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This supplementary material includes formal theory and additional experimental details for the paper
“Boundary Defense against Cyber Threat for Power System Operation.” The manuscript is organized as
follows. We first discuss the preliminaries in Section 1, including notations, power system modeling, the
linear basis of representation, and the measurement model considered in the study. We introduce the two-
step pipeline of state estimation in Section 2, where we discuss the algorithms with and without the second-
order cone constraints and their connection to robust statistics. Section 3 introduces the boundary defense
mechanism, including the main results for boundary defense (Lemmas 5 and 12), implications of local
property for global property (Lemmas 9 and 15), and performance guarantees for estimation accuracy and
bad data detection (Theorems 10, 11, 17 and 18). Experimental details and additional figures are shown in
Section 4. The proofs of the main theorems are delegated to Section 5.

1 Preliminaries

1.1 Notations

Vectors are shown by bold letters, and matrices are shown by bold and capital letters. Let xi denote the i-th
element of vector x. We use R and C as the sets of real and complex numbers, and Sn and Hn to represent
the spaces of n× n real symmetric matrices and n× n complex Hermitian matrices, respectively. A set of
indices {1, 2, ...,m} is denoted by [m]. The cardinality |J | of a set J is the number of elements in a set.
The support supp(x) of a vector x is the set of indices of the nonzero entries of x. For a set J ⊂ [m],
we use J c = [m] \ J to denote its complement. The symbols (·)> and (·)∗ represent the transpose and
conjugate transpose operators. We use <(·), =(·) and Tr (·) to denote the real part, imaginary part and trace
of a scalar/matrix. The imaginary unit is denoted as i. The notations ∠x and |x| indicate the angle and
magnitude of a complex scalar. For a convex function g(x), we use∇g(x) and ∂g(x) to denote its gradient
and subgradient at x, respectively. We use λmin(A) to denote the smallest eigenvalue of A, and A � 0 to
indicate that A is a positive semidefinite matrix. Let I(n) denote the identity matrix of dimension n, but
sometimes for simplicity, we omit the superscript whenever the dimension is clear from the context. The
notations ‖x‖0, ‖x‖1, ‖x‖2 and ‖x‖∞ show the cardinality, 1-norm, 2-form and ∞-norm of x. We use
‖ · ‖∞ to denote the matrix infinity norm (i.e., the maximum absolute column sum of the matrix). Note that
the notations p and q are used for active power and reactive power, respectively.
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1.2 Power system modeling

We model the electric grid as a graph G := {N ,L}, where N := [nb] and L := [nl] represent its sets
of buses and branches. Each branch ` ∈ L that connects bus f and bus t is characterized by the branch
admittance y` = g` + ib` and the shunt admittance ysh

` = gsh
` + ibsh

` , where g` (resp., gsh
` ) and b` (resp., bsh

` )
denote the (shunt) conductance and susceptance, respectively. Typically, gsh

` � bsh
` , so it is set to zero in

the subsequent description. In addition, to avoid duplicate definition, each line ` = (i, j) is defined with a
direction from bus i (i.e., from end, given by f(`) = i) to bus j (i.e., to end, given by t(`) = j). We also use
{i, j}` or simply {i, j} to denote a line ` that connects nodes i and j.

The power system state is described by the complex voltage at each bus v =
[
v1, ..., vnb

]> ∈ Cnb ,
where vk ∈ C is the complex voltage at bus k ∈ N with magnitude |vk| and phase θk := ∠vk. Given the
complex voltages, by Ohm’s law, the complex current injected into line {k, j}` at bus k is given by:

ikj = y`(vk − vj) +
i

2
bsh
` vk.

By defining θkj := θk − θj , one can write the power flow from bus k to bus j as

p
(`)
kj = |vk|2g` − |vk||vj |(g` cos θkj − b` sin θkj),

q
(`)
kj = −|vk|2(b` + 1

2b
sh
` ) + |vk||vj |(b` cos θkj − g` sin θkj),

and active (reactive) power injections at bust f as

pk =
∑
{k,j}`

p
(`)
kj , qk =

∑
{k,j}`

q
(`)
kj . (1)

The above formulas are based on polar coordinates of complex voltages, where measurements are nonlin-
ear functions of voltage magnitudes and phases. Another popular representation is based on rectangular
coordinates of complex numbers, where measurements are expressed as quadratic functions of the real and
imaginary parts of voltages (see [4, Chap. 1] for more details). We use “PV bus” and “PQ bus” to denote
buses with real power injection and voltage magnitudes, and buses with real and reactive power injection
measurements, respectively.

1.3 Linear basis of representation

We discuss a new basis of representation proposed in [9], where measurements can be expressed as linear
combinations of the quantities derived form bus voltages. Specifically, for a given system G, we introduce
two groups of variables:

1. voltage magnitude square, xmg
k := |vk|2, for each bus k ∈ N , and

2. real and imaginary parts of complex products, denoted as xre
` := <(viv∗j ) and xim

` := =(viv∗j ), re-
spectively, for each line ` = (i, j). Note that there is only one set of variables {xre

` , x
im
` } for each

line.

Using this representation, we can derive various types of power and voltage measurements as follows:

• Voltage magnitude square. The voltage square magnitude square at bus k ∈ N is simply xmg
k by

definition;
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• Branch power flows. For each line ` = (i, j), the real and reactive power flows from bus i to bus j
and in the reverse direction are given by:

p
(`)
ij = g`x

mg
i − g`x

re
` − b`xim

`

q
(`)
ij = −(b` + 1

2b
sh
` )x

mg
i + b`x

re
` − g`xim

`

p
(`)
ji = g`x

mg
j − g`x

re
` + b`x

im
`

q
(`)
ji = −(b` + 1

2b
sh
` )x

mg
j + b`x

re
` + g`x

im
`

• Nodal power injection. The power injection at bus node k consists of real and reactive powers, i.e.
pk + iqk, where:

pk =
∑
k∈`

g`x
mg
k −

∑
k∈`

g`x
re
` − (

∑
f(`)=k

b` −
∑
t(`)=k

b`)x
im
`

qk = −(
∑
k∈`

b` +
1
2b

sh
` )x

mg
k +

∑
k∈`

b`x
re
` − (

∑
f(`)=k

g` −
∑
t(`)=k

g`)x
im
` ,

where
∑

k∈` is the sum over all lines ` ∈ L that are connected to k,
∑

f(`)=k is the sum over all lines
` where f(`) = k, and similarly,

∑
t(`)=k is the sum over all lines ` where t(`) = k. Equivalently, we

can use (1) to combine the branch power flows defined above.

Thus, each customary measurement in power systems that belongs to one of the above measurement types
can be represented by a linear function1:

mi(x) = a
>
i x\, (2)

where ai ∈ Rnx is the vector for the i-th noiseless measurement and x\ = ({xmg
k }k∈N , {x

im
` , x

im
` }`∈L) is

the regression vector. By collecting all the sensor measurements in a vectorm ∈ Rnm , we have

m = Ax\, (3)

whereA ∈ Rnm×nx is the sensing matrix with rows a>i for i ∈ [nm].

1.4 Measurement model

To perform SE, the supervisory control and data acquisition (SCADA) system collects measurements about
power flows and complex voltages at key locations instrumented with sensors. This process is subject to
both ubiquitous sensor noise and randomly occurring sensor faults. We consider the measurement model as
follows:

y = Ax\ + w\ + b\, (4)

where A ∈ Rnm×nx and x\ ∈ Rnx are the sensing matrix and the true regression vector in (3), w\ ∈ Rnm

denotes random noise, and b\ ∈ Rm is the bad data error that accounts for sensor failures or adversarial
noise [8]. Note that x serves as an intermediate parameter and the end goal is to find v.

Because the sensor data are of different types and their corresponding measurements could be of different
scales, we introduce the following condition.

1It is straightforward to include linear PMU measurements in our analysis as well using the relation tan θij = xim
` /x

re
` for each

line ` = (i, j). Thus, as long as we have two adjacent PMU measurements, we can use the phase difference to construct a linear
measurement equation xim

` − tan θijx
re
` = 0.
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Definition 1 (Measurement normalization convention). Each row of A corresponding to a voltage magni-
tude measurement is normalized by the degree of connection of the node k, ‖ai‖22 = deg(k), and 1 otherwise
‖ai‖22 = 1, where ai is the i-th row of A. The only exception is when the line vulnerability (c.f., Def. 7) is
calculated, when all the measurements are normalized by 1.

This condition is straightforward to implement in practice, since the sensing matrixA is fixed for a given
set of measurements. This is also known as preconditioning, which assists with the statistical performance
of regression.

2 Two-step pipeline of state estimation

This section describes the two-step state estimation method. For the first step, we discuss algorithms in
two categories, which differ by whether or not the second-order cone constraints are incorporated (the case
without second-order cone constraints is proposed in [10]). Within each category, we also propose two slight
variations, which differ by whether the term of squared loss is included. For the second step, we propose
two approaches based on quadratic programming. In the main paper, we mainly discussed the case in which
we have both sparse corruption and dense noise. However, the case with sparse corruption but no dense
noise is important and also simpler in terms of analysis. Therefore, we include them here as well.

2.1 Step 1: Estimation of x\
In the first step, the goal is to estimate x\ from a set of noisy and corrupted measurements y. We consider
two cases separately. In the first case, the dense noise is negligible, i.e., w\ = 0, and we only need to
consider the sparse measurement corruption b.

Case 1: Sparse corruption but no dense noise (i.e., w = 0)

In this case, the measurements are given by y = Ax\+b\. To estimate x\, we solve the following program:

min
b∈Rnm ,x∈Rnx

‖b‖1, subject to Ax+ b = y. (S(1): `1)

Briefly, under some mild conditions on observability and robusteness to be specified in Section 3, we can
faithfully recover b\ from the above program. As a consequence, x\ can be obtained by performing regres-
sion using the remaining good data.

For this case, we can also incorporate second-order cone (SOC) constraints:

min
b∈Rnm ,x∈Rnx

‖b‖1, subject to Ax+ b = y, x ∈ K, (S(1): `1-K)

where

K =

{
x ∈ Rnx

∣∣∣ [ x
mg
i xre

` + jxim
`

xre
` − jxim

` x
mg
j

]
� 0, ∀` := (i, j) ∈ L

}
. (5)

Let σ(x) denote the index of the variable x (e.g., xmg
i , xre

` , x
im
` ) in the vector x. For instance, σ(xmg

i ) denotes
the index of xmg

i in x. The SOC constraint can be equivalently written as:

c>` x ≥ ‖D`x‖2 ⇔
[
D`

c>`

]
x ∈ C5, (6)
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where c` ∈ Rnx has its σ(xmg
i ) and σ(x

mg
j ) entries to be 1√

2
and 0 elsewhere, and D` ∈ R4×nx has

its (1, σ(x
mg
i )) and (2, σ(x

mg
j )) entries to be 1√

2
and its (3, σ(xre

` )) and (4, σ(xim
` )) entries to be 1, and 0

elsewhere, and C5 denotes the second-order cone of dimension 5.
The problem (S(1): `1-K) can be reformulated as:

min
b∈Rnm ,x∈Rnx

‖b‖1, subject to Ax+ b = y,

[
D`

c>`

]
x ∈ C5,∀` ∈ L (7)

using standard SOCP notations. The Lagrangian is given by:

L (x, b, {ν`,µ`}`∈L,h) = ‖b‖1 + h> (y −Ax− b)−
∑
`∈L

(
ν`c
>
` x+ µ`D`x

)
The Karush-Kuhn-Tucker (KKT) conditions are given by:

(primal feasibility) Ax+ b = y, c>` x ≥ ‖D`x‖2 , ∀` ∈ L (8)

(dual feasibility) ν` ≥ ‖µ`‖2, ∀` ∈ L (9)

(stationarity) −
∑
`∈L

(ν`c` +D
>
` µ`) = A

>h, h ∈ ∂‖b‖1 (10)

(complementary slackness) ν`c
>
` x+ µ>` D`x = 0, ∀` ∈ L. (11)

Therefore, the dual program of (S(1): `1-K) is given by:

max
h∈Rnm ,{ν`,µ`}`∈L

h>y (12a)

subject to −
∑
`∈L

(ν`c` +D
>
` µ`) = A

>h (12b)

‖h‖∞ ≤ 1 (12c)

ν` ≥ ‖µ`‖2, ∀` ∈ L (12d)

Case 2: Sparse corruption and dense noise

In this case, the dense noise cannot be ignored, and the measurements are given by (2). We perform the
estimation by solving the following mixed-objective optimization:

min
b∈Rnm ,x∈Rnx

1
2nm
‖y −Ax− b‖22 + λ‖b‖1, (S(1): `2`1)

where λ > 0 is the regularization coefficient. Due to the existence of dense noise, it is no longer possible to
exactly recover the true x\; however, if the magnitude of each dense noise is small, then we can still have
strong statistical bounds on the estimation error. The optimization (S(1): `2`1) is equivalent to minimizing
the Huber loss as discussed in Section 2.2.

We can also incorporate second-order cone constraints:

min
b∈Rnm ,x∈Rnx

1
2nm
‖y −Ax− b‖22 + λ‖b‖1, subject to x ∈ K, (S(1): `2`1-K)

where K is defined in (5). The Lagrangian of (S(1): `2`1-K) is given by:

L (x, b, {µ`}`∈L, {ν`}`∈L,h) = 1
2nm
‖y −Ax− b‖22 + λ‖b‖1 −

∑
`∈L

(
ν`c
>
` x+ µ`D`x

)
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The KKT conditions are given by:

(primal feasibility) c>` x ≥ ‖D`x‖2 , ∀` ∈ L (13)

(dual feasibility) ν` ≥ ‖µ`‖2, ∀` ∈ L (14)

(stationarity)
1

nm
A>(y −Ax− b) +

∑
`∈L

(ν`c` +D
>
` µ`) = 0 (15)

1

nm
(y −Ax− b) = λh, h ∈ ∂‖b‖1 (16)

(complementary slackness) ν`c
>
` x+ µ>` D`x = 0, ∀` ∈ L. (17)

The KKT conditions are important for the analysis in Section 3.

2.2 Connection with robust statistics for bad data detection

The so-called bad data rejection and state estimation form an important part of power systems supervisory
control and data acquisition. There are traditional statistical approaches to bad data rejection that involve
iteratively eliminating the measurements with the largest residual that are obtained from a least squares
estimation (see [17, Section 9.6]). Such a smooth quadratic objective can, however, mask bad data by
“spreading” the error around the system. An alternative approach developed in [2] is to use an `1 objective,
which can identify multiple bad data directly. However, the resulting estimate does not average out the effect
of dense, independent measurement errors.

The so-called Huber loss that is quadratic for small measurement residuals but constant or linear for
large measurement residuals has been explored in [12, 3, 18]. The quadratic-linear loss function is convex,
continuous and differentiable at the transition between the quadratic and linear part, and is given by [7]:

fHuber(r;ψ) =

{
1
2r

2 |r| ≤ ψ
ψ(|r| − 1

2ψ) |r| > ψ
, (18)

where ψ is the hyper-parameter controlling the transition point between the `2 and `1 loss functions.
There is an interesting connection between (S(1): `2`1) and the Huber loss. To see this, we can view

the optimization over b and x in (S(1): `2`1) as an inner optimization with b for a given x, and an outer
optimization with x. The inner optimization is composed of a series of smaller optimization problems

min
bi

1
2nm

(yi − a>i x− bi)2 + ψ|bi|, (19)

for i ∈ [nm], which has the optimal solution

b∗i = sign(yi − a>i x)max
(
0,
∣∣∣yi − a>i x∣∣∣− ψ) , (20)

where sign(y) is the sign of y. Now, by defining ri := yi − a>i x, we substitute the solution into the outer
optimization to obtain

1
nm

∑
i∈[nm]

1
2(ri − sign(ri)max (0, |ri| − ψ))2 + ψ|max (0, |ri| − ψ) |. (21)
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Hence, it can be seen that the above expression is equal to the Huber loss:

1

nm

∑
i∈[nm]

fHuber(yi − a>i x;ψ). (22)

Despite the wide usage of Huber loss in power system estimation, the existing studies in the literature are
mostly empirical. The approach proposed here allows for strong mathematical results that go well beyond
the promising empirical results.

2.3 Step 2: Recovery of v

The goal of the second step is to recover the underlying system voltage v from the estimation x̂ obtained in
Step 1. First, we transform x̂ into estimations of voltage magnitudes and phase differences:

• The voltage magnitude at each bus k ∈ N can be obtained by |v̂k| =
√
x̂

mg
k ;

• The phase difference along each line ` = (i, j) is given by θ̂ij = arctan x̂im
` /x̂

re
` .

To obtain the estimations of phases at each bus, we propose two methds. The first method is to solve the
least-squares problem

θ̂ = arg min
θ∈Rnb

∑
`=(i,j)

(θi − θj − θ̂ij)2, (S(2): `2)

which has a closed-form solution: let θ∆ be a collection of θ̂ij , and L ∈ Rnl×nb be a sparse matrix with
L(`, i) := 1 and L(`, j) := −1 for each line ` = (i, j) and zero elsewhere. Then, the solution for (S(2): `2)
is given by:

θ̂ = (L>L)−1L>θ∆. (23)

The second approach is to solve a mixed-objective problem, similar to the first step:

θ̂ = arg min
θ∈Rnb

1
nl

∑
`=(i,j)

(θi − θj − θ̂ij)2 + λ2

∑
`=(i,j)

|θi − θj − θ̂ij |. (S(2): `2`1)

In this case, there is no longer a closed-form solution available, but the advantage is that it is robust to large
errors in the phase difference estimation, in case the first step method does not fully detect the bad data in
the measurements.

Finally, we can reconstruct v̂ via the formula:

v̂k = |v̂k|eiθ̂k , k ∈ N . (24)

If the regression vector from Step 1 is exact, i.e., x̂ = x\, then we can use (S(2): `2) to accurately recover the
system state v̂ = v. Even if the x̂ is not exact, the second stage estimator (S(2): `2`1) has nice properties to
control the estimation error, and therefore any potential error in θ̂ij does not propagate along the branches.

3 Boundary defense mechanism

In this section, we give a detailed discussion of the proposed boundary defense mechanism. For a given
attack scenario, we define a natural partition of the network into the attacked, inner and outer boundaries,
and safe regions. For the rest of the analysis, we denote x] and b] as the ground truth for state x and bad
data b, as defined in (4). We also include a nomenclature table below to help manage the notations.
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Nomenclature

General notations
Bat Attacked region, i.e., the subgraph induced by Nat

Bbd Boundary region, i.e., the subgraph induced by Nbd

Bbi Inner boundary, i.e., the subgraph induced by Nbi

Bbo Outer boundary, i.e., the subgraph induced by Nbo

B Union of the attacked and inner boundary regions, i.e., B = Bat ∪ Bbi

Bsf Safe region, i.e., the subgraph induced by Nsf

Lat∩bi Set of lines that bridge nodes between Nat and Nbi

Lat Set of lines in the subgraph Bat

Lbd Set of lines in the subgraph Bbd

Lbi∩bo Set of lines that bridge nodes between Nbi and Nbo

Mat Attacked measurements, includes measurement (if any) on nodes Nat and lines Lat

Mbd Boundary measurements, i.e.,Mbi ∪Mbo

Mbi Inner boundary measurements, includes measurement (if any) on nodes Nbi and lines Lat∩bi

Mbo Outer boundary measurements, includes measurement (if any) on nodes Nbd and lines Lbd

M Set of all measurements
Msf Safe measurements,M\ (Mat ∪Mbd)
Nat Set of nodes under attack, the set of lines induced by Nat, and the set of lines connecting them
Nbd Nodes in the boundary region Nbi ∪Nbo

Nbi Set of nodes adjacent to the attacked region {i ∈ N \ Nat | ∃j ∈ Nat, s.t. {i, j} ∈ L}
Nbo Set of nodes adjacent to the inner boundary {i ∈ N \ (Nat ∪Nbi) | ∃j ∈ Nbi, s.t. {i, j} ∈ L}
Nsf Set of nodes that are not attacked or on the boundary N \ (Nat ∪Nbd)
Xat Attacked variables, xat ∈ Xat includes xmg

i for nodes inNat and (xre
` , x

im
` ) for lines in Lat∪Lat∩bi

Xbd Boundary variables, xbd ∈ Xbd includes xmg
i for nodes in Nbd and (xre

` , x
im
` ) for lines in Lbd

x], b] Ground truth state vector and bad data defined in (4), respectively
X Set of all variables
Xsf Safe variables, xsf ∈ Xsf includes all other variables X \ (Xat ∪ Xbd)

Graphical mutual incoherence
Bi→jat One-bus attack set that consists of i
Bi→jbi One-bus inner boundary that consists of j
Bi→jbo Set of buses (other than i) that are directly connected to j as the outer boundary
Li→jbd The union of line ` = (i, j) and the set of lines that bridge Bi→jbi and Bi→jbo

Mi→j
bd Boundary measurements, i.e.,Mi→j

bdX ∪M
i→j
bd×

Mi→j
bd× Set of measurements that depend on both X i→jbd and {xre

` , x
im
` } of the attacked line ` = (i, j)

Mi→j
bdX Set of measurements that depend only on the boundary variables X i→jbd

X i→jbd Boundary variables, include {xmg
k }k∈Bi→j

bi ∪B
i→j
bo

and {xre
` , x

im
` } for the set of lines ` ∈ L that connect

the inner boundary Bi→jbi = {j} to nodes in the outer boundary Bi→jbo

Graphical mutual incoherence for tree decomposition
(T ,W) Tree decomposition, where T is a tree andW := {Wt | t ∈ N (T )} is the set of “bags”
Lad Union of Lad(W lk

t ) for all link bagsW lk
t

Lad(W lk
t ) Set of edges that connect adhesion nodes inW lk

t with infected nodes
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L(i;G) Set of nodes (bags) in G that are connected to node (bag) i
Lif Set of lines induced by the union of infected bags
Llk Set of lines induced by the union of link bags
Lsf Set of lines induced by the union of safe bags
Mad Set of adhesion measurements, includes nodal power injections on nodes in Nad and line measure-

ments on Lad

Mbd Set of boundary measurements, i.e.,Mbd :=Mad ∪Mol

Mif Set of infected measurements, includes measurements on lines induced by nodes in W if and on
nodes inW if except for voltage magnitude measurements on nodes in Nad

Mol Set of outer link measurements, includes voltage magnitude on nodes inW lk and line measurements
induced by nodes inW lk

Msf Set of safe measurements, measurements that are not boundary or infected measurements
Nad Union of the sets of adhesion nodes Nad(W lk

t ,W if
t ) for allW lk

t andW if
t

Nad(W lk
t ,W if

t ) Set of adhesion nodes, i.e.,W lk
t ∩W if

t ⊆ Nad(W lk
t ,W if

t ) nodes shared between a link bag
W lk
t and an infected bagW if

t

N (G) Vertex set of graph G
Nol(W lk

t ,W if
t ) Set of outer link nodes, i.e.,W lk

t \W if
t ⊆ Nol nodes inW lk

t that are not adhesion nodes
W if Set of infected bags, i.e.,W if

t ∈ {Wt | Wt ∩Nat 6= ∅} bags that contain attacked nodes
W lk Set of link bags, i.e.,W lk

t ∈ W lk = {Wt | Wt ∩ Nat = ∅, ∃ W if
t′ ,Wt ∈ L(W if

t′ ; T )} bags that are
connected to an infected bag

Wsf
t Set of safe bags, i.e., bags other than the infected or link bags
Xif Set of infected variables, includes all variables on lines induced byW if and on nodes inW if except

for adhesion nodes Nad

Xlk Set of link variables, includes variables on nodes inW lk and the lines induced by them
Xsf Set of safe variables, includes variables that are either infected nor link variables

Definition 2 (Attacked, boundary, and safe regions). Let Nat be the set of nodes under attack and the
“attacked region” Bat := {Nat,Lat} be the induced subgraph. Let the “inner boundary” be the set of
nodes adjacent to the attacked region Nbi := {i ∈ N \ Nat | ∃j ∈ Nat, s.t. {i, j} ∈ L} and the induced
graph be denoted as Bbi, and the “outer boundary” be the set of nodes adjacent to the inner boundary
region Nbo := {i ∈ N \ (Nat ∪Nbi) | ∃j ∈ Nbi, s.t. {i, j} ∈ L} and the induced graph be denoted as
Bbo. Let Nbd := Nbi ∪ Nbo be nodes in the “boundary region” and Bbd := {Nbd,Lbd} be the induced
subgraph. We also denote the set of lines that bridge nodes between Nat and Nbi as Lat∩bi, and the set of
lines that bridge nodes between Nbi and Nbo as Lbi∩bo. Lastly, let Nsf := N \ (Nat ∪ Nbd) be the rest of
the nodes and the “safe region” Bsf := {Nsf ,Lsf} be the induced subgraph.

When there is an attack on a local region, a subset of the local measurements are compromised. We use
B = Bat ∪ Bbi to delineate the smallest subgraph to cover this region. For the simplicity of the analysis,
we assume that there are no lines connecting two inner boundary nodes in Bbi, and that no two nodes in
Bat are connected to the same node in Bbi (one can always enlarge the region B to satisfy these conditions).
Furthermore, we make the assumption that no measurements on the nodes (e.g., voltage magnitudes and
nodal injections) or on the lines (e.g., power branch flows) within the boundary region Bbd are attacked.
The partition set notations in Def. 2 are illustrated in Fig. 1. With the set partition notions ready, we
introduce a partition of the measurements and variables.

Definition 3 (Attacked, boundary and safe variables and measurements). The set of “attacked variables”
Xat includes variables on nodes in Nat and lines in Lat ∪ Lat∩bi. The set of “boundary variables” Xbd
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…

…

Attacked inner 
region ℬ"#

Attacked inner 
boundary ℬ$%

Unaffected region
ℬ&' = 𝒢 ∖ (ℬ"# ∪ ℬ$-)

Unaffected outer 
boundary ℬ$/

Affected region 
ℬ = ℬ"# ∪ ℬ$%

Attacked boundary 
ℬ$- = 	ℬ$% ∪ ℬ$/

Figure 1: The illustrations of the partition set concepts introduced for the case of zonal attacks. Lines or
buses whose measurements are under attack are shown in red.

includes variables on nodes in Nbd and lines in Lbd. The set of “safe variables” Xsf includes all other
variables. The set of “attacked measurements” Mat includes measurements on nodes in Bat and lines
in Lat. The set of “inner boundary measurements” Mbi includes nodal power injections in Bbi and line
measurements in Lat∩bi, and the set of “outer boundary measurements”Mbo includes voltage magnitude
and line measurements in Bbd. Together, they form the “boundary measurements”Mbd :=Mbi ∪Mbo.
The rest of the measurementsMsf are “safe measurements.”

By definition, the setsMsf ,Mbo,Mbi,Mat form a partition of [nm], and the sets Xsf , Xbd, and Xat

form a partition of [nx]. Thus, we can rearrange and partition the matrixA as follows:

A =


AMsf ,Xsf

AMsf ,Xbd
AMsf ,Xat

AMbo,Xsf
AMbo,Xbd

AMbo,Xat

AMbi,Xsf
AMbi,Xbd

AMbi,Xat

AMat,Xsf
AMat,Xbd

AMat,Xat

 =


AMsf ,Xsf

AMsf ,Xbd
0

0 AMbo,Xbd
0

0 AMbi,Xbd
AMbi,Xat

0 0 AMat,Xat

 . (25)

There is no loss of generality in arranging A as above, which is simply for the purpose of presentation. Let
I

(nm)
Mat

, I(nm)
Mbi

, I(nm)
Mbo

, and I(nm)
Msf

be matrices that consist of theMat, Mbi, Mbo, andMsf rows from the

identity matrix of size nm, respectively, and I(nx)
Xat

, I(nx)
Xbd

and I(nx)
Xsf

be the matrices that consist of the Xat,
Xbd and Xsf rows from the identity matrix of size nx. Then, we can obtain each subblock that accounts for
a set of measurements (e.g. Msf ) and variables (e.g. Xsf ) using the equation AMsf ,Xsf

= I
(nm)
Msf

AI
(nx)>
Xsf

without having to specify a particular order sequence of measurements y or variables x,
We introduce the following properties to characterize the sensing matrixA.
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Definition 4 (Lower eigenvalue). Let QMbd,Xbd
:=
[
AMbd,Xbd

I
(|Mbd|)>
Mbi

]
, where I(|Mbd|)

Mbi
consists of

Mbi rows of the size–|Mbd| identity matrix. Then, the lower eigenvalue Cmin is the lower bound:

min
{
λmin

(
Q>Mbd,Xbd

QMbd,Xbd

)
, λmin

(
A>Mbo,Xbd

AMbo,Xbd

)
, λmin

(
A>Msf ,Xsf

AMsf ,Xsf

)}
≥ Cmin.

(26)

The value Cmin characterizes the influence of bad data on the identifiability of x\ outside the attacked
region. If Cmin is strictly positive and one can accurately detect the support of bad data on the boundary,
then it is possible to obtain a satisfactory estimation of x\ outside the attacked region.

3.1 Graphical mutual incoherence and boundary defense for LP/QP

Our goal is to find the attacked region by detecting a sufficiently large number of measurements withinMat

while avoiding making false positive detection for measurements belonging to the unaffected region. In
other words, if Ĵ := supp(b̂) denotes the support of the estimated bad data, then it is desirable to have
Ĵ ⊆ Mat ∪Mbi (here, we allow both false positives and false negatives within the attacked region). The
following lemma establishes a key result for the estimation by LP/QP.

Lemma 5 (Boundary defense stops error propagation). Suppose that there is no dense measurement noise
(i.e., w = 0), and the bad data are confined within Mat, i.e., supp(b\) ⊆ Mat. Also, suppose that
AMsf∪Mbd,Xsf∪Xbd

has full column rank. If for an arbitrary b?Mbd
defined for measurements inMbd with

support limited to the inner boundary, i.e., supp(b?Mbd
) ⊆Mbi, the solution x̂bd ∈ Xbd to the program

min
xbd

‖zMbd
−AMbd,Xbd

xbd‖1 (27)

is unique and satisfies the properties x̂bd = x\bd, where zMbd
= AMbd,Xbd

x\bd+b?Mbd
, then the solution

x̂ to (S(1): `1) satisfies the properties x̂bd = x\bd and x̂sf = x\sf .

To sketch the proof, since by assumption the unique optimal solution for the measurement-sensing ma-
trix pair (yMsf

,AMsf ,Xsf∪Xbd
) given x\bd recovers the ground truth x\sf , we aim at showing that the unique

optimal solution of (yMbd∪Mat
,AMbd∪Mat,Xbd∪Xat) corresponding to the boundary state coincides with

x\bd, which completes the proof because this set of measurements is independent of the states xsf . This
achieves a de facto coupling of the “weakly coupled” system due to the overlapping regions corresponding
to measurements yMbd

.

Proof. There are two ways to prove the statement. The first one relies on logical reasoning that is intuitive,
while the second approach is based on KKT conditions that can be easily generalized to measurements with
dense noise. We start with the first approach, which partitions the loss function in (S(1): `1) into the sum of
three terms:

f1(xsf ,xbd) = ‖yMsf
−AMsf ,Xsf

xsf −AMsf ,Xbd
xbd‖1;

f2(xbd,xat) = ‖yMbd
−AMbd,Xbd

xbd −AMbd,Xatxat‖1;
f3(xat) = ‖yMat

−AMat,Xatxat‖1.

Let zMbd
= yMbd

− AMbd,Xatxat = AMbd,Xbd
x\bd − AMbd,Xat(x\at − xat), and by the structure of

AMbd,Xat shown in (25), we have supp (AMbd,Xat(xat − x\at)) ⊆ Mat. Hence, we have that the unique
optimal of f2(xbd,xat) satisfies x̂bd = x\bd for any given xat. Since there are no bad data for yMsf

11



and yMbd
and moreover AMsf∪Mbd,Xsf∪Xbd

has full column rank, the unique minimum of f1(xsf ,xbd) is
(x̂sf , x̂bd) = (x\sf ,x\bd). Therefore, for any given xat, the unique optimal of f1(xsf ,xbd) + f2(xbd,xat)
is (x̂sf , x̂bd) = (x\sf ,x\bd). Since f3(xat) does not depend on (xsf ,xbd), the unique optimal solution of
(S(1): `1) recovers the true solution.

The second approach is as follows. We can write the dual program of (S(1): `1) as:

max
h∈Rnm

h>y, subject to A>h = 0, ‖h‖∞ ≤ 1. (S(1): `1-dual)

To show that
(
x̂ =

[
x>\sf x>\bd x̂at

]>
, b̂ =

[
0> b̂

>
Mbd

b̂
>
Mat

]>)
is the optimal solution of (S(1): `1),

we simply need to find a dual certificate h? =
[
h>Msf

h>Mbd
h>Mat

]>
that satisfies the KKT conditions:

(dual feasibility) A>h? = 0, (28)

(stationarity) h? ∈ ∂‖b̂‖1. (29)

Since by the reasoning above,
[
x>\sf x>\bd

]>
is the unique optimal of the objective f1(xsf ,xbd)+f2(xbd,xat),

it corresponds to a dual certificate
[
h>Msf

h>Mbd

]>
such that

A>Msf ,Xsf∪Xbd
hMsf

+A>Mbd,Xsf∪Xbd
hMbd

= 0, (30)

‖hMsf
‖∞ ≤ 1, ‖hMbd

‖∞ ≤ 1. (31)

Similarly, by the optimality of x̂at for f3(xat), we can find a dual certificate such that:

A>Mat,Xat
hMat = 0, hMat ∈ ∂‖b̂Mat‖1. (32)

Thus, by the structure ofA, the construction h? =
[
h>Msf

h>Mbd
h>Mat

]>
yields a dual certificate.

A key condition in Lemma 5 is the recovery of the boundary variables in the presence of arbitrary bad
data that occur in the attacked region. This condition needs to be checked for every possible attack scenario,
which is not useful to understand the graphical mutual incoherence in the general case. Instead, we propose
the notion of graphical mutual incoherence in the main text, which provides a sufficient condition in this
context. The technical definition is as follows.

Definition 6 (Local boundary variables and measurements). For each line ` that connects nodes i and j, let
us distinguish the directions i → j and j → i. For the direction i → j, let i denote the node under attack
and j be the node within the inner defense boundary. Accordingly, let Bi→jbo denote the set of buses (other
than i) that are directly connected to j as the outer boundary, Bi→jbi = {j} be the one-bus inner boundary,
and Bi→jat = {i} be the one-bus attack set. Let Li→jbd represent the union of line ` and the set of lines that
bridge Bi→jbi and Bi→jbo . Define the “boundary variables” X i→jbd as the collection of voltage magnitudes
{xmg

k }k∈Bi→j
bi ∪B

i→j
bo

and variables {xre
η , x

im
η } for the set of lines η ∈ L that connect the inner boundary j

to nodes in the outer boundary Bi→jbo . Define the “boundary measurements” Mi→j
bd = Mi→j

bdX ∪ M
i→j
bd×

as the collection of measurements that depend only on the boundary variables X i→jbd , denoted by Mi→j
bdX,

and measurements that depend on both X i→jbd and variables {xre
` , x

im
` } of the attacked line `, denoted by

Mi→j
bd×. The above terms can be similarly defined for the direction j → i by replacing i→ j to j → i in the

notations. Thus, for each line, we will have two sets of boundary variables and measurements.

12



With the above notations, we can formally describe the graphical mutual incoherence.

Definition 7 (Graphical mutual incoherence). For each line {i, j}` ∈ L, define the graphical mutual inco-
herence αi→j along the direction i → j as the optimal objective value of the following minimax program:

αi→j = max
ξ∈{−1,+1}n

i→j
×

min
α∈R,h∈Rn

i→j
X

α (33a)

subject to A>Mi→j
bdX,X

i→j
bd

h+A>Mi→j
bd×,X

i→j
bd

ξ = 0 (33b)

‖h‖∞ ≤ α, (33c)

where ni→jX = |Mi→j
bdX| and ni→j× = |Mi→j

bd×| are the number of measurements in Mi→j
bdX and Mi→j

bd×,
respectively, and X i→jbd ,Mi→j

bdX andMi→j
bd× are the boundary variables and measurement indices introduced

in Def. 6. Similarly, we can define the backward graphical mutual incoherence αj→i by replacing i→ j to
j → i in (33). We adopt the measurement normalization convention in Def. 1.

The name “mutual incoherence” originates from the compressed sensing literature [6, 14, 19, 16]. The
closest condition proposed in the literature measures the alignment of the sensing directions of the corrupted
measurements (i.e., AJ , where J is the support of the bad data) with those of the clean data (i.e., AJ c)
[9, 10]. However, the graphical mutual incoherence (gMI) condition proposed in this study is different. First,
gMI is defined on a single line, and we build a theoretical certificate from bottom up by leveraging the graph
topology. This alleviates the dependence of our condition on each instance of the bad data support J . On
the contrary, the conditions that exist in the study are all designed for global recovery, so they do not apply
to the boundary defense mechanism. Also, even though the condition requires solving a minimax problem
that is NP-hard in general, the computation becomes much more tractable because we limit the variables to
those associated with a line. On the contrary, the conditions in the literature cannot be easily verified for
large-scale systems. Moreover, we show that the condition in the literature is often more conservative than
the graphical mutual incoherence.

Note that for the simple case where there are no lines between any two nodes inNBbi , we can extend the
above definition to treat each node in NBbi separately. Due to the localized nature, this condition is much
weaker than the mutual incoherence condition introduced in [9].

Proposition 8 (Global mutual incoherence is more conservative than graphical mutual incoherence). For
each line ` and the corresponding partitions of measurementsMi→j

bdX,Mi→j
bd× and variables X i→jbd , let

ρ(Mi→j
bd×) = ‖A

>+

Mi→j
bdX,X

i→j
bd

A>Mi→j
bd×,X

i→j
bd

‖∞

be the mutual incoherence metric defined in [9, 10], where A+
J = (A>JAJ )

−1A>J denotes the pseudo-
inverse. Then, it holds that ρ(Mi→j

bd×) ≥ αi→j .

Proof. Notice that the graphical mutual incoherence can be written as

αi→j = max
ξ∈{−1,+1}n

i→j
×

min
α∈R,h∈Rn

i→j
X

‖h‖∞ (34a)

subject to A>Mi→j
bdX,X

i→j
bd

h+A>Mi→j
bd×,X

i→j
bd

ξ = 0. (34b)
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Since for any ξ, the vector ĥ(ξ) = −A>+

Mi→j
bdX,X

i→j
bd

A>Mi→j
bd×,X

i→j
bd

ξ is a feasible point for the inner optimiza-

tion, and
max

ξ∈{−1,+1}n
i→j
×

‖ĥ(ξ)‖∞ = ρ(Mi→j
bd×), (35)

the proof is immediately concluded.

A key step in establishing the validity of the boundary defense mechanism is to ensure that local defense
is sufficient to guard against attacks when solving the problem globally.

Lemma 9 (Local property implies global property). Given Bat,Bbi,Bbo, and Bsf and the associated set

partitioning (c.f., Def. 3), let A◦ =

AMsf ,Xsf
AMsf ,Xbd

0 AMbo,Xbd

0 AMbi,Xbd

. If αi→j ≤ 1 − γ and γ > 0 for all

{i, j} ∈ Lat∩bi such that i ∈ Bat and j ∈ Bbi, then for any ĥMbi
∈ [−1, 1]|Mbi|, there exists an ĥMsf∪Mbo

with the properties ‖ĥMsf∪Mbo
‖∞ ≤ 1− γ and

A◦>Msf∪Mbo
ĥMsf∪Mbo

+A◦>Mbi
ĥMbi

= 0. (36)

Proof. First, we show that a sufficient condition for the existence of ĥMsf∪Mbo
=
[
ĥ
>
Msf

ĥ
>
Mbo

]>
such

that ‖ĥMsf∪Mbo
‖∞ ≤ 1 − γ and (36) is satisfied is that for any ĥMbi

, there exists an ĥMbo
such that

‖ĥMbo
‖∞ ≤ 1− γ and

A>Mbo,Xbd
ĥMbo

+A>Mbi,Xbd
ĥMbi

= 0. (37)

This is immediate by simply choosing ĥMsf∪Mbo
=
[
0> ĥ

>
Mbo

]>
. In what follows, we prove (37) by

induction. The induction rule is as follows: we start by arbitrarily choosing one line {i, j} ∈ Lat∩bi, where
i ∈ Bat and j ∈ Bbi, and initialize the measurement setM(1)

bo :=Mi→j
bdX,M(1)

bi :=Mi→j
bd× and the variable

set X (1)
bd := X i→jbd . For each step k, we add a new line {f, t} ∈ Lat∩bi and the associated measurements

and variables toM(k)
bo ,M(k)

bi and X (k)
bd , respectively. After the inclusion of all the lines in Lat∩bi, we should

obtain the setMbo, Mbi and Xbd. In each step, we check whether there exists a vector ĥM(k)
bo

such that

‖ĥM(k)
bo

‖∞ ≤ 1− γ and

A>
M(k)

bo ,X
(k)
bd

ĥM(k)
bo

+A>
M(k)

bi ,X
(k)
bd

ĥM(k)
bi

= 0. (38)

The base case for k = 1 follows directly from the condition that αi→j ≤ 1 − γ. For any k ≥ 1, let
{f, t} ∈ Lat∩bi denote the line to be added, where f ∈ Mat and t ∈ Mbi. There are two possible cases:
1) the new line does not share any nodes with the lines that have been already added; or 2) the new line
shares the attack node f with one (or more) of the lines already added (note that by definition, the new line
cannot share the inner boundary node t with one (or more) of the lines already added). For each case, there
are also three events that may occur: a) one or more of the nodes in Bi→jbo are connected to one or more
of the nodes in the inner boundaries of lines that have already been added; and/or b) one or more of the
nodes in the outer boundary of the lines that have already been added are connected to t; or c) none of the
above (note that by definition, there are no lines within the inner boundary region). We need to consider
all the combinations between the three cases and the three events to show that (38) holds in all scenarios.
Fortunately, all the combinations can be reduced to two typical scenarios, where the proofs can be directly
applied. We consider these scenarios now.
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The first scenario applies to Cases 1c and 2c, where M(k+1)
bo = M(k)

bo ∪M
f→t
bdX, M(k+1)

bi = M(k)
bi ∪

Mf→t
bd×, X (k+1)

bd = X (k)
bd ∪X

f→t
bd ,M(k)

bo ∩M
f→t
bdX = ∅,M(k)

bi ∩M
f→t
bd× = ∅, andX (k)

bd ∩X
f→t
bd = ∅. Therefore,

for any given ĥM(k+1)
bi

=
[
ĥ
>
M(k)

bi
ξ̂
>
]>

with ‖ξ̂‖∞ ≤ 1, we can always find ĥM(k+1)
bo

=
[
ĥ
>
M(k)

bo
ĥ
>
]>

,

where ĥM(k)
bo

is given by (38) and ĥM(k)
bo

is given by (33), and ‖ĥM(k+1)
bo

‖∞ ≤ 1− γ by definition.

The second scenario applies to Cases 1a, 1b, 2a and 2b. Let Ñbo be the set of nodes in the outer boundary
shared by the new line Bf→tbo and those of the lines that have been added. Then, we have M(k+1)

bo =

M(k)
bo ∪M

f→t
bdX, M(k+1)

bi = M(k)
bi ∪M

f→t
bd×, X (k+1)

bd = X (k)
bd ∪ X

f→t
bd , whereM(k)

bo ∩M
f→t
bdX is the set of

voltage magnitude measurements of nodes in Ñbo, M(k)
bi ∩ M

f→t
bd× = ∅, and X (k)

bd ∩ X
f→t
bd is the set of

voltage magnitude variables of nodes in Ñbo. For any given ĥM(k)
bi

and ξ̂
>

, we can always find ĥM(k)
bo

and

ĥ
>

, where ĥM(k)
bo

is given by (38) and ĥM(k)
bo

is given by (33). Let ĥM(k)
bo

be further divided into the parts

corresponding to the voltage magnitude measurements (if available) of nodes in Ñbo (i.e.
[
ĥM(k)

bo

]
Ñbo

) and

the rest (i.e.
[
ĥM(k)

bo

]
Ñ c

bo

); similarly, let ĥ be further divided into
[
ĥ
]
Ñbo

and the rest
[
ĥ
]
Ñ c

bo

. Then, by

setting ĥM(k+1)
bo

=

[[
ĥM(k)

bo

]>
Ñ c

bo

1
deg(Ñbo)

◦
([
ĥM(k)

bo

]
Ñbo

+
[
ĥ
]
Ñbo

)> [
ĥ
]>
Ñ c

bo

]>
, where deg(Ñbo)

is the connectivity degree for each node in Ñbo, and ◦ indicates the Hadamard (element-wise) product, we

can satisfy (38) for any given ĥM(k+1)
bi

=
[
ĥ
>
M(k)

bi
ξ̂
>
]>

(note that the voltage magnitude measurement in
the calculation of graphical mutual incoherence is normalized by 1, but it is weighted by the degree of each
node in the actual estimation algorithm, c.f., Def. 1). Moreover, by construction, we have ‖ĥM(k+1)

bo

‖∞ ≤
1− γ for all k. This completes the induction proof.

Lemma 9 implies that as long as all the graphical mutual incoherence metrics are bounded away from 1,
we have a desirable property in terms of defending against bad data on the boundary. This is formalized in
the following theorem.

Theorem 10. Consider the measurements y = Ax\ + b\, where supp(b\) ⊆ Mat. Suppose that for the
given partitioning of the network as Bat,Bbi,Bbo, and Bsf , the following conditions hold:

• (Full column rank for the safe and boundary region)AMsf∪Mbd,Xsf∪Xbd
and

QMbd,Xbd
=
[
AMbd,Xbd

I
(|Mbd|)>
Mbi

]
have full column rank.

• (Localized mutual incoherence) for all lines {i, j} ∈ Lat∩bi that bridge the attacked region and the
inner boundary, where i ∈ Bat, j ∈ Bbi, we have αi→j ≤ 1− γ for some γ > 0.

Then, the solution to (S(1): `1), denoted as (x̂, b̂), uniquely recovers the true state outside the attacked region
(i.e., x̂sf = x\sf and x̂bd = x\bd). Furthermore, the state estimation by (S(2): `2) recovers the true state for
the unaffected region (i.e., v̂k = vk for k ∈ Bsf ∪ Bbd).
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Proof. To prove the claim, we simply need to show that for an arbitrary b? with its support limited to the
inner boundary supp(b?) ⊆Mbi, the solution x̂bd ∈ Xbd to the program

min
xbd

‖zMbd
−AMbd,Xbd

xbd‖1 (39)

is unique and satisfies x̂bd = x\bd, where zMbd
= AMbd,Xbd

x\bd + b?. To show this, we obtain the dual
program:

max
hMbd

h>Mbd
zMbd

, subject to A>Mbd,Xbd
hMbd

= 0, ‖hMbd
‖∞ ≤ 1. (40)

Our goal is to find a dual certificate h?Mbd
that satisfies the KKT conditions:

(dual feasibility) A>Mbd,Xbd
h?Mbd

= 0, (41)

(stationarity) h?Mbd
∈ ∂‖b?‖1. (42)

By the limited support assumption, we need to find a vector h? such that h?Mbi
= sign(b?Mbi

) and
‖h?Mbo

‖∞ ≤ 1. By the mutual incoherence condition and Lemma 9, we can always find h?Mbo
that

satisfies (41) for any given h?Mbi
and ‖h?Mbo

‖ ≤ 1 − γ < 1. Thus, this certifies the optimality of
(x\bd, b?) for (40).

To show that (x\bd, b?) is the unique optimal solution, let (x̃, b̃) be an arbitrary feasible point of
(39) that is different from (x\bd, b?). Due to the lower eigenvalue condition, the matrix QMbd,Xbd

:=[
AMbd,Xbd

I
(|Mbd|)>
Mbi

]
has full column rank. By letting J̃ = supp(b̃), the set J̃ can not be equal to or

be a subset ofMbi, because otherwise, from QMbd,Xbd

[
x\bd

b?

]
= QMbd,Xbd

[
x̃

b̃

]
= zMbd

, we must have[
x\bd

b?

]
=

[
x̃

b̃

]
, which is contradictory to the assumption. Let J̃c = J̃ \Mbi; then,

‖b?‖1 = h>?Mbd
zMbd

(43)

= h>?Mbd
(AMbd,Xbd

x̃+ I>J̃c
b̃J̃c + I

>
Mbi

b̃Mbi
) (44)

= h>
?J̃c
b̃J̃c + h

>
?Mbi

b̃Mbi
(45)

≤ ‖h?J̃c‖∞‖b̃J̃c‖1 + ‖h?Mbi
‖∞‖b̃Mbi

‖1 (46)

< ‖b̃J̃c‖1 + ‖b̃Mbi
‖1 (47)

= ‖b̃‖1, (48)

where (43) is due to the strong duality between (39) and (40), (44) is due to the primal feasibility of (x̃, b̃),
(45) is due to the dual feasibility condition (41), (46) is due to the Hölder inequality, and (47) is due to the
strict feasibility of h?. Thus, we have shown the uniqueness of the optimal solution (x\bd, b?). Together
with Lemma 9, we have proved the theorem.

This result can be used to certify robustness under different attack scenarios. For example, if there is
a topological error caused by line mis-specification, say ` = (i, j), we can treat the two ends of the line
as the attacked nodes, i.e., Nat = {i, j}, treat the adjacent nodes to them as inner boundary Nbi, and treat
the adjacent nodes to inner boundary as outer boundary Nbo. As long as the graphical mutual incoherence
for the lines surrounding the attacked nodes are less than 1, one can identify this gross injection error and
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thus the topological mistake. We can extend the analysis to the case where the measurements have both
sparse bad data and dense noise. In this case, we need to solve a program that combines quadratic loss with
absolute value loss. The guarantees now depend on the distribution of the dense noise.

Theorem 11 (Robust SE with (S(1): `2`1)). Consider the measurements y = Ax\+w\+b\, wherew\ has
independent entries with zero mean and subgaussian parameter σ and supp(b\) ⊆ Mat. Suppose that the
rows ofA are normalized (c.f., Def. 1), and the regularization parameter λ is chosen such that

λ >
2

nmγ

√
2σ2 log nm. (49)

In addition, suppose that for the given partitioning of the network, i.e. Bat,Bbi,Bbo, and Bsf , the following
conditions hold:

• (Full column rankness)AMsf∪Mbd,Xsf∪Xbd
and

QMbd,Xbd
=
[
AMbd,Xbd

I
(|Mbd|)>
Mbi

]
have full column rank.

• (Localized mutual incoherence) for all lines {i, j} ∈ Lat∩bi that bridge the attacked region and the
inner boundary, where i ∈ Bat, j ∈ Bbi, we have αi→j ≤ 1− γ for some γ > 0.

Then, the following properties hold for the solution to (S(1): `2`1), denoted as (x̂, b̂):

1. (No false inclusion) The solution (x̂, b̂) has no false bad data inclusion (i.e., supp(b̂) ⊂ supp(b\))
with probability greater than 1− c0

nm
, for some constant c0 > 0.

2. (Large bad data detection) LetA◦ :=

AMsf ,Xsf
AMsf ,Xbd

0 AMbo,Xbd

0 AMbi,Xbd

 andQ◦Mbi
=
[
A◦ I◦>Mbi

]
, and

g(λ) = nmλ

(
1

2
√
Cmin

+ ‖Ib(Q◦>Mbi
Q◦Mbi

)−1I>b ‖∞
)

be a threshold value, and let b̃Mbi
= AMbi,Xat(x\at − x̂at) be the error at the boundary. Then, all

bad data with magnitude greater than g(λ) will be detected (i.e., if |b̃i| > g(λ), then |b̂i| > 0) with
probability greater than 1− c2

m .

3. (Bounded error) The estimator error is bounded by

‖x\Xsf∪Xbd
− x̂Xsf∪Xbd

‖2 ≤ t
√
|Xsf |+ |Xbd|+ |Mbi|

Cmin
+ nmλ‖Ix(Q◦>Mbi

Q◦Mbi
)−1I>b ‖∞,2

with probability greater than 1− exp
(
− c1t2

σ4

)
.
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Despite the difference in measurement assumptions (i.e., existence of dense noisew) and estimation al-
gorithms (i.e., (S(1): `1) or (S(1): `2`1)), it is remarkable that the boundary defense conditions in Theorems
10 and 11 are coincident. In the case of negligible dense noise, a deterministic boundary defense is achieved.
With the presence of dense noise, it is no longer possible to have deterministic guarantees; however, The-
orem 11 indicates that with a proper selection of the penalty coefficient λ, one can avoid false detection
of bad data in the unaffected region (part 1), detect bad data with magnitudes greater than a threshold in
the attacked region (part 2), and achieve estimation within bounded error margin for states within the unaf-
fected region. Furthermore, both the bad data threshold and the error bound decrease with stronger mutual
incoherence condition and lower-eigenvalue condition. The proof of the theorem is provided in Section 5.1.

3.2 Boundary defense for second-order cone programming

In this section, we extend the analysis of boundary defense to the case where we perform state estimation
with the additional second-order cone constraints.

Lemma 12 (Boundary defense stops error propagation with SOCP). Suppose that there is no dense mea-
surement noise (i.e., w = 0), and the bad data are confined withinMat, i.e., supp(b\) ⊆ Mat. Let Kbd

and Kat be the subsets of SOC constraints K restricted to variables xbd and xat, respectively, and let

K̃at(x̂bd) =

{
xat

∣∣∣ [ xmg
i xre

` + jxim
`

xre
` − jxim

` xmg
j

]
� 0,

∀` := (i, j) ∈ Lat ∪ Lat∩bi, where xmg
i = x̂mg

i ∀i ∈ Bbi

}
,

be the confined feasible set for xat, which fixes the boundary variables x̂bd in the SOCP constraints. Assume
that for an arbitrary b?Mbd

with its support limited to the inner boundary, i.e. supp(b?Mbd
) ⊆ Mbi, the

solution x̂bd ∈ Xbd to the program

min
xbd∈Kbd

‖zMbd
−AMbd,Xbd

xbd‖1, (50)

is unique and satisfies x̂bd = x\bd, where zMbd
= AMbd,Xbd

x\bd + b?Mbd
. Assume that the optimal

solution x̂at to
min

xat∈Kat

‖yMat
−AMat,Xatxat‖1, (51)

also satisfies that x̂at ∈ K̃at(x\bd). Then, the solution x̂ to (S(1): `1-K) satisfies x̂bd = x\bd and x̂sf =
x\sf .

Proof. To show that
(
x̂ =

[
x>\sf x>\bd x̂>at

]>
, b̂ =

[
0> b̂

>
Mbd

b̂
>
Mat

]>)
is the optimal solution of

(S(1): `1-K), we simply need to find a dual certificate
(
h? =

[
h>Msf

h>Mbd
h>Mat

]>
, {ν`,u`}`∈L

)
that

satisfies the KKT conditions:

(stationarity) h? ∈ ∂‖b̂‖1, (52)

(dual feasibility) A>h? +
∑
`∈L

(
ν`c` +D

>
` u`

)
= 0; ν` ≥ ‖u`‖2, ∀` ∈ L, (53)

(complementary slackness) ν`c
>
` x̂+ u>` D`x̂ = 0, ∀` ∈ L, (54)
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For a given xbd = x\bd, let x̂sf be the optimal solution to

min
xsf∈Ksf

‖yMsf
−AMsf ,Xsf

xsf −AMsf ,Xbd
x\bd‖1,

where Ksf is set of all SOCP constraints that involve at least one variable in Xsf . By the lower eigenvalue
condition, x̂sf = x\sf is the unique optimal solution. Since for a given x̂at ∈ K̃at(x\bd), x̂bd = x\bd is the

unique optimal of (50), we can conclude that
[
x>\sf x>\bd

]>
is the unique optimal of

min
xsf∈Ksf ,xbd∈Kbd

‖yMsf
−AMsf ,Xsf

xsf −AMsf ,Xbd
xbd‖1 + ‖zMbd

−AMbd,Xbd
xbd‖1,

which corresponds to a dual certificate
([
h>Msf

h>Mbd

]>
, {ν`,u`}`∈Lsf∪Lbd

)
such that

A>Msf ,Xsf∪Xbd
hMsf

+A>Mbd,Xsf∪Xbd
hMbd

+
∑

`∈Lsf∪Lbd

(
ν`c` +D

>
` u`

)
= 0, (55a)

ν` ≥ ‖u`‖2, ∀` ∈ Lsf ∪ Lbd, (55b)

ν`c
>
` x̂+ u>` D`x̂ = 0, ∀` ∈ Lsf ∪ Lbd, (55c)

‖hMsf
‖∞ ≤ 1, ‖hMbd

‖∞ ≤ 1. (55d)

Similarly, by the optimality of x̂at for (51), we can find a dual certificate such that:

A>Mat,Xat
hMat +

∑
`∈Lat

(
ν`c` +D

>
` u`

)
= 0, hMat ∈ ∂‖b̂Mat‖1.

Thus, by setting
(
{ν` = 0,u` = 0}`∈Lat∩bi

)
, and note that L = Lsf ∪Lbd ∪Lat∩bi ∪Lat, the construction(

{ν`,u`}`∈L
)

and h? =
[
h>Msf

h>Mbd
h>Mat

]>
yield a dual certificate.

Now, we formally define the graphical mutual incoherence.

Definition 13 (Graphical mutual incoherence for SOCP). For each line {i, j}` ∈ L and a given x ∈ K that
satisfies primal feasibility, define the graphical mutual incoherence αSOCP

i→j along the direction i→ j as the
optimal value of the following minimax program:

αSOCP
i→j (x) = max

ξ∈{−1,+1}n
i→j
×

min
α∈R,ω∈Rn

i→j
L ,h∈Rn

i→j
X

α (56a)

subject to A>Mi→j
bdX,X

i→j
bd

h+A>Mi→j
bd×,X

i→j
bd

ξ +
∑

`∈Li→j
bd

ω`T `x = 0 (56b)

ω` ≥ 0, ∀` ∈ Li→jbd (56c)

‖h‖∞ ≤ α, (56d)

where ni→jX = |Mi→j
bdX|, n

i→j
× = |Mi→j

bd×|, n
i→j
L = |Li→jbd | are the number of measurements/lines inMi→j

bdX,
Mi→j

bd× and Li→jbd , respectively, and X i→jbd ,Mi→j
bdX,Mi→j

bd× and Li→jbd are defined in Def. 6. Also, we define
T ` = c`c

>
` −D

>
` D`, where c` andD` are given in (6). Similarly, we define the backward graphical mutual

incoherence αj→i by replacing i→ j to j → i in (56). We adopt the measurement normalization convention
in Def. 1.
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Lemma 14. The graphical mutual incoherence αSOCP
i→j (x) for a given x ∈ K that satisfies the primal

feasibility coincides with the optimal objective value of the following minimax program:

α̃SOCP
i→j (x) = max

ξ̃∈[−1,+1]
n
i→j
×

min
α̃∈R,ν∈Rn

i→j
L ,h̃∈Rn

i→j
X

α̃ (57a)

subject to A>Mi→j
bdX,X

i→j
bd

h̃+A>Mi→j
bd×,X

i→j
bd

ξ̃ +
∑

`∈Li→j
bd

ν`c` +D
>
` u` = 0 (57b)

ν` ≥ ‖u`‖2, ∀` ∈ Li→jbd (57c)

ν`c
>
` x+ u>` D`x = 0, ∀` ∈ Li→jbd (57d)

‖h̃‖∞ ≤ α̃, (57e)

with the same notations as in Def. 7, where c` andD` are define in (6).

Proof. The equivalence between optimizing over [−1,+1]n
i→j
× and {−1,+1}n

i→j
× for the outer minimiza-

tion can be reasoned as in (19) due to the convexity of the feasibility region given x ∈ K and ξ̃. Since x
satisfies the primal feasibility, which can be expressed as in (6), a standard result (c.f., [1, Lemma 15]) in
analogy to linear programming indicates that (57d) is equivalent to:

ν`D`x+ c>` xu` = 0, ∀` ∈ Li→jbd ,

which indicates that ν` = ω`c
>
` x and u` = −ω`D`x for ω` ≥ 0 and ` ∈ Li→jbd . It can be verified that this

also satisfies the SOCP constraints (57c). By the definition of T ` = c`c>` −D
>
` D`, the equivalence to (56)

is established.

Lemma 15 (Local property implies global property for SOCP). Given Bat,Bbi,Bbo, and Bsf and the as-

sociated set partitioning (c.f., Def. 3), let A◦ =

AMsf ,Xsf
AMsf ,Xbd

0 AMbo,Xbd

0 AMbi,Xbd

, and c◦` and D◦` to be the

subvector and submatrix of c` and D` indexed by Xsf ∪ Xbd. If αSOCP
i→j ≤ 1 − γ and γ > 0 for all

{i, j} ∈ Lat∩bi such that i ∈ Bat and j ∈ Bbi, then for any ĥMbi
∈ [−1, 1]|Mbi|, there exist ĥMsf∪Mbo

and
{ν̂`, û`}`∈Lat∩bi∪Lbd∪Lsf with the properties that ‖ĥMsf∪Mbo

‖∞ ≤ 1− γ and

A◦>Msf∪Mbo
ĥMsf∪Mbo

+A◦>Mbi
ĥMbi

+
∑

`∈Lat∩bi∪Lbd∪Lsf

ν̂`c
◦
` +D

◦>
` û` = 0. (58)

Proof. The proof is similar to the one for Lemma 9 and is omitted for brevity.

Proposition 16 (SOC constraint can improve graphical mutual incoherence). For any x ∈ K, it holds that

αSOCP
i→j (x) ≤ αi→j

Proof. For any given ξ, let ĥ be the optimal solution of the inner minimizer in (33) with ‖ĥ‖∞ ≤ αi→j .
Then, the tuple (αSOCP

i→j = αi→j ,ω = 0,h = ĥ) is a feasible solution for (56), which proves that we always
have αSOCP

i→j (x) ≤ αi→j .
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The above proposition implies a key advantage of incorporating SOCP constraints—to improve robust-
ness. This has also been empirically validated in our study as shown in the main text.

Theorem 17. Consider the measurements y = Ax\ + b\, where supp(b\) ⊆Mat, and also a partitioning
of the network as Bat,Bbi,Bbo, and Bsf . Let Kbd and Kat be the subsets of SOCP constraints K restricted
to variables xbd and xat, respectively, and let

K̃at(x̂bd) =

{
xat

∣∣∣ [ xmg
i xre

` + jxim
`

xre
` − jxim

` xmg
j

]
� 0,

∀` := (i, j) ∈ Lat ∪ Lat∩bi, where xmg
i = x̂mg

i ∀i ∈ Bbi

}
,

be the confined feasible set for xat, which fixes the boundary variables x̂bd in the SOCP constraints. Sup-
pose that the following conditions hold:

• (Full column rank for the safe and boundary region)AMsf∪Mbd,Xsf∪Xbd
and

QMbd,Xbd
=
[
AMbd,Xbd

I
(|Mbd|)>
Mbi

]
have full column rank.

• (Localized mutual incoherence) for all lines {i, j} ∈ Lat∩bi that bridge the attacked region and the
inner boundary, where i ∈ Bat, j ∈ Bbi, we have αSOCP

i→j ≤ 1− γ for some γ > 0.

• (Nonbinding SOCP constraints in the boundary) the solution for the attacked states satisfies x̂at ∈
K̃at(x\bd).

Then, the solution to (S(1): `1-K), denoted as (x̂, b̂), uniquely recovers the true state outside the attacked
region (i.e., x̂sf = x\sf and x̂bd = x\bd). Furthermore, the state estimation by (S(2): `2) recovers the true
state for the unaffected region (i.e., v̂k = vk for k ∈ Bsf ∪ Bbd).

Proof. To prove the claim, we simply need to show that for an arbitrary b? with its support limited to the
inner boundary supp(b?) ⊆Mbi, the solution x̂bd ∈ Xbd to the program

min
xbd∈Kbd,b

‖b‖1, subject to AMbd,Xbd
xbd + b = zMbd

(59)

is unique and satisfies x̂bd = x\bd, where zMbd
= AMbd,Xbd

x\bd + b?. To show this, we obtain the dual
program:

min
hMbd

,{ν`,µ`}`∈Lbd
h>Mbd

zMbd
(60a)

subject to A>Mbd,Xbd
hMbd

+
∑

`∈Lat∩bi∪Lbd

(ν`c` +D
>
` µ`) = 0 (60b)

‖hMbd
‖∞ ≤ 1 (60c)

ν` ≥ ‖µ`‖2, ∀` ∈ Lbd, (60d)
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Our goal is to find a dual certificate h?Mbd
and {λ?`,µ?`}Lbd that satisfies the KKT conditions:

(dual feasibility) λ?` ≥ ‖µ?`‖2, ∀` ∈ Lbd (61)

(stationarity) A>Mbd,Xbd
h?Mbd

+
∑

`∈Lat∩bi∪Lbd

(λ?`c` +D
>
` µ?`) = 0, (62)

h?Mbd
∈ ∂‖b?‖1 (63)

(complementary slackness) λ?`c
>
` x? + µ

>
?`D`x? = 0, ∀` ∈ Lbd. (64)

where x? =
[
x>\sf x>\bd x̂>at

]>
. By the limited support assumption, we need to find a vector h? such that

h?Mbi
= sign(b?Mbi

) and ‖h?Mbo
‖∞ ≤ 1. By the graphical mutual incoherence condition and Lemma

15, we can always find h?Mbo
and {λ?`,µ?`}Lbd that satisfy the KKT conditions for a given h?Mbi

, such
that ‖h?Mbo

‖ ≤ 1 − γ < 1. Thus, this certifies the optimality of (x\bd, b?) for (40). Clearly, under the
nonbinding SOCP constraints assumption, (x\bd, b?) is feasible. Following the uniqueness argument of
Theorem 10, we conclude the proof.

We can extend the analysis to the case where the measurements have both sparse bad data and dense
noise. In this case, we need to solve a second-order cone program that combines quadratic loss with absolute
value loss, in addition to the SOCP constraints.

Theorem 18 (Robust SE with (S(1): `2`1-K)). Given the measurements y = Ax\ + w\ + b\, where w\

has independent entries with zero mean and subgaussian parameter σ and supp(b\) ⊆ Mat, consider a
partitioning of the network as Bat,Bbi,Bbo, and Bsf . Let Kbd and Kat be the subsets of SOCP constraints
K restricted to the variables xbd and xat, respectively, and let

K̃at(x̂bd) =

{
xat

∣∣∣ [ xmg
i xre

` + jxim
`

xre
` − jxim

` xmg
j

]
� 0,

∀` := (i, j) ∈ Lat ∪ Lat∩bi, where xmg
i = x̂mg

i ∀i ∈ Bbi

}
,

be the confined feasible set for xat, which fixes the boundary variables x̂bd in the SOCP constraints. Sup-
pose that the rows of A are normalized (c.f., Def. 1), and the regularization parameter λ is chosen such
that

λ >
2

nmγ

√
2σ2 log nm. (65)

In addition, suppose the following conditions hold:

• (Full column rank for the safe and boundary region) bothAMsf∪Mbd,Xsf∪Xbd
and

QMbd,Xbd
=
[
AMbd,Xbd

I
(|Mbd|)>
Mbi

]
have full column rank.

• (Localized mutual incoherence) for all lines {i, j} ∈ Lat∩bi that bridge the attacked region and the
inner boundary, where i ∈ Bat, j ∈ Bbi, we have αSOCP

i→j ≤ 1− γ for some γ > 0.

• (Nonbinding SOCP constraints in the boundary) the solution for the attacked states satisfies x̂at ∈
K̃at(x\bd).
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Then, the following properties hold for the solution to (S(1): `2`1), denoted as (x̂, b̂):

1. (No false inclusion) The solution (x̂, b̂) has no false bad data inclusion (i.e., supp(b̂) ⊂ supp(b\))
with probability greater than 1− c0

nm
, for some constant c0 > 0.

2. (Large bad data detection) LetA◦ :=

AMsf ,Xsf
AMsf ,Xbd

0 AMbo,Xbd

0 AMbi,Xbd

 andQ◦Mbi
=
[
A◦ I◦>Mbi

]
, and

g(λ) = nmλ

(
1

2
√
Cmin

+ ‖Ib(Q◦>Mbi
Q◦Mbi

)−1Q◦>Mbi
‖∞
)

be a threshold value, and let b̃Mbi
= AMbi,Xat(x\at − x̂at) be the error at the boundary. Then, all

bad data with magnitude greater than g(λ) will be detected (i.e., if |b̃i| > g(λ), then |b̂i| > 0) with
probability greater than 1− c2

m .

3. (Bounded error) The estimator error is bounded by

‖x\Xsf∪Xbd
− x̂Xsf∪Xbd

‖2 ≤ t
√
|Xsf |+ |Xbd|+ |Mbi|

Cmin
+ nmλ‖Ix(Q◦>Mbi

Q◦Mbi
)−1Q◦>Mbi

‖∞,2

with probability greater than 1− exp
(
− c1t2

σ4

)
.

3.3 Scalable methods to calculate the graphical mutual incoherence

The minimax program (33) consists of a linear programming in the inner minimization and a discrete op-
timization in the outer maximization. For small-scale systems, the number of feasible points in the outer
maximization is not too large. This is the case when we consider the graphical mutual incoherence on a
line-by-line basis. But for large-scale problems when we consider a group of attacked lines, it is essential to
develop more scalable numerical algorithms. We first show the following result.

Lemma 19. The graphical mutual incoherence αi→j coincides with the optimal value of the following
minimax program:

α̃i→j = max
ξ̃∈[−1,+1]

n
i→j
×

min
α̃∈R,h̃∈Rn

i→j
X

α̃ (66a)

subject to A>Mi→j
bdX,X

i→j
bd

h̃+A>Mi→j
bd×,X

i→j
bd

ξ̃ = 0 (66b)

‖h̃‖∞ ≤ α̃, (66c)

with the same notations as in Def. 7. Note that the difference in (66) is that the minimizer is over the
hypercube [−1,+1]n

i→j
× rather than the simplex {−1,+1}n

i→j
× .

Proof. Since the feasible region of the outside maximizer in (66) is a superset of that in (33), we always
have α̃i→j ≥ αi→j . To show the other direction, we simply need to show that for any ξ̃ ∈ [−1,+1]n

i→j
× ,

we can always find a feasible solution for the minimizer h̃ such that ‖h̃‖∞ ≤ αi→j . Since ξ̃ belongs to
a hypercube, which is convex, there always exists a set of non-negative coefficients βk such that βk ≥ 0,
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∑
k βk = 1 and ξ̃ =

∑
k βkξk, where ξk ∈ {−1,+1}n

i→j
× . Since for each ξk, there exists hk such that it is

feasible in (33) and ‖hk‖∞ ≤ αi→j , by choosing h̃ =
∑

k βkhk, we have:

‖h̃‖∞ ≤
∑
k

βk‖hk‖∞ ≤
∑
k

βkαi→j = αi→j ,

which completes the proof.

We can thereby reformulate the problem as a linear complimentarity problem as follows. The KKT
conditions for the inner minimization of (66) are:

• (Primal feasibility)A>Mi→j
bdX,X

i→j
bd

h+A>Mi→j
bd×,X

i→j
bd

ξ = 0, q+ = α1−h, q− = α1+h, q+ ≥ 0, q− ≥
0;

• (Dual feasibility) µ+ ≥ 0,µ− ≥ 0;

• (Stationarity) The Lagrangian function

L(α,h,µ+,µ−,λ) = α+ λ>(A>Mi→j
bdX,X

i→j
bd

h+A>Mi→j
bd×,X

i→j
bd

ξ) + µ>+(h− α1) + µ>−(−h− α1)

and stationarity conditions:

∂L
∂α

= 1− µ>+1− µ>−1 = 0

∂L
∂h

= AMi→j
bdX,X

i→j
bd
λ+ µ+ − µ− = 0

• (complementary slackness) µ+ ◦ q+ = 0, µ− ◦ q− = 0

Thus, we can write (66) as a linear complementarity problem:

α̃i→j = max
ξ∈Rn

i→j
× ,α∈R,h∈Rn

i→j
X

α (67a)

subject to − 1 ≤ ξ ≤ 1 (67b)

A>Mi→j
bdX,X

i→j
bd

h+A>Mi→j
bd×,X

i→j
bd

ξ = 0 (67c)

q+ = α1− h (67d)

q− = α1 + h (67e)

1− µ>+1− µ>−1 = 0 (67f)

AMi→j
bdX,X

i→j
bd
λ+ µ+ − µ− = 0 (67g)

µ+ ◦ q+ = µ− ◦ q− = 0 (67h)

, q+, q−,µ+,µ− ≥ 0 (67i)

This problem can be solved readily using off-the-shelf solvers such as PATH Solver [5] or YALMIP
[11]. We can also use the big-M method to replace the complimentarity condition using a mixed-integer
formulation, and solve the problem using standard packages such as Gurobi. In our experiments, we only
focus on each line, so the improvement of computation is not significant. The advantage becomes more
obvious when we scale the computation to multiple lines, such as the case for the tree decomposition.
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3.4 Extension to tree decomposition

So far, we have been focusing on evaluating line vulnerabilities. In this section, we introduce a powerful
extension of the vulnerability index to tree decomposition of a graph. This allows us to study the effect of
sparsity on network robustness. We use N (G) to represent the vertices of graph G, and L(i;G) = {j ∈ N |
{i, j} ∈ L} to represent the set of nodes in G that are connected to node i. First, we introduce the standard
definition of tree decomposition and treewidth.

Definition 20 (Tree decomposition and treewidth). A tree decomposition of a graph G := {N ,L} is (T ,W),
where T is a tree and W := {Wt | t ∈ N (T )} is the set of “bags” Wt which satisfies the following
properties

1. (Node coverage) ∪t∈N (T )Wt = N (G), i.e., the union of the vertices of T , referred to as “bags,” is
the set of nodes of G;

2. (Edge coverage) For any (i, j) ∈ L, there exists t ∈ N (T ) such that i, j ∈ Wt, i.e., each edge of G is
in at least one of the “bags” of T ;

3. (Running intersection property) The subtree of T consisting of all “bags” containing u ∈ N is
connected.

Furthermore, the width of a tree decomposition is max(|Wt| − 1 : t ∈ N (T )). The treewidth of G is the
minimum width of a tree decomposition of G.

Clearly, a graph may have several different tree decompositions. The analysis below does not require
any particular tree decompositions. However, the easiest tree decomposition is to lump all vertices into one
bag, which does not reveal any robustness properties of the graph. In general, the smaller the width of the
decomposition, the easier it is to certify robustness.

Definition 21 (Infected bags, link bags, safe bags). For a given set of attacked nodes Nat and a tree de-
composition (T ,W), any bag that contains attacked nodes is referred to as an infected bagW if

t ∈ W if =
{Wt | Wt ∩ Nat 6= ∅}. Furthermore, the set of lines induced by the union of infected bags is denoted
as Lif . The bags that are immediately connected to an infected bag are called link bags W lk

t ∈ W lk =
{Wt | Wt ∩ Nat = ∅,∃ W if

t′ ,Wt ∈ L(W if
t′ ; T )}, and the set of lines induced by the union of link bags

is shown as Llk. The rest of the bags are safe bags Wsf
t , and the set of lines induced by the union of safe

bags is represented by Lsf . Nodes shared between a link bagW lk
t and an infected bagW if

t are called ad-
hesion nodes Nad(W lk

t ,W if
t ) = W lk

t ∩ W if
t ⊆ Nad, and the rest of the nodes inW lk

t are outer link nodes
Nol(W lk

t ,W if
t ) =W lk

t \W if
t ⊆ Nol. We denote the edges that connect adhesion nodes inW lk

t with infected
nodes by Lad(W lk

t ) ⊆ Lad.

Definition 22 (Attacked, boundary and safe variables and measurements for tree decomposition). The set
of “infected variables” Xif includes all variables on lines induced byW if and on nodes inW if except for
adhesion nodes Nad. The set of “link variables” Xlk includes variables on nodes inW lk and the induced
lines. The set of “safe variables” Xsf includes all other variables. The set of “infected measurements”Mif

includes measurements on lines induced by nodes inW if and on nodes inW if except for voltage magnitude
measurements onNad. The set of “adhesion measurements”Mad includes nodal power injections on nodes
inNad and line measurements on Lad, and the set of “outer link measurements”Mol includes voltage mag-
nitude on nodes inW lk and line measurements induced by nodes inW lk. Together, they form the “boundary
measurements”Mbd :=Mad ∪Mol. The rest of the measurementsMsf are “safe measurements.”
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Next, we introduce some useful properties associated with the above definitions. If T ′ is a subtree of
T , we use GT ′ to denote the subgraph of G induced by the nodes in all the bags associated with T ′, namely
∪t∈T ′Wt.

Lemma 23. The following properties are satisfied:

(i) There are no shared nodes between the safe bags and the infected bags.

(ii) There are no shared nodes between the set of outer link nodes and the infected bags.

(iii) Suppose that the infected bags form a subtree of T . Then, there are no shared outer link nodes between
any link bags.

(iv) Suppose that the infected bags form a subtree of T . Consider any link bag W lk
t that is adjacent to

only one infected bag W if
t′ connected by an edge L(W lk

t ,W if
t′ ). If we delete the edge, the tree falls

apart into two connected components, T1 and T2. Deleting the adhesion nodes W lk
t ∩ W if

t′ from N
disconnects G into the two subgraphs GT1 − (W lk

t ∩ W if
t′ ) and GT2 − (W lk

t ∩ W if
t′ ). Furthermore,

all the infected nodes are contained in only one of the subgraph, and there is no edge across the two
subgraphs.

Proof. (i): For any safe bagWsf
t and affected bagW if

t , if there exists a node i that is shared between them,
it contradicts the definition of a safe bag.

(ii): For any link bagW lk
t and affected bagW if

t , if there exists a node i that is shared betweenW if
t and

the outer link nodes in W lk
t , then by the running intersection property, it must also appear in the infected

bag connected toW lk
t . This is contradictory, because it makes i an adhesion node.

(iii): For any two link bagsW lk
t andW lk

t′ , suppose that they share an outer link node i. By the running
intersection property, there must exist a path of bags between W lk

t and W lk
t′ . Since this path cannot go

through the infected bags, it must be outside the infected region. Since the infected bags form a subtree, this
would create a loop within T , which is impossible. Therefore, there cannot be any shared outer link nodes
between any two link bags.

(iv) Assume that there is a node i that belongs to both GT1 − (W lk
t ∩ W if

t′ ) and GT2 − (W lk
t ∩ W if

t′ ).
Therefore, by the node coverage property, there must existWx with x ∈ T1 andWy with y ∈ T2 such that
i ∈ Wx and i ∈ Wy. Since W lk

t and W if
t′ lie on a x − y path in T , by the running intersection property,

i ∈ W lk
t ∩W if

t′ . Hence, i belongs to neither GT1 − (W lk
t ∩W if

t′ ) nor GT2 − (W lk
t ∩W if

t′ ).
Now, assume that there is an edge (i, j) in G such that i ∈ GT1−(W lk

t ∩W if
t′ ) and j ∈ GT2−(W lk

t ∩W if
t′ ).

Then, by the edge coverage property, there must be a bagWx containing both i and j. However, x cannot
be in both T1 and T2, otherwise, i and j will belong to W lk

t ∩ W if
t′ . Assume that x 6∈ T2. Since j is in

GT2 − (W lk
t ∩ W if

t′ ), it must be in a bag y ∈ T2 different than x. Since j belongs to both Wx and Wy,
it lies on a x − y path in T . By the running intersection property, we have j ∈ W lk

t ∩ W if
t′ , which is a

contradiction.

If the infected bags form a subtree and we can find a link bag that is adjacent to only one infected bag,
then by property (iv) in Lemma 23, if we remove the adhesion nodes, we can separate the infected region
with the rest of the safe region.

Now, we can define a generalized version of vulnerability index using tree decomposition.
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Definition 24 (Bag vulnerability index). For each adhesion link L(W lk
t ,W if

t ), define the measurement and
variable partitions according to Def. 22. The bag vulnerability index αW if

t →W lk
t

is given by the optimal
value of the following minimax program:

αW if
t →W lk

t
= max
ξ∈{−1,+1}|Mad|

min
α∈R,h∈R|Mol|

α (68a)

subject to A>Mol,Xlk
h+A>Mad,Xlk

ξ = 0 (68b)

‖h‖∞ ≤ α, (68c)

whereMol,Mad and Xlk are the boundary measurement and variable indices introduced in Def. 22.

Similarly, we can extend the definition to incorporate SOCs.

Definition 25 (Bag vulnerability index for SOCP). For each adhesion link L(W lk
t ,W if

t ), define the mea-
surement and variable partitions according to Def. 22. The bag vulnerability index αSOCP

W if
t →W lk

t
for a given

x ∈ K that satisfies primal feasibility is given by the optimal value of the following minimax program:

αSOCP
W if

t →W lk
t
= max
ξ∈{−1,+1}|Mad|

min
α∈R,h∈R|Mol|

α (69a)

subject to A>Mol,Xlk
h+A>Mad,Xlk

ξ +
∑

`∈L(W lk
t )

ω`T `x = 0 (69b)

ω` ≥ 0, ∀` ∈ L(W lk
t ) (69c)

‖h‖∞ ≤ α, (69d)

where Mol,Mad and Xlk are the boundary measurement and variable indices introduced in Def. 22,
L(W lk

t ) is the set of lines induced by nodes inW lk
t . Also, we define T ` = c`c>` −D

>
` D`, where c` andD`

are defined in (6).

With the above definition of bag vulnerability index, we can show the following key results for SE
robustness.

Lemma 26 (Local property implies global property in tree decomposition). Consider a tree decomposition
T and the associated set partitioning (c.f., Def. 22). Suppose that the infected bags form a subtree of T , and
that there exists a link bagW lk

t that is adjacent to only one infected bagW if
t . For simplicity of presentation,

we also treat the rest of the bags in the subtree as infected. Let A◦ =

AMsf ,Xsf
AMsf ,Xlk

0 AMol,Xlk

0 AMad,Xlk

 be a

submatrix of the sensing matrix. If αW if
t →W lk

t
≤ 1− γ for some γ > 0, then for any ĥMad

∈ [−1, 1]|Mad|,

there exists an ĥMsf∪Mol
such that ‖ĥMsf∪Mol

‖∞ ≤ 1− γ and

A◦>Msf∪Mol
ĥMsf∪Mol

+A◦>Mad
ĥMad

= 0. (70)

Proof. The proof is similar to Lemma 9. First, we show that a sufficient condition for the existence of

ĥMsf∪Mol
=
[
ĥ
>
Msf

ĥ
>
Mol

]>
such that ‖ĥMsf∪Mol

‖∞ ≤ 1− γ and (70) is satisfied is that for any ĥMad
,

there exists a vector ĥMol
such that ‖ĥMol

‖∞ ≤ 1− γ and

A>Mol,Xlk
ĥMol

+A>Mad,Xlk
ĥMad

= 0. (71)
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This is immediate by simply choosing ĥMsf∪Mol
=
[
0> ĥ

>
Mol

]>
. Since it is guaranteed that there exists

a vector ĥMol
to satisfy (71) under the condition that αW if

t →W lk
t
≤ 1− γ, the claim is proved.

Lemma 27 (Local property implies global property for SOCP with tree decomposition). Consider a tree de-
composition T and the associated set partitioning (c.f., Def. 22). Suppose that the infected bags form a sub-
tree of T , and that there exists a link bagW lk

t that is adjacent to only one infected bagW if
t . For simplicity of

presentation, we also treat the rest of the bags in the subtree as infected. LetA◦ =

AMsf ,Xsf
AMsf ,Xlk

0 AMol,Xlk

0 AMad,Xlk


be a submatrix of the sensing matrix, and c◦` and D◦` be the subvector and submatrix of c` and D` indexed
by Xsf∪Xlk. If αSOCP

W if
t →W lk

t
≤ 1−γ for some γ > 0, then for any ĥMad

∈ [−1, 1]|Mad|, there exist ĥMsf∪Mol

and {ν̂`, û`}`∈Lad(W lk
t )∪L(W lk

t )∪Lsf such that ‖ĥMsf∪Mol
‖∞ ≤ 1− γ and

A◦>Msf∪Mol
ĥMsf∪Mol

+A◦>Mad
ĥMad

+
∑

`∈Lad(W lk
t )∪L(W lk

t )∪Lsf

ν̂`c
◦
` +D

◦>
` û` = 0. (72)

Proof. The proof is similar to the one for Lemma 15. First, we show that a sufficient condition for Lemma
27 is that for any ĥMad

, there exists a vector ĥMol
and {ν̂`, û`}`∈L(W lk

t ) such that ‖ĥMol
‖∞ ≤ 1− γ and

A>Mol,Xlk
ĥMol

+A>Mad,Xlk
ĥMad

+
∑

`∈Lad(W lk
t )∪L(W lk

t )

[
ν̂`c` +D

>
` û`

]
Xlk

= 0. (73)

This is immediate by simply choosing ĥMsf∪Mol
=
[
0> ĥ

>
Mol

]>
and ν̂` = 0 and û` = 0 for ` ∈ Lsf .

Since it is guaranteed that there exist ĥMol
and {ν̂`, û`}`∈L(W lk

t ) to satisfy (73) under the condition that
αSOCP
W if

t →W lk
t
≤ 1− γ, the claim is proved.

Theorem 28 (Robust SE with (S(1): `2`1) for tree decomposition). Consider a tree decomposition T and
the associated set partitioning (c.f., Def. 22). Suppose that the infected bags form a subtree of T , and
that there exists a link bag W lk

t that is adjacent to only one infected bag W if
t . Given the measurements

y = Ax\ +w\ + b\, where w\ has independent entries with zero mean and subgaussian parameter σ and
supp(b\) ⊆Mif , suppose that the rows ofA are normalized (c.f., Def. 1) and the regularization parameter
λ is chosen such that

λ >
2

nmγ

√
2σ2 log nm. (74)

In addition, assume that the following conditions hold:

• (Full column rank for the safe and boundary region)AMsf∪Mlk,Xsf∪Xlk
and

QMlk,Xlk
=
[
AMlk,Xlk

I
(|Mlk|)>
Mad

]
have full column rank.

• (Localized mutual incoherence for bags) for the link bagW lk
t that is adjacent to only one infected bag

W if
t , we have αW if

t →W lk
t
≤ 1− γ for some γ > 0.
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Then, the following properties hold for the solution to (S(1): `2`1), denoted as (x̂, b̂):

1. (No false inclusion) The solution (x̂, b̂) has no false bad data inclusion (i.e., supp(b̂) ⊂ supp(b\))
with probability greater than 1− c0

nm
, for some constant c0 > 0.

2. (Large bad data detection) LetA◦ :=

AMsf ,Xsf
AMsf ,Xlk

0 AMol,Xlk

0 AMad,Xlk

 andQ◦Mad
=
[
A◦ I◦>Mad

]
, and

g(λ) = nmλ

(
1

2
√
Cmin

+ ‖Ib(Q◦>Mad
Q◦Mad

)−1I>b ‖∞
)

be a threshold value, and let b̃Mad
= AMad,Xif

(x\if − x̂if) be the error at the boundary. Then, all
bad data with magnitude greater than g(λ) will be detected (i.e., if |b̃i| > g(λ), then |b̂i| > 0) with
probability greater than 1− c2

m .

3. (Bounded error) The estimator error is bounded by

‖x\Xsf∪Xlk
− x̂Xsf∪Xlk

‖2 ≤ t
√
|Xsf |+ |Xlk|+ |Mad|

Cmin
+ nmλ‖Ix(Q◦>Mad

Q◦Mad
)−1I>b ‖∞,2

with probability greater than 1− exp
(
− c1t2

σ4

)
.

Theorem 29 (SE robustness with (S(1): `2`1-K) for tree decomposition). Given a tree decomposition T
and the associated set partitioning (c.f., Def. 22), suppose that the infected bags form a subtree of T and
that there exists a link bagW lk

t that is adjacent to only one infected bagW if
t . Consider the measurements

y = Ax\ +w\ + b\, where w\ has independent entries with zero mean and subgaussian parameter σ and
supp(b\) ⊆Mif . Let Klk and Kif be the subsets of SOCP constraints K restricted to the variables xlk and
xif , respectively, and let

K̃if(x̂lk) =

{
xif

∣∣∣ [ xmg
i xre

` + jxim
`

xre
` − jxim

` xmg
j

]
� 0,

∀` = (i, j) ∈ Lif ∪ Lad(W lk
t ), where xmg

i = x̂mg
i ∀i ∈ Nad(W lk

t ,W if
t )

}
,

be the confined feasible set for xif , which fixes the boundary variables x̂lk in the SOCP constraints. Suppose
that rows ofA are normalized (c.f., Def. 1), and the regularization parameter λ is chosen such that

λ >
2

nmγ

√
2σ2 log nm. (75)

In addition, suppose that the following conditions hold:

• (Full column rank for the safe and boundary region)AMsf∪Mlk,Xsf∪Xlk
and

QMlk,Xlk
=
[
AMlk,Xlk

I
(|Mlk|)>
Mad

]
have full column rank.
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• (Localized mutual incoherence for bags) for the link bagW lk
t that is adjacent to only one infected bag

W if
t , we have αSOCP

W if
t →W lk

t
≤ 1− γ for some γ > 0.

• (Nonbinding SOCP constraints in the boundary) the solution for the attacked states satisfies x̂if ∈
K̃if(x\lk).

Then, the following properties hold for the solution to (S(1): `2`1), denoted as (x̂, b̂):

1. (No false inclusion) The solution (x̂, b̂) has no false bad data inclusion (i.e., supp(b̂) ⊂ supp(b\))
with probability greater than 1− c0

nm
, for some constant c0 > 0.

2. (Large bad data detection) LetA◦ :=

AMsf ,Xsf
AMsf ,Xlk

0 AMol,Xlk

0 AMad,Xlk

 andQ◦Mad
=
[
A◦ I◦>Mad

]
, and

g(λ) = nmλ

(
1

2
√
Cmin

+ ‖Ib(Q◦>Mad
Q◦Mad

)−1Q◦>Mad
‖∞
)

be a threshold value, and let b̃Mad
= AMad,Xif

(x\if − x̂if) be the error at the boundary. Then, all
bad data with magnitude greater than g(λ) will be detected (i.e., if |b̃i| > g(λ), then |b̂i| > 0) with
probability greater than 1− c2

m .

3. (Bounded error) The estimator error is bounded by

‖x\Xsf∪Xlk
− x̂Xsf∪Xlk

‖2 ≤ t
√
|Xsf |+ |Xlk|+ |Mad|

Cmin
+ nmλ‖Ix(Q◦>Mad

Q◦Mad
)−1Q◦>Mad

‖∞,2

with probability greater than 1− exp
(
− c1t2

σ4

)
.

The proofs of Theorems 28 and 29 are similar to those of Theorems 11 and 18 in Section 5 and are
omitted for brevity. As shown in our analysis, tree decomposition provides an efficient way to define the
boundary between infected and safe nodes. Tree decomposition has been employed in semidefinite pro-
gramming (SDP) to efficiently deal with network with chordal sparsity [15]. The smaller the treewidth, the
faster it is to solve SDP [21]. Our analysis shows that with smaller treewidth, it is generally easier to certify
robustness for SE. This is mainly due to the fact that the adhesion set is bounded by the treewidth, which
limits the number of nodes that an infected bag can influence.

4 Experimental details

Noisy measurements: For each simulation, we randomly generate dense noisew and sparse bad data b, and
add them to the clean data according to (4). The dense noise for each measurement is zero-mean Gaussian
variable, with standard deviation of 1e-5 (per unit) for voltage magnitude measurements and 0.005 (per unit)
for all the other measurements. The difference in standard deviation is due to the fact that voltage magnitude
sensors have higher standards of accuracy compared to power meters. For the sparse bad data, its support
is randomly selected among the line measurements. We randomly select a set of lines, whose branch flow
measurements are all compromised accordingly. The values for the sparse noise can be arbitrarily large, and
we assume these parameters are uniformly chosen from the set [−4.25,−3.75] ∪ [3.75, 4.25] (per unit).
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Performance metrics: We use the root-mean-square error (RMSE) as the metric for estimation ac-
curacy, which is defined as

√
1
nb

∑
i∈N |vi − v̂i|2, where vi and v̂i are the true and estimated complex

voltage at bus i ∈ N . To evaluate the bad data detection accuracy, we use the F1 score, which is defined as
2∗precision×recall

precision+recall , where precision is given by #True positives |J ∩Ĵ |
#Conditional positives |Ĵ |

, and recall is given by #True positives |J ∩Ĵ |
#Conditional positives |J | ,

and J and Ĵ denote the true and estimated supports of bad data (# indicates the number of elements). The
F1 score is the harmonic average of the precision and recall, which reaches its best value at 1 (perfect
precision and recall) and worst at 0.

Experimental setup: We evaluate the proposed method (step-1 estimators include (S(1): `1), (S(1): `2`1),
(S(1): `1-K) or (S(1): `2`1-K)) combined with step-2 recovery method (S(2): `2) or (S(2): `2`1)), and com-
pare it with the current practice of nonlinear least square (NLS) method based on Newton’s algorithm. We
use SeDuMi [13] as the optimization solver and the MATPOWER implementation of NLS. Throughout the
experiment, we choose λ in (S(1): `2`1) to be 3 × 10−4/nm, λ2 in (S(1): `2`1-K) to be 0.1, and a bad data
detection threshold of 0.01 for stage-1 estimators. After the removal of bad data (i.e., cleaning step), we
perform the estimation with the remaining data. All the experiments are performed on a standard laptop
with 3.3GHz Intel Core i7 and 16GB memory.

Convergence issue of Newton’s method: We performed a simple experiment, where there is no noise
in the measurements, and we use both Newton’s method and our proposed method to estimate the state for
the IEEE 300-bus system [20]. Since Newton’s method depends on the initial point, we randomly generate
an initial point, where we add a complex vector on top of the ground truth. The magnitude of each entry is
uniformly chosen from [1−τ, 1+τ ], and angle (in degrees) uniformly chosen from [−100×τ, 100×τ ]. We
increase τ to enlarge the initialization distance. As shown in Figure 2, as we increase τ , Newton’s method
becomes less and less reliable. This can be due to several factors, for example, if the initial point is far
from the ground truth, the algorithm can become stuck at a local optimal. On the contrary, our proposed
method based on (S(1): `2`1) does not depend on the initial point and can recover the ground truth for all the
experiments.

0 0.05 0.1 0.15
0

0.05

0.1

0.15

0.2

0 0.05 0.1 0.15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

data1
data2
data3

Initialization distance

RM
SE

Newton’s method
Proposed method

Figure 2: Plots of RMSE against initilization distance τ for Newton’s method. The RMSE is averaged
over 20 simulations. For the Newton’s method, we show both the mean performance (circled line) and the
min/max range (black shades).

Simulations on measurement redundancy: In the main paper, we demonstrated the performance of
(S(1): `2`1-K) for different sensor measurement profiles. We have tested three different methods to add ad-
ditional sensors: the first method (Method 1) starts from a spanning tree of the network and incrementally
adds a set of lines to the tree. In this method, each bus is equipped with only voltage magnitude measure-
ments, and each line has 3 out of 4 branch flow measurements. The second method (Method 2) starts with
the full network, where each node has voltage magnitude measurements and each line has one real and one
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reactive power measurements, and it grows the set of sensors by randomly adding branch measurements.
The third method (Method 3) differs from Method 2 only in that it grows the set of sensors by randomly
adding branch measurements as well as nodal power injections. In Figure 3, we compared the performance
of (S(1): `2`1) with (S(1): `2`1-K) in terms of both estimation accuracy and bad data detection rates. It can
be seen that (S(1): `2`1-K) consistently outperforms (S(1): `2`1) at different redundancy rates. We can also
observe that Method 1 is more efficient in terms of improvement of performance with additional sensors.
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Figure 3: Performance of proposed algorithms with different rates of measurement redundancy. Plots for
different methods to add measurements: (A, B) Method 1, (C, D) Method 2, (E, F) Method 3. Results for
(S(1): `2`1-K) (red) and (S(1): `2`1) (green) are shown, which are averaged over 100 independent simula-
tions.

Visualization of vulnerability maps for different measurement profiles: In Figure 9 from the main
text, we show statistics regarding vulnerability index and critical index for different measurement pro-
files. Figures 4 and 5 show the geographical distributions of VI and CI, respectively. It can be seen that
(S(1): `2`1-K) is consistently more robust in terms of VI and CI than (S(1): `2`1). This is also theoretically
proven in Proposition 16. We also see that the more vulnerable lines exist, the higher the bus critical index
tends to be. By comparing Figure (B, G) with Figure (C, H), we see that the inclusion of nodal power
injections is likely to cause vulnerable lines. By including more branch flow measurements, as shown in
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Figure (A, C, D) and Figure (F, H, I), or more voltage magnitude measurements, as shown in Figure (B, C,
E) or Figure (G, H, J), it is more likely to robustify the network.

5 Proofs

5.1 Proof of Theorem 11

For an arbitrary set of attacked measurementsMat, their boundaryMbd := Mbi ∪Mbo and unaffected
measurementsMsf , as well as the associated variables xat, xbd and xsf , respectively, we design the primal-
dual witness (PDW) process as follows:

(1) Set b̂Msf
= 0 and b̂Mbo

= 0;

(2) Determine x̂ =
[
x̂>sf x̂>bd x̂>at

]>
and b̂ =

[
0> 0> b̂

>
Mbi

b̂
>
Mat

]>
by solving the following

program:

min
b∈Rnm ,x∈Rnx

1

2nm

∥∥∥∥∥∥∥∥

yMsf

yMbo

yMbi

yMat

−

AMsf ,Xsf

AMsf ,Xbd
0

0 AMbo,Xbd
0

0 AMbi,Xbd
AMbi,Xat

0 0 AMat,Xat


xsf

xbd

xat

−


0
0

bMbi

bMat


∥∥∥∥∥∥∥∥

2

2

+ λ

∥∥∥∥[bMbi

bMat

]∥∥∥∥
1

,

(76)
and ĥMbi

∈ ∂‖b̂Mbi
‖1 and ĥMat ∈ ∂‖b̂Mat‖1 satisfying the optimality conditions

− 1

nm
(yMat

−AMat,Xatx̂at − b̂Mat) + λĥMat = 0, (77a)

− 1

nm

(
yMbi

−AMbi,Xbd
x̂bd −AMbi,Xatx̂at − b̂Mbi

)
+ λĥMbi

= 0. (77b)

(3) Solve (ĥMsf
, ĥMbo

) via the zero-subgradient equation:

− 1

nm

(
y −Ax̂− b̂

)
+ λĥ = 0, (78)

where x̂ =
[
x̂>Bsf x̂>Bbd x̂>Bat

]>
and b̂ =

[
0> 0> b̂

>
Mbi

b̂
>
Mat

]>
are solutions obtained in (76),

and ĥ =
[
ĥ
>
Msf

ĥ
>
Mbo

ĥ
>
Mbi

ĥ
>
Mat

]>
where (ĥMbi

, ĥMat) are given in (77). Check whether strict

feasibility conditions ‖ĥMsf
‖∞ < 1 and ‖ĥMbo

‖∞ < 1 hold.

Lemma 30. If the PDW procedure succeeds, then (x̂, b̂) that is optimal for (76) is also optimal for (S(1): `2`1).
Furthermore, for any optimal solution (x̃, b̃), if x̂at = x̃at, we must have x̂sf = x̃sf and x̂bd = x̃bd (i.e.,
uniqueness property in the weak sense).

Proof. The KKT conditions of (S(1): `2`1) for a given primal-dual pair (x̂, b̂) and ĥ are given by:

A>(y −Ax̂− b̂) = 0, (79a)

− 1

nm

(
y −Ax̂− b̂

)
+ λĥ = 0, (79b)

‖ĥ‖∞ ≤ 1 (79c)
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Figure 4: Vulnerability maps for different measurement profiles and optimization techniques. (A–E) and
(F–J) are series of maps without and with the SOCs, respectively. (A, F), (C, H) and (D, I) correspond
to PV or PQ nodal measurements together with 2, 3, and 4 branch power flows, respectively. (B, G) and
(E, J) correspond to only PQ or only voltage magnitude nodal measurements with 3 branch power flows,
respectively.
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index
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Figure 5: Bus critical index maps for different measurement profiles and optimization techniques. (A–E)
and (F–J) are series of maps without and with the SOCs, respectively. (A, F), (C, H) and (D, I) correspond
to PV or PQ nodal measurements together with 2, 3, and 4 branch power flows, respectively. (B, G) and
(E, J) correspond to only PQ or only voltage magnitude nodal measurements with 3 branch power flows,
respectively. Color indicates low (yellowish) to high (reddish) critical index. If the critical index is 0, which
occurs when attacking the bus does not affect any of its neighbors, the grey color is shown.
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If PDW succeeds, then the optimality conditions (79) are satisfied, which certify the optimality of (x̂, b̂).
The subgradient ĥ satisfies ‖ĥMsf

‖∞ < 1, ‖ĥMbo
‖∞ < 1 and

〈
ĥ, b̂

〉
= ‖b̂‖1. Now, let (x̃, b̃) be any

other optimal, and let F (x, b) = 1
2nm
‖y −Ax− b‖22, then we have

F (x̂, b̂) + λ
〈
ĥ, b̂

〉
= F (x̃, b̃) + λ‖b̃‖1,

and hence,
F (x̂, b̂) + λ

〈
ĥ, b̂− b̃

〉
= F (x̃, b̃) + λ

(
‖b̃‖1 −

〈
ĥ, b̃

〉)
.

By the optimality conditions in (79), we have λĥ = −∇bF (x̂, b̂) = 1
nm

(y −Ax̂− b̂), which implies that

F (x̂, b̂)−
〈
∇bF (x̂, b̂), b̂− b̃

〉
− F (x̃, b̃) = λ

(
‖b̃‖1 −

〈
ĥ, b̃

〉)
≤ 0

due to convexity. Therefore, ‖b̃‖1 ≤
〈
ĥ, b̃

〉
. Since by Holder’s inequality, we also have

〈
ĥ, b̃

〉
≤

‖ĥ‖∞‖b̃‖1, and ‖ĥ‖∞ ≤ 1, it holds that ‖b̃‖1 =
〈
ĥ, b̃

〉
. Since by the success of PDW, ‖ĥMsf

‖∞ < 1

and ‖ĥMbo
‖∞ < 1, we have b̃j = 0 for all j ∈ Msf ∪Mbo. To show the weak uniqueness, let (x̃, b̃) be

another optimal solution, and assume that x̂at = x̃at. Then, by fixing xat in the optimization (76) as x̂at

and by the lower eigenvalue condition, the the function is strictly convex in xsf , xbd and bMbi
.

Proof of Theorem 11

Proof. Part 1): By the construction of PDW, we have b̂Msf
= b\Msf

= 0 and b̂Mbo
= b\Mbo

= 0. In the
following, we allow the optimal solution x̂at and b̂Mat of (76) to take any value. Thus, for any given x̂at

and b̂Mat , we can fix xat and bMat in (76) and solve the following smaller program:

min
bMbi

,xsf ,xbd

1

2nm

∥∥∥∥∥
yMsf

yMbo

zMbi


︸ ︷︷ ︸

z◦

−

AMsf ,Xsf
AMsf ,Xbd

0 AMbo,Xbd

0 AMbi,Xbd


︸ ︷︷ ︸

A◦

[
xsf

xbd

]
︸ ︷︷ ︸
x◦

−

 0
0

bMbi

∥∥∥∥∥
2

2

+ λ ‖bMbi
‖1 , (80)

where zMbi
= yMbi

−AMbi,Xatx̂at = AMbi,Xbd
x\bd+b̃Mbi

and b̃Mbi
= AMbi,Xat(x\at−x̂at). Let I◦ be

an identity matrix of size nm−|Mat|, and x◦ andw◦ be the subvectors of x andw indexed byMsf∪Mbo∪
Mbi, respectively. Thus, we have z◦ = A◦x◦\ + w

◦
\ + I

◦>
Mbi

b̃Mbi
. The solution (xsf ,xbd, bMbi

) of (80)
is unique and coincides with that of (76) due to the lower eigenvalue condition. Thus, the zero-subgradient
condition (77) is satisfied, which together with (78) can be written as:

− 1

nm

AMsf ,Xsf
AMsf ,Xbd

0 AMbo,Xbd

0 AMbi,Xbd

[ x\sf − x̂sf

x\bd − x̂bd

]
+

 0
0

b̃Mbi
− b̂Mbi

− 1

nm

w\Msf

w\Mbo

w\Mbi

+λ
 ĥMsf

ĥMbo

ĥMbi

 = 0.

(81)
We can partition the above relation into equations indexed byMbi, which can be rearranged as:

ĥMbi
=

1

nmλ

[
I◦Mbi

A◦ I◦Mbi
I◦>Mbi

] [ x◦\ − x̂
◦

b̃Mbi
− b̂Mbi

]
+

1

nmλ
I◦Mbi

w◦\ , (82)
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as well as those indexed byMsf ∪Mbo, which can be solved for ĥMsf∪Mbo
=
[
ĥ
>
Msf

ĥ
>
Mbo

]>
:

ĥMsf∪Mbo
=

1

nmλ
I◦Msf∪Mbo

(
A◦(x◦\ − x̂◦) +w◦\

)
. (83)

Since x̂◦ is the optimal solution of (80), it satisfies the optimality condition:

A◦>
(
A◦(x◦\ − x̂◦) +w◦\ + I◦>Mbi

(b̃Mbi
− b̂Mbi

)
)
= 0 (84)

Combining (82), (83) and (84) and after some elementary operations, we have

A◦>Msf∪Mbo
ĥMsf∪Mbo

+A◦>Mbi
ĥMbi

= 0. (85)

By Lemma 9, for any ĥMbi
∈ ∂‖b̂Mbi

‖1, there always exists ĥMsf∪Mbo
such that ‖ĥMsf∪Mbo

‖∞ < 1.
Thus, the strict feasibility condition is satisfied deterministically.

Part 2): By the lower eigenvalue condition the and definition of Q◦Mbi
=
[
A◦ I◦>Mbi

]
, we can solve

(82) and (84):

∆ :=

[
x◦\ − x̂

◦

b̃Mbi
− b̂Mbi

]
= −(Q◦>Mbi

Q◦Mbi
)−1Q◦>Mbi

w◦\ + nmλ(Q
◦>
Mbi

Q◦Mbi
)−1

[
0

ĥMbi

]
(86)

Let Ix and Ib denote the matrices that consist of the first |Xsf |+ |Xbd| rows and the last |Mbi| rows of the
identity matrix of size |Xsf | + |Xbd| + |Mbi|, respectively. Then, we can bound the estimation error ∆ in
(86). First, we bound the infinity norm of b̃Mbi

− b̂Mbi
= Ib∆. By triangle inequality,

‖Ib∆‖∞ ≤ ‖Ib(Q◦>Mbi
Q◦Mbi

)−1Q◦>Mbi
w◦\‖∞ + nmλ‖Ib(Q◦>Mbi

Q◦Mbi
)−1I>b ‖∞. (87)

Since the second term is deterministic, we will now bound the first term. By the normalized measurement
condition (1) (we assume all measurement vectors are normalized by 1 without loss of generality) and
the lower eigenvalue condition, each entry of (Q◦>Mbi

Q◦Mbi
)−1Q◦>Mbi

w◦\ is zero-mean sub-Gaussian with
parameter at most

σ2‖(Q◦>Mbi
Q◦Mbi

)−1‖2 ≤
σ2

Cmin
. (88)

Thus, by the union bound, we have

P
(
‖Ib(Q◦>Mbi

Q◦Mbi
)−1Q◦>Mbi

w◦\‖∞ > t
)
≤ 2 exp

(
−Cmint

2

2σ2
+ log |Mbi|

)
. (89)

Then, set t = nmλ
2
√
Cmin

, and note that by our choice of λ, we have Cmint
2

2σ2 > log |Mbi|. Thus, we conclude that

‖b̃Mbi
− b̂Mbi

‖∞ ≤ nmλ
(

1

2
√
Cmin

+ ‖Ib(Q◦>Mbi
Q◦Mbi

)−1I>b ‖∞
)

(90)

with probability greater than 1− 2 exp(−c2n
2
mλ

2). This indicates that all bad data entries greater than

g(λ) = nmλ

(
1

2
√
Cmin

+ ‖Ib(Q◦>Mbi
Q◦Mbi

)−1I>b ‖∞
)

(91)
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will be detected by b̂Mbi
.

Part 3): Now, we bound the `2 norm of the signal error x◦\ − x̂
◦ = Ix∆,

‖Ix∆‖2 ≤ ‖Ix(Q◦>Mbi
Q◦Mbi

)−1Q◦>Mbi
w◦\‖2 + nmλ‖Ix(Q◦>Mbi

Q◦Mbi
)−1I>b ‖∞,2. (92)

For the first term, by the application of standard sub-gaussian concentration,

P
(
‖Ix(Q◦>Mbi

Q◦Mbi
)−1Q◦>Mbi

w◦\‖2 > ‖Ix(Q◦>Mbi
Q◦Mbi

)−1Q◦>Mbi
‖F + t‖Ix(Q◦>Mbi

Q◦Mbi
)−1Q◦>Mbi

‖2
)

is upper bounded by exp
(
− c1t2

σ4

)
. Since

‖Ix(Q◦>Mbi
Q◦Mbi

)−1Q◦>Mbi
‖F ≤ ‖Ix‖2‖(Q◦>Mbi

Q◦Mbi
)−1‖2‖Q◦>Mbi

‖F ≤
√
|Xsf |+ |Xbd|+ |Mbi|

Cmin

due to the lower eigenvalue condition and the normalized measurement condition, and similarly it holds that

‖Ix(Q◦>Mbi
Q◦Mbi

)−1Q◦>Mbi
‖2 ≤ ‖Ix‖2‖(Q◦>Mbi

Q◦Mbi
)−1‖2‖Q◦>Mbi

‖F ≤
√
|Xsf |+ |Xbd|+ |Mbi|

Cmin
.

Moreover,

P

(
‖Ix(Q◦>Mbi

Q◦Mbi
)−1Q◦>Mbi

w◦\‖2 > t

√
|Xsf |+ |Xbd|+ |Mbi|

Cmin

)
≤ exp

(
−c1t

2

σ4

)
.

Together, we conclude that

‖x\ − x̂‖2 ≤ t
√
|Xsf |+ |Xbd|+ |Mbi|

Cmin
+ nmλ‖Ix(Q◦>Mbi

Q◦Mbi
)−1I>b ‖∞,2 (93)

with probability greater than 1− exp
(
− c1t2

σ4

)
.

Lemma 31. Suppose thatQ◦>Mbi
Q◦Mbi

is invertible, whereQ◦Mbi
=
[
A◦ I◦>Mbi

]
. Then, it holds that

IMsf∪Mbo
A◦Ix(Q

◦>
Mbi

Q◦Mbi
)−1I>b = −A>+

Msf∪Mbo
A>Mbi

. (94)

Proof. By the definition ofQ◦Mbi
and block matrix inversion formula, we have

Ix(Q
◦>
Mbi

Q◦Mbi
)−1I>b

= −(A◦>A◦)−1A>Mbi
(I −AMbi

(A◦>A◦)−1A>Mbi
)−1

= −(A◦>A◦)−1A>Mbi
(I +AMbi

(A>Msf∪Mbo
AMsf∪Mbo

)−1A>Mbi
)

= −(A◦>A◦)−1(I +A>Mbi
AMbi

(A>Msf∪Mbo
AMsf∪Mbo

)−1)A>Mbi

= −(A>Msf∪Mbo
AMsf∪Mbo

)−1A>Mbi
,

where the first equation follows from the Sherman-Morrison-Woodbury formula and the rest are elementary
operations.
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Lemma 32. Suppose thatQ◦>Mbi
Q◦Mbi

is invertible. Then, it holds that

Ib(Q
◦>
Mbi

Q◦Mbi
)−1I>b = I +AMbi

(A>Msf∪Mbo
AMsf∪Mbo

)−1A>Mbi
(95)

Proof. By the definition ofQ◦Mbi
and block matrix inversion formula, we have

Ib(Q
◦>
Mbi

Q◦Mbi
)−1I>b = (I −AMbi

(A◦>A◦)−1A>Mbi
)−1

= I +AMbi
(A>Msf∪Mbo

AMsf∪Mbo
)−1A>Mbi

,

where the second equation follows from the Sherman-Morrison-Woodbury formula.

5.2 Proof of Theorem 18

For an arbitrary set of attacked measurementsMat, their boundaryMbd := Mbi ∪Mbo and unaffected
measurementsMsf , as well as the associated variables xat, xbd and xsf , respectively, we design the primal-
dual witness process as follows:

1) Set b̂Msf
= 0 and b̂Mbo

= 0;

2) Determine x̂ =
[
x̂>sf x̂>bd x̂>at

]>
and b̂ =

[
0> 0> b̂

>
Mbi

b̂
>
Mat

]>
by solving the following

program:

min
b∈Rnm ,x∈Rnx

1

2nm

∥∥∥∥∥∥∥∥

yMsf

yMbo

yMbi

yMat

−

AMsf ,Xsf

AMsf ,Xbd
0

0 AMbo,Xbd
0

0 AMbi,Xbd
AMbi,Xat

0 0 AMat,Xat


xsf

xbd

xat

−


0
0

bMbi

bMat


∥∥∥∥∥∥∥∥

2

2

+λ

∥∥∥∥[bMbi

bMat

]∥∥∥∥
1

,

(96a)

subject to c>` x ≥ ‖D`x‖2 , ∀` ∈ L, (96b)

and ĥMbi
∈ ∂‖b̂Mbi

‖1 and ĥMat ∈ ∂‖b̂Mat‖1 satisfying the optimality conditions

− 1

nm
(yMat

−AMat,Xatx̂at − b̂Mat) + λĥMat = 0, (97a)

− 1

nm

(
yMbi

−AMbi,Xbd
x̂bd −AMbi,Xatx̂at − b̂Mbi

)
+ λĥMbi

= 0. (97b)

3) Solve (ĥMsf
, ĥMbo

) via the zero-subgradient equation:

− 1

nm

(
y −Ax̂− b̂

)
+ λĥ = 0, (98)

where x̂ =
[
x̂>Bsf x̂>Bbd x̂>Bat

]>
and b̂ =

[
0> 0> b̂

>
Mbi

b̂
>
Mat

]>
are solutions obtained in (76),

and ĥ =
[
ĥ
>
Msf

ĥ
>
Mbo

ĥ
>
Mbi

ĥ
>
Mat

]>
where (ĥMbi

, ĥMat) are given in (77). Check whether strict

feasibility conditions ‖ĥMsf
‖∞ < 1 and ‖ĥMbo

‖∞ < 1 hold.

Lemma 33. If the PDW procedure succeeds, then (x̂, b̂) that is optimal for (96) is also optimal for (S(1): `2`1-K).
Furthermore, for any optimal solution (x̃, b̃), if x̂at = x̃at, it holds that x̂sf = x̃sf and x̂bd = x̃bd (i.e.,
uniqueness property in the weak sense).
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Proof. The KKT conditions of (S(1): `2`1-K) for a given primal-dual pair (x̂, b̂) and ĥ are given by:

1

nm
A>(y −Ax̂− b̂) + λ

∑
`∈L

(ν`c` +D
>
` µ`) = 0, (99a)

− 1

nm

(
y −Ax̂− b̂

)
+ λĥ = 0, (99b)

ĥ ∈ ∂‖b̂‖1, ‖ĥ‖∞ ≤ 1 (99c)

If PDW succeeds, then the optimality conditions (99) are satisfied, which certify the optimality of (x̂, b̂).
The subgradient ĥ satisfies ‖ĥMsf

‖∞ < 1, ‖ĥMbo
‖∞ < 1 and

〈
ĥ, b̂

〉
= ‖b̂‖1. Now, let (x̃, b̃) be any

other optimal, and let F (x, b) = 1
2nm
‖y −Ax− b‖22; then,

F (x̂, b̂) + λ
〈
ĥ, b̂

〉
= F (x̃, b̃) + λ‖b̃‖1,

and hence,
F (x̂, b̂) + λ

〈
ĥ, b̂− b̃

〉
= F (x̃, b̃) + λ

(
‖b̃‖1 −

〈
ĥ, b̃

〉)
.

By the optimality conditions in (99), we have λĥ = −∇bF (x̂, b̂) = 1
nm

(y −Ax̂− b̂), which implies that

F (x̂, b̂)−
〈
∇bF (x̂, b̂), b̂− b̃

〉
− F (x̃, b̃) = λ

(
‖b̃‖1 −

〈
ĥ, b̃

〉)
≤ 0

due to convexity. We thus have ‖b̃‖1 ≤
〈
ĥ, b̃

〉
. Since by Holder’s inequality, we also have

〈
ĥ, b̃

〉
≤

‖ĥ‖∞‖b̃‖1, and ‖ĥ‖∞ ≤ 1, it holds that ‖b̃‖1 =
〈
ĥ, b̃

〉
. Since by the success of PDW, ‖ĥMsf

‖∞ < 1,

‖ĥMbo
‖∞ < 1, we have b̃j = 0 for j ∈ Msf ∪Mbo. To show the weak uniqueness, let (x̃, b̃) be another

optimal solution, and assume that x̂at = x̃at. Then, by fixing xat in the optimization (96) at x̂at and by the
lower eigenvalue condition, the the function is strictly convex in xsf , xbd and bMbi

.

Proof of Theorem 18

Proof. Part 1): By the construction of PDW, we have b̂Msf
= b\Msf

= 0 and b̂Mbo
= b\Mbo

= 0. In the
following, we allow the optimal solution x̂at and b̂Mat of (96) to take any value as long as the nonbinding
SOC constraints assumption is satisfied. Thus, for any given x̂at and b̂Mat , we can fix xat and bMat in (96)
and solve the following smaller program:

min
bMbi

,xsf ,xbd

1

2nm

∥∥∥∥∥
yMsf

yMbo

zMbi


︸ ︷︷ ︸

z◦

−

AMsf ,Xsf
AMsf ,Xbd

0 AMbo,Xbd

0 AMbi,Xbd


︸ ︷︷ ︸

A◦

[
xsf

xbd

]
︸ ︷︷ ︸
x◦

−

 0
0

bMbi

∥∥∥∥∥
2

2

+ λ ‖bMbi
‖1 , (100a)

subject to c>` x ≥ ‖D`x‖2 , ∀` ∈ L \ Lat, (100b)

where zMbi
= yMbi

−AMbi,Xatx̂at = AMbi,Xbd
x\bd + b̃Mbi

and b̃Mbi
= AMbi,Xat(x\at− x̂at). Let I◦

be an identity matrix of size nm−|Mat|, and x◦, c◦` andD◦` be the subvector and submatrix of x, c` andD`

indexed by Xsf and Xbd, respectively, andw◦ be the subvector ofw indexed byMsf ∪Mbo ∪Mbi. Thus,
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we have z◦ = A◦x◦\+w
◦
\+I

◦>
Mbi

b̃Mbi
. The solution (xsf ,xbd, bMbi

) of (100) is unique and coincides with
that of (96) due to the lower eigenvalue condition. Thus, the zero-subgradient condition (97) is satisfied,
which together with (98) can be written as:

− 1

nm

AMsf ,Xsf
AMsf ,Xbd

0 AMbo,Xbd

0 AMbi,Xbd

[ x\sf − x̂sf

x\bd − x̂bd

]
+

 0
0

b̃Mbi
− b̂Mbi

− 1

nm

w\Msf

w\Mbo

w\Mbi

+λ
 ĥMsf

ĥMbo

ĥMbi

 = 0.

(101)
We can partition the above relation into equations indexed byMbi, which can be rearranged as:

ĥMbi
=

1

nmλ

[
I◦Mbi

A◦ I◦Mbi
I◦>Mbi

] [ x◦\ − x̂
◦

b̃Mbi
− b̂Mbi

]
+

1

nmλ
I◦Mbi

w◦\ , (102)

as well as those indexed byMsf ∪Mbo, which can be solved for ĥMsf∪Mbo
=
[
ĥ
>
Msf

ĥ
>
Mbo

]>
:

ĥMsf∪Mbo
=

1

nmλ
I◦Msf∪Mbo

(
A◦(x◦\ − x̂◦) +w◦\

)
. (103)

Since x̂◦ is the optimal solution of (100), it satisfies the optimality condition:

1

nm
A◦>

(
A◦(x◦\ − x̂◦) +w◦\ + I◦>Mbi

(b̃Mbi
− b̂Mbi

)
)
+

∑
`∈Lat∩bi∪Lbd∪Lsf

ν̂`c
◦
` +D

◦>
` û` = 0 (104)

Combining (102), (103) and (104) and after some elementary operations, it yields that

λA◦>Msf∪Mbo
ĥMsf∪Mbo

+ λA◦>Mbi
ĥMbi

+
∑

`∈Lat∩bi∪Lbd∪Lsf

ν̂`c
◦
` +D

◦>
` û` = 0. (105)

By Lemma 15, for any ĥMbi
∈ ∂‖b̂Mbi

‖1, there always exist ĥMsf∪Mbo
and {ν̂`, û`}Lat∩bi∪Lbd∪Lsf such

that ‖ĥMsf∪Mbo
‖∞ < 1. Thus, the strict feasibility condition is satisfied deterministically.

Part 2): Thus, by the lower eigenvalue condition and definition of Q◦Mbi
=
[
A◦ I◦>Mbi

]
and ĥ =[

ĥ
>
Msf∪Mbo

ĥ
>
Mbi

]>
, we can solve (102), (104) and (105):

∆ :=

[
x◦\ − x̂

◦

b̃Mbi
− b̂Mbi

]
= −(Q◦>Mbi

Q◦Mbi
)−1Q◦>Mbi

w◦\ + nmλ(Q
◦>
Mbi

Q◦Mbi
)−1

[
A◦>Msf∪Mbo

ĥMsf∪Mbo
+A◦>Mbi

ĥMbi

ĥMbi

]
= −(Q◦>Mbi

Q◦Mbi
)−1Q◦>Mbi

w◦\ + nmλ(Q
◦>
Mbi

Q◦Mbi
)−1Q◦>Mbi

ĥ, (106)

Let Ix and Ib denote the matrices that consist of the first |Xsf |+ |Xbd| rows and the last |Mbi| rows of the
identity matrix of size |Xsf | + |Xbd| + |Mbi|, respectively. Then, we can bound the estimation error ∆ in
(86). First, we bound the infinity norm of b̃Mbi

− b̂Mbi
= Ib∆. By triangle inequality,

‖Ib∆‖∞ ≤ ‖Ib(Q◦>Mbi
Q◦Mbi

)−1Q◦>Mbi
w◦\‖∞ + nmλ‖Ib(Q◦>Mbi

Q◦Mbi
)−1Q◦>Mbi

‖∞. (107)

Since the second term is deterministic, we will bound the first term similar to Theorem 10. This concludes
the proof
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Part 3): Now, we bound the `2 norm of the signal error x◦\ − x̂
◦ = Ix∆,

‖Ix∆‖2 ≤ ‖Ix(Q◦>Mbi
Q◦Mbi

)−1Q◦>Mbi
w◦\‖2 + nmλ‖Ix(Q◦>Mbi

Q◦Mbi
)−1Q◦>Mbi

‖∞,2. (108)

For the first term, we can apply standard sub-gaussian concentration. The second term is deterministic.
Combining them together yields the results.
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