC learning to
the agnostic PAC theory, or the extension of the example-
consistent framework to the non-consistent schemes [6].

V. EXPERIMENTS

In this section, we demonstrate the effectiveness of our
framework for both non-adversarial and adversarial robust-
ness. For additional experimental details, including ODE
architecture and attack specifications, as well as further
results, please refer to the online version [22].

A. 2D Binary classification

For each data shown in Fig. 1, 30 perturbed inputs are
uniformly sampled within a radius of 1.2 centered on the
original data point (red and blue dots along the circles).

Results. In Fig. 1, both methods correctly classify all
original points, but vanilla NODE’s output regions intersect
the decision boundary, indicating potential misclassifications
under perturbation, which is not observed for B-NODE. B-
NODE generally has smaller perturbed output regions, with
their main axis almost parallel to the decision boundary, indi-
cating successful transformation of anisotropic perturbations
on inputs into isotropic perturbations on outputs, where most
perturbations are innocuous (i.e., do not change decisions).

In contrast, vanilla NODE is more susceptible to output
perturbations across decision boundaries (in some cases, even
running the integral longer can lead to wrong decisions).

B. Evaluating robustness on MNIST

First, we test the improvement of robustness against Gaus-
sian noise (Table I). While vanilla NODE is robust under
mild perturbations, the performance drops significantly as
the variance of Gaussian noise increases.

TABLE I: Robustness against Gaussian noise (zero mean and
different variances σ2). The average and standard deviation
are across 10 random perturbations for each data.

σ2 = 20 σ2 = 50 σ2 = 100 σ2 = 150

vanilla NODE 99.8±0.1 99.7±0.1 82.7±0.5 53.7±0.5
B-NODE 99.8±0.1 99.7±0.1 98.4±0.2 89.4±0.6

Robustness against PGD attack [18] is shown in TablevII.
We compare our method to the vanilla NODE trained with
clean data [7], NODE trained with data augmentation (AT-
NODE), and ODE-TRADES [24], using the same archi-
tecture for both methods to ensure a fair comparison. As
the attack radius increases (ℓ∞-norm bounds shown in the
first row of each table), the performance deteriorates for all
methods. However, the drop in performance for B-NODE is
much less, indicating enhanced robustness.

TABLE II: Robustness against PGD attack on MNIST.

PGD 0.01 0.02 0.03 0.04 0.05

vanilla NODE 86.14±1.33 79.26±1.80 71.04±2.01 60.36±2.34 47.40±2.11
AT-NODE 91.76±1.16 89.34±1.14 85.8±1.94 82.94±1.64 78.38±1.67
ODE-TRADES 91.46±1.07 88.98±1.98 85.08±1.61 81.94±0.94 77.32±1.89
B-NODE 92.62±0.87 91.52±1.22 89.16±1.25 86.36±1.78 83.18±1.75

According to [14], evaluating against PGD is not sufficient
to empirically demonstrate the adversarial robustness of
NODEs because NODEs can obfuscate gradients. Therefore,
additional experiments against AutoPGD [8] and Square
Attack [2] are performed to demonstrate effectiveness of
defense, as shown in Tables III and IV.

TABLE III: Robustness against AutoPGD attack on MNIST.

AutoPGD 0.01 0.02 0.03 0.04 0.05

vanilla NODE 84.41±1.11 76.66±1.65 68.99±1.71 58.33±2.16 46.31±2.51
AT-NODE 91.34±1.51 89.49±1.89 87.60±2.67 82.70±2.00 78.35±1.87
ODE-TRADES 92.19±1.92 88.30±2.30 85.31±2.41 81.90±1.85 76.89±3.85
B-NODE 93.45±1.42 91.25±1.34 88.95±2.09 86.30±3.24 82.65±2.58

TABLE IV: Robustness against Square attack on MNIST.

Square attack 0.01 0.02 0.03 0.04 0.05

vanilla NODE 86.55±2.65 83.29±3.66 72.50±5.85 62.49±3.59 51.58±4.05
AT-NODE 92.65±1.72 90.99±2.50 89.50±3.84 85.51±3.84 81.13±5.44
ODE-TRADES 92.06±3.10 91.85±2.73 90.08±2.73 86.24±2.56 82.41±2.96
B-NODE 94.49±2.55 92.99±0.99 91.52±3.49 88.51±4.51 85.49±2.50

C. Evaluation on FashionMNIST and CIFAR10

For the FashionMNIST data, we tested with convolution
Neural ODEs, which uses a 2D matrix to represent hid-
den states during forward propagation. AT-NODE, ODE-
TRADES and B-NODE are trained with clean data aug-
mented with adversarial examples, which are generated by
40 steps L∞ norm PGD attack, whose magnitude ε is 8/255.
The clean data accuracy for vanilla NODE, AT-NODE, B-
NODE and ODE-TRADES are 85.36%, 82.10%, 82.68% and
83.24%, respectively.

TABLE V: Performance on FashionMNIST.

PGD- 4
255 PGD- 6

255 PGD- 8
255 PGD- 10

255 PGD- 12
255

AT-NODE 75.99±2.28 72.15±2.87 70.70±2.81 66.25±2.67 63.85±3.21
ODE-TRADES 77.68±2.25 75.47±1.70 72.53±1.94 68.32±1.94 67.12±2.21
B-NODE 78.96±2.48 76.32±2.67 73.62±2.21 69.12±2.69 67.36±1.99

For the CIFAR10 experiment, we use a pre-trained CNN
model for feature extractor, the output of which is provided
to NODE as an initial state [16]. The clean data accuracy
for vanilla NODE, B-NODE, ODE-TRADES are 89.68%,
89.16%, and 90.48%, respectively.

TABLE VI: Performance on CIFAR10.

PGD- 6
255 PGD- 9

255 PGD- 12
255 PGD- 15

255

AT-NODE 58.56±1.65 45.35±2.46 35.71±2.41 25.76±3.12
ODE-TRADES 59.28±2.36 47.60±2.16 39.48±2.93 30.48±2.84
B-NODE 61.81±2.35 48.52±2.45 39.60±3.14 30.52±2.27

The results in Tables V and VI indicate that B-NODE ex-
hibits the best performance among all methods. Nevertheless,
we observed a significant decrease in performance compared
to the accuracy on clean data, suggesting that there is room
for improvement in future work.

D. Ablation analysis

We conducted an experiment to analyze the impact of
learning-based barrier functions and data augmentation on
the robustness of four different models (see details in [22,
Appendix]). As shown in Table IX, barrier function without
data augmentation can already improve robustness, some-
times by 15% (in the case of PGD-0.05). It is remarkable to
see improvement in all cases of attacks, indicating some level
of “universal robustness.” However, the use of the barrier
function in conjunction with data augmentation yields the
most robust performance.

TABLE VII: Ablation analysis for models with and without
barrier function loss or data augmentation on MNIST dataset.

PGD-0.01 PGD-0.02 PGD-0.03 PGD-0.04 PGD-0.05

vanilla NODE 86.14±1.33 79.26±1.80 71.04±2.01 60.36±2.34 47.40±2.11
B-NODE w/o AT 88.62±1.40 83.82±1.10 79.00±1.39 71.22±2.23 61.46±1.64
AT-NODE 91.76±1.16 89.34±1.14 85.80±1.94 82.94±1.64 78.38±1.67
B-NODE w/ AT 92.62±0.87 91.52±1.217 89.16±1.25 86.36±1.78 83.18±1.75

VI. CONCLUSIONS
We have developed an algorithm to train NODEs based on

barrier functions with certified robustness. Future directions
include examining the necessity of the robustness certificates
and exploring the incorporation of (exponential) control
barrier functions to problems beyond classifications.

REFERENCES

[1] A. Ames et al. “Control barrier functions: Theory and applications”.
In: 2019 18th European control conference (ECC). IEEE. 2019,
pp. 3420–3431.

[2] Maksym Andriushchenko et al. “Square attack: a query-efficient
black-box adversarial attack via random search”. In: ECCV.
Springer. 2020, pp. 484–501.

[3] F. Blanchini. “Set invariance in control”. In: Automatica 35.11
(1999), pp. 1747–1767.

[4] M. Campi and S. Garatti. “Wait-and-judge scenario optimization”.
In: Mathematical Programming 167.1 (2018), pp. 155–189.

[5] M. Campi, S. Garatti, and F. Ramponi. “A general scenario the-
ory for nonconvex optimization and decision making”. In: IEEE
Transactions on Automatic Control 63.12 (2018), pp. 4067–4078.

[6] Marco C Campi and Simone Garatti. “Compression, Generalization
and Learning”. In: arXiv preprint arXiv:2301.12767 (2023).

[7] R. Chen et al. “Neural ordinary differential equations”. In: NeurIPS
31 (2018).

[8] Francesco Croce and Matthias Hein. “Reliable evaluation of ad-
versarial robustness with an ensemble of diverse parameter-free
attacks”. In: ICML. PMLR. 2020, pp. 2206–2216.

[9] C. Dawson, S. Gao, and C. Fan. “Safe Control with Learned
Certificates: A Survey of Neural Lyapunov, Barrier, and Contraction
methods”. In: arXiv preprint arXiv:2202.11762 (2022).

[10] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. “Augmented
neural odes”. In: Advances in Neural Information Processing Sys-
tems 32 (2019).

[11] A. Ghosh et al. “Steer: Simple temporal regularization for neural
ode”. In: NeurIPS 33 (2020), pp. 14831–14843.

[12] I. Goodfellow, J. Shlens, and C. Szegedy. “Explaining and harness-
ing adversarial examples”. In: ICLR (2015).

[13] Sophie Grunbacher et al. “On the verification of neural odes with
stochastic guarantees”. In: Proceedings of the AAAI Conference on
Artificial Intelligence. Vol. 35. 13. 2021, pp. 11525–11535.

[14] Yifei Huang et al. “Adversarial Robustness of Stabilized Neural
ODE Might be from Obfuscated Gradients”. In: Mathematical and
Scientific Machine Learning. PMLR. 2022, pp. 497–515.

[15] Yujia Huang et al. “FI-ODE: Certified and Robust Forward Invari-
ance in Neural ODEs”. In: arXiv preprint arXiv:2210.16940 (2022).

[16] Q. Kang et al. “Stable neural ode with lyapunov-stable equilibrium
points for defending against adversarial attacks”. In: NeurIPS 34
(2021), pp. 14925–14937.

[17] X. Liu et al. “How does noise help robustness? explanation and
exploration under the neural sde framework”. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2020, pp. 282–290.

[18] A. Madry et al. “Towards deep learning models resistant to adver-
sarial attacks”. In: ICLR (2018).

[19] I. Rodriguez, A. Ames, and Y. Yue. “LyaNet: A Lyapunov frame-
work for training neural ODEs”. In: International Conference on
Machine Learning. PMLR. 2022, pp. 18687–18703.

[20] Vincent Tjeng, Kai Y Xiao, and Russ Tedrake. “Evaluating Ro-
bustness of Neural Networks with Mixed Integer Programming”.
In: International Conference on Learning Representations. 2018.

[21] H. Yan et al. “On robustness of neural ordinary differential equa-
tions”. In: ICLR (2020).

[22] R. Yang et al. Certifiably Robust Neural ODE with Learning-based
Barrier Function. Link: http : / / www . jinming . tech /
papers/B-NODE22.pdf. 2022.

[23] M. Zakwan, L. Xu, and G. Ferrari-Trecate. “On Robust Classi-
fication using Contractive Hamiltonian Neural ODEs”. In: arXiv
preprint arXiv:2203.11805 (2022).

[24] Hongyang Zhang et al. “Theoretically principled trade-off between
robustness and accuracy”. In: International conference on machine
learning. PMLR. 2019, pp. 7472–7482.

APPENDIX

A. Proof of Theorem 1

Since for any z ∈ ∂Hy (boundary of Hy), ḣy(z) ≥
−α(hy(z)) = 0, the set Hy is forward invariant (Nagumo’s
theorem [3]). Let ∆̄ = {δ ∈ ∆ : z(0) = x + δ, ż(t) =
fθ(z(t)), t ∈ [0, T], z(T) ∈ Sθ(x, y)} denote the set of
innocuous perturbations that do not lead to a false prediction.
Then, for any δ ∈ ∆̄, we have that z(t, x + δ) ∈ Hy ⊆ Cy
for any t ≥ T . For the remaining δ ∈ ∆ \ ∆̄, we know that
z(T, x + δ) ∈ Ξθ(x) \ Sθ(x, y) by definition. Condition (1)
implies that (Ξθ(x) \ Sθ(x, y)) ∩Hy = ∅. By condition (2),
the set Hy is asymptotically stable. Hence, there exists an
T ′ ≥ T such that z(t, x+ δ) ∈ Cy for any δ ∈ ∆ \ ∆̄. This
concludes the proof.

B. Proof of Theorem 2

We write A(Dn) for δn to make explicit the dependence
on a random dataset Dn. To proceed, define

Λ =
{
Dn ∈ Ωn : V (A(Dn)) < V̂ (A(Dn))− κ(rn(Dn))

}
and

ΛSr =
{
Dn ∈ Ωn : V (A(Sr)) < V̂ (A(Sr);Sr)− κ(r)

}
,

where Sr is a subset of r indices {i1, . . . , ir} from
{1, . . . , n} and Sr = Dn(Sr). Intuitively, Λ is the set of “bad
dataset” that leads to overestimation of RP, and ΛSr

is the set
of bad datasets due to the subset indexed by Sr. Furthermore,
consider a partition {Ω0, . . . ,Ωn} of the sample space Ωn,
where Ωr := {Dn ∈ Ωn : |In(Dn)| = r} is a set of
datasets that for which In returns a set with cardinality r.
For each subset Ωr, consider a further refinement indexed
by all possible subsets Sr ⊆ {1, . . . , n} with cardinality
|Sr| = r, Ωr,Sr ⊆ Ωr, such that Dn ∈ Ωr,Sr if and only
if In(Dn) = Sr. Obviously, it holds that Ωr = ∪Sr

Ωr,Sr
,

and Ωn = ∪n
r=0 ∪Sr

Ωr,Sr
. We have that

Λ = Ωn ∩Λ

=
n
∪

r=0
∪
Sr

Ωr,Sr ∩
{
V (A(Dn)) < V̂ (A(Dn))− κ(rn(Dn))

}
(i)
=

n
∪

r=0
∪
Sr

Ωr,Sr
∩
{
V (A(Sr)) < V̂ (A(Sr);Sr)− κ(r)

}
(ii)
=

n
∪

r=1
∪
Sr

Ωr,Sr
∩ ΛSr

, (11)

where (i) is due to the definition of Ωr,Sr
, the property of

In, and Assumption 2, and in (ii) we removed the case for
r = 0 since κ(0) = 1 and {Dn ∈ Ωn : V (A(Dn)) < 0} = ∅.

Without loss of generality, we focus on a specific example
with Sr = {1, . . . , r}. For any Dn = {ξi}i∈[n] ∈ ΛSr , a
necessary condition for Dn to belong to Ωr,Sr

∩ΛSr
is that

A(Dn(Sr)) ∈ Θ̂ξi for all i ∈ [r + 1, n] due to the property
of In, so A(Dn(Sr)) ∈ Θξi by Assumption 1. Also, by the
definition of ΛSr , it holds that

V (A(Dn(Sr))) = P(ξ ∈ Ω : A(Dn(Sr)) ∈ Θξ)

< V̂ (A(Dn(Sr);Dn(Sr))− κ(r)

Therefore, by the independence of {ξi}i∈[r+1,n], we have

Pn−k
{
{ξi}i∈[r+1,n] : {ξi}i∈[n] ∈ Ωr,Sr

∩ΛSr

}
(i)

≤ Pn−k

{
{ξi}i∈[r+1,n] :

n
∩

i=r+1
A({ξi}i∈[n]) ∈ Θξi

}
(ii)
=

n∏
i=r+1

P
{
ξi : A({ξi}i∈[n]) ∈ Θξi

}
(iii)

≤
n∏

i=r+1

(
V̂ (A({ξi}i∈[r]); {ξi}i∈[r])− κ(r)

)
(iv)

≤ (1− κ(r))
n−r

,

(12)

where (i) and (iii) follow by the necessary condition for
{ξi}i∈[n] ∈ Ωr,Sr

∩ΛSr
, (ii) follows from the independence

of ξi for all i = r + 1, . . . , n, and (iv) is due to a simple
upper bound that V̂ (θ;Sr) ≤ 1 by definition.

So far, we have conditioned on the observations ξi for
i = 1, . . . , r. Integrating over these observations gives

Pn(Ωr,Sr
∩ΓSr

) ≤
∫

(1− κ(r))
n−r Pr(dξ1, . . . , dξr))

≤ (1− κ(r))
n−r

.

Recall that Sr = {1, . . . , r} is chosen as an example,
and the above holds for any Sr and any r = 0, . . . , n − 1.
Therefore, by a simple union bound, we have that

Pn
(
V (A(Dn)) < V̂ (A(Dn))− κ(rn(Dn))

)
(i)
= Pn(Λ)

(ii)
= Pn

(
n
∪

r=1
∪
Sr

Ωr,Sr
∩ΛSr

)
≤

n∑
r=1

∑
Sr

(1− κ(r))
n−r

(iii)
=

n∑
r=1

(
n

r

)
(1− κ(r))

n−r
, (13)

where (i) is by definition of Λ, (ii) is by (11), and (iii) is
because there are

(
n
r

)
choices of Sr.

C. Experimental details

Here is a description of model specifications:

• vanilla NODE [7]: We instantiate fθ(z) as a 3-layer
neural network with 784 hidden units in each hidden
layer and ReLU activation. The model is trained with
clean data using cross-entropy loss.

• AT-NODE: the NODE shares the same architecture as
the vanilla NODE. The adversarial example is generated
by L∞ PGD attack. Following standard adversarial
training process, the parameter is trained with a cross-
entropy loss on both adversarial and clean samples.

• B-NODE: the proposed method trained with (8), which
shares the same architecture as the vanilla NODE and
the same data augmentation strategy as AT-NODE.

• ODE-TRADES [24]: the NODE shares the same archi-
tecture as the vanilla NODE. We follow the training
procedure proposed in [24], which also includes data
augmentation with adversarial examples generated for
randomly perturbed data with L∞ PGD attack.

For forward passes, we use Euler’s method and set the in-
tegration time T = 1 and stepsize dt = 0.001; for backward
passes, the adjoint sensitivity method is implemented.

Experiment on MNIST. For the MNIST data, we vectorize
the original image (of size 28 by 28 pixels) to a 784-
dimensional vector, which is then projected into a 25-
dimensional vector through an affine transformation (i.e., the
input layer of NODE is ϕ(x) = Ax for some matrix A). For
the training of AT-NODE, B-NODE, and ODE-TRADES,
the adversarial example is generated by 40 steps L∞ PGD
attack (with attack radius ε = 0.05).

Experiment on FashionMNIST. For the FashionMNIST
dataset, we adopted the convolutional architecture proposed
in [10] for NODE. To generate adversarial samples for data
augmentation, we employed a PGD attack with ε = 8/255
and 40 steps. For ODE-TRADES baseline, the training data
was first perturbed by Gaussian noise with a standard devi-
ation of 10/255, and then we used the PGD attack method
with ε = 8/255 and 40 steps to generate the adversarial
samples for augmentation.

Experiment on CIFAR10. For the CIFAR10 dataset,
we followed the practice proposed in [7] and utilized
a pre-trained CNN as the feature extractor. Specifically,
for both our method and the baselines, we used the
ResNet18 model provided by https://github.com/
huyvnphan/PyTorch_CIFAR10, and employed the out-
puts (10-dimensional feature) of this model as input for
NODEs. It’s important to note that the feature extractor was
fixed during the training of Neural ODE. The dynamics of the
NODE have a fully connected neural network architecture
with 3 layers, an input and output dimension of 10, a
hidden dimension of 25, and ReLU activation. All three
models AT-NODE, B-NODE and ODE-TRADES are trained
with clean data augmented with adversarial examples, which
are generated by 50 steps L∞ norm PGD attack, whose
magnitude ε is 3/255.

D. Details of attack models

For PGD attacks, we implement the method provided in
[18] with 40 steps and varying attack radius (we use 50 steps
for CIFAR10 experiment). For AutoPGD attacks, we refer
to [8] and use L∞ norm attack with a cross-entropy loss
function and an update step size of 0.75. For Square Attack,
we follow [2] with the L∞ norm. This attack is generated
using 5000 queries and employs a margin loss function.

E. Learning barrier function and an additional example

In our method, the barrier function certificate is learned
(as reflected in our title). We choose a natural candidate for
hy(z) = [Wz]y −maxk ̸=y[Wz]k, where W coincides with
the final layer of NODE and is learned by Optimization (8).

To further clarify on this important point: For classification
problems, the correctness condition is given by

νy ≥ νy′ ,∀y′ ̸= y,

where ν = Wz(T) is the output of a NODE and y is the
true label. Thus, the safe region is given by Cy = {z :

[Wz]y ≥ [Wz]y′ ,∀y′ ̸= y}. This motivates our definition
of hy , because Cy = {z : hy(z) ≥ 0} by definition.

It’s worth noting that a more complex certificate func-
tion, such as hy(z) = [NNω(z)]y −max k ̸= y[NNω(z)]k,
where ω represents the weights of the neural network. Here,
NNω(z) represents a neural network with input z and output
of the same dimension as the number of classes. In this case,
it is necessary to ensure that {z : hy(z) ≥ 0} ⊆ Cy as
required by Theorem 1 (note that the relationship is equality
if we pass the output state of NODE z(T) through NN
instead of the linear layer parametrized by W). However,
we have found that the simple construct presented in the
paper is sufficient to improve performance.

F. Convergence of PGD attack

In our MNIST experiment, we reported the results against
a 40-step PGD attack following the practice of [18]. To
demonstrate that the PGD attack has converged, we com-
pared the performance of our models against a 50-step PGD
attack, as shown in Table VIII. As observed, there was no
significant difference in accuracy results between the two
attacks. Therefore, we concluded that a 40-step PGD attack
was an effective adversarial perturbation for our models.

TABLE VIII: Robustness against PGD attack with 50 steps.

PGD-0.01 PGD-0.02 PGD-0.03 PGD-0.04 PGD-0.05

vanilla NODE 85.25±2.27 80.05±1.64 70.80±2.21 59.55±2.36 46.02±3.41
AT-NODE 91.40±0.95 90.26±1.87 85.86±1.44 82.46±2.19 79.16±1.75
ODE-TRADES 91.56±1.22 89.36±1.30 85.24±1.72 81.84±2.14 78.47±2.04
B-NODE 93.10±1.33 91.30±2.01 88.50±1.87 86.55±1.74 82.89±2.09

G. Ablation analysis details

For the ablation analysis, we considered four different
models. Model 1 is a vanilla NODE trained with clean data
using cross-entropy loss. Model 2 is a NODE trained with
clean data and barrier function regularization (8). Model 3
is a vanilla NODE trained with clean data augmented with
adversarial data using cross-entropy loss. Model 4 is our
proposed method, which uses clean data augmented with
adversarial data trained with (8).

H. Sensitivity analysis

The influence of the values of λi is shown in Fig. 2, where
we vary the values of λi by choosing from the set V =
{0.1, 0.5, 1, 5}. The figure shows the accuracy of against L∞
PGD attacks with ε = 0.05 and 40 steps on MNIST. In
general, increasing the values of λi results in more robust
performance.

I. Ablation analysis

We conducted an experiment to analyze the impact of
learning-based barrier functions and data augmentation on
the robustness of four different models (see details in [22,
Appendix]). As shown in Table IX, barrier function without
data augmentation can already improve robustness, some-
times by 15% (in the case of PGD-0.05). It is remarkable to
see improvement in all cases of attacks, indicating some level

Fig. 2: Sensitivity analysis for regularization coefficient λi
corresponding to Li(θ) in (8).

of “universal robustness.” However, the use of the barrier
function in conjunction with data augmentation yields the
most robust performance.

TABLE IX: Ablation analysis for models with and without
barrier function loss or data augmentation on MNIST dataset.

PGD-0.01 PGD-0.02 PGD-0.03 PGD-0.04 PGD-0.05

vanilla NODE 86.14±1.33 79.26±1.80 71.04±2.01 60.36±2.34 47.40±2.11
B-NODE w/o AT 88.62±1.40 83.82±1.10 79.00±1.39 71.22±2.23 61.46±1.64
AT-NODE 91.76±1.16 89.34±1.14 85.80±1.94 82.94±1.64 78.38±1.67
B-NODE w/ AT 92.62±0.87 91.52±1.217 89.16±1.25 86.36±1.78 83.18±1.75

J. Experiment with convolutional NODE

Our approach centers on designing the training loss
function (8) and is not limited to specific neural network
architectures. Given the similarity of the forward propagation
process between fully connected and convolutional layers,
our method can also be applied to convolutional NODEs
(C-NODEs). Specifically, using the implementation pro-
vided in https://github.com/EmilienDupont/
augmented-neural-odes, where the C-NODE uses 2D
matrices with the same channels as the input images as
hidden states, we conducted additional experiments on the
MNIST dataset. The results demonstrate that our method can
enhance the robustness of C-NODEs as well (Table X). Here
is the description for C-NODEs.

• C-NODE: The function fθ(z) is generated by three 2D
convolution layers, with shapes given as [[1,5,1,1,0],
[5,5,1,1,1], [5,1,3,1,0]]. The parameters of each layer
denote the input channels, output channels, kernel size,
stride, and padding. The model is trained with cross-
entropy.

• Barrier C-NODE: shares the same framework with C-
ODE. Trained with loss function in (8).

TABLE X: Performance improvement on C-NODE with
barrier function on MNIST.

PGD-0.01 PGD-0.02 PGD-0.03 PGD-0.04 PGD-0.05

C-NODE 85.50±2.29 78.49±2.57 73.70±3.06 67.40±3.32 63.50±5.14
Barrier C-NODE 88.50±3.74 83.10±3.96 80.29±2.28 74.70±3.84 70.59±4.60

