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Abstract

The operation of power grids is becoming increasingly data-centric. While the abundance of data
could improve the efficiency of systems, it poses major reliability challenges. In particular, state es-
timation aims to find the operating state of a network from the data, but an undetected attack on the
data could lead to making wrong operational decisions for the system and trigger a large-scale blackout.
Nevertheless, the understanding of the vulnerability of state estimation with regards to cyberattacks has
been hindered by the lack of tools for studying the topological and data-analytic aspects of networks.
Algorithmic robustness is critical in extracting reliable information from abundant but untrusted grid
data. For a large-scale power grid, we quantify, analyze, and visualize the regions of the network that
are not robust to cyberattacks in the sense that there exists a data manipulation strategy for each of those
local regions that misleads the operator at the global scale and yields a wrong estimation of the state
of the network at almost all buses. We also propose an optimization-based graphical boundary defense
mechanism to identify the border of the geographical area with data that have been manipulated. The
proposed method does not allow a local attack to have a global effect on the data analysis of the entire
network, which enhances the situational awareness of the grid, especially in the face of adversity. The de-
veloped mathematical framework reveals key geometric and algebraic factors that can affect algorithmic
robustness and is used to study the vulnerability of the U.S. power grid in this paper.
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While real-world data abound for many complex systems, they are often noisy and corrupted. Acquiring
reliable information from abundant but untrusted data is key to enhancing cybersecurity for mission-critical
systems such as power grid [1]. Since many of these systems are inherently network structured, data an-
alytics cannot be satisfactorily understood without incorporating their underlying graph topologies. For
instance, consider the power system state estimation (SE) problem. SE monitors the operating status of the
grid constantly by filtering and fusing a large volume of data every few minutes [2]. It plays a critical role
in the economic and reliable operation of the grid because major operational problems, such as security-
constrained optimal power flow, contingency analysis, and transient stability analysis, rely on its output.
The current industry practice is based on a set of heuristic iterative algorithms proposed in the 70s, which
are known empirically to work properly under normal situations. However, those algorithms become brittle
under adverse conditions, such as natural hazards, equipment faults, and even cyberattacks, in which case
part of the data is missing or manipulated maliciously. The significance of functioning SE was illustrated by
the 2003 large-scale blackout, in which the failure of SE contributed to the inability of operators to provide
real-time diagnostic support [3]. Despite substantial advances in algorithm design [2, 4–24], a major obsta-
cle still remains: the lack of a framework for the design of a robust and scalable algorithm together with a
realistic evaluation of its vulnerability. Developing such a framework is challenging for three reasons: (a)
the model of a power system is highly nonlinear and nonconvex due to physical laws, (b) computational
resources required by existing algorithms grow rapidly with the size of the system, and, most importantly,
(c) the number of scenarios involving adverse conditions is too large to be expressed (it is higher than the
number of atoms in the observable universe for systems with as low as 500 possible attack points). These
challenges have limited the scope of previous studies to simple approximate models or conservative meth-
ods that ignore the topology-dependent characterization of vulnerabilities [2, 4–24]. Similar hurdles exist
in studying the vulnerability of data analytics for other large-scale complex graphs, including ecological
and social systems [25, 26], due to the lack of statistical tools for dealing with untrusted data in underlying
nonlinear and structured (rather than random) graphical models.

Here, we focus on the U.S. grid, which is the largest machine on earth with more than 450,000 miles
of transmission lines (Figure 1). It consists of three large and nearly independent synchronous systems
(Eastern, Western, and Texas) that together span the lower 48 states, most of Canada, and some parts of
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Figure 1: The U.S. power transmission network. (A) Map of the Eastern, Western, and Texas interconnec-
tions. (B) Schematic diagram of a portion of the network. Each blue circle indicates a node (e.g., generator
bus or load bus). Nodes are connected by transmission lines. Power is generated, transported, and consumed
in different locations (the amount of power is represented by the width of the orange arrow).
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Mexico. Due to the confidentiality requirements on critical infrastructure information, we report our findings
on somewhat modified grids, which match the size, complexity, and characteristics of actual grids [27].

Power system state estimation

Problem formulation. Power system state estimation aims to find an n-dimensional complex voltage vec-
tor v consisting of the voltages at all buses of the network based on a set of measurements, such as voltage
magnitude measurements, real and reactive power injections at buses, and power flows over lines. Using the
laws of physics, these quantities can be expressed as quadratic functions of v in the form of v∗M iv, where
v∗ indicates the complex conjugate, andM i is a known n× n dimensional Hermitian matrix whose entries
depend on the type and location of measurement yi. As a consequence, each measurement yi can be written
as:

yi = v
∗M iv + ωi + bi (1)

for i ∈ {1, ...,m}, where ωi denotes a zero-mean Gaussian random noise that often arises from measure-
ment probes, and bi denotes bad data that can take arbitrary values. The bad data bi could originate from
cyberattack, communication failure, sensor fault, or deployment of a model M i that does not match the re-
ality (e.g., a disconnected line is wrongly assumed to be in service by the operator). The goal is to estimate
v from y1, ..., ym, without having any knowledge about ωi’s and bi’s.

Literature review. There are two main challenges for solving the SE problem: nonconvexity (which arises
from the quadratic measurement equations and results in the existence of potentially many local minima)
and bad data (which can arbitrarily skew the SE solution). Based on how the nonconvexity is addressed,
the existing methods can be grouped into three categories: (i) DC approximation, (ii) local search, and
(iii) global optimization. Methods in Category (i) approximate each quadratic expression with a linearized
model, which transforms the nonconvex SE into a convex optimization [4–6, 10, 28]. However, the approx-
imation error could be arbitrarily large, especially when the unknown voltage deviates from the nominal
state around which the linearizion is performed and this becomes signicificantly worse in presence of strate-
gically designed bad data. Category (ii) includes iterative algorithms that solve the nonconvex regression
problem formulated according to the quadratic equations. The common choice for the regression objec-
tive is a quadratic loss function, resulting in the canonical nonlinear least square (NLS) problem, which
can be solved by Newton’s method [29, 30] or feasible point pursuit [31]; other choices such as absolute
value loss and Huber loss have also been investigated [2, 6, 22]. The challenge, nevertheless, is that local
search methods can become trapped at meaningless local minima or saddle points, which are spurious and
do not correspond to a useful estimate of the state. A variant of this problem, named matrix completion,
has been extensively studied in the machine learning community [32, 33]. Various theoretical conditions
on the performance of local search methods to recovering a global optimum of those problems in machine
learning have been developed, such as the restricted isometry property [32]; however, those conditions only
apply to dense and random matrices M i’s, which is not the case for power systems since M i’s are sparse,
structured, and deterministic. The main difference between learning/estimation in power systems and those
in machine learning is the existence of inherent structure (captured through the notion of treewidth in graph
theory [34]) and lack of randomness. Algorithms in Category (iii) aim to find the global solution of SE.
However, the primary disadvantage of these methods, such as particle swarm optimization [35], homotopy
continuation methods [36], and semidefinite relaxation [17, 19, 20], is their heavy computational require-
ment or lack of theoretical guarantees on their ability to find the true state. Moreover, due to the complexity
of global optimization techniques, their performance under a worst-case attack scenario is not studied. To
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address bad data, efforts in the power system community have been primarily limited to algorithms in Cat-
egory (i) under the name of bad data detection (BDD) [4–6, 10]. Existing literature on vulnerability and
defense of cyberattack, such as the false data injection attack, has also been limited to DC approximation
models [7–9, 11, 12, 18], with the exception of a few works on the AC model [16, 37, 38]. However, it has
been found that the mismatch caused by the DC approximation of the AC grid renders either the defense
or the attack efforts futile [13, 15, 16]. Robust state estimation techniques for nonlinear measurements pro-
posed in the literature include composite optimization [22], iterative mixed `1 and `2 convex program [14],
semidefinite programming [17, 19, 20], and linear/quadratic programming [23, 24]. Nevertheless, the theo-
retical conditions in [14, 20] are difficult to verify, and the bound on estimation error in [19] does not apply
to bad data rejection. Moreover, none of the existing methods are able to provide a vulnerability measure for
each line of the grid that is independent of the unknown attack scenario, because they rely on the locations
of the attacked points.

Our contributions. One common drawback of the existing methods is that the theoretical certificates used
to reject bad data are provided on a scenario-by-scenario basis, where each scenario corresponds to one
specific set of measurements that are corrupted by bad data. Since there are an exponential number of ways
to attack the grid data (namely, 2m ways in the case with m measurements), it is impossible to make a
meaningful general assessment of the vulnerability of a grid based on a single scenario. Another important
missing factor is that the prior literature aims to find the state of the system correctly under attacks, while
this is theoretically impossible when the data for a sub-network of the system is strategically manipulated.
In this case, the state for that region becomes unobservable (not recoverable) from the clean data for the rest
of the system. To elaborate, let v and v̂ be the true and the estimated states, respectively. Let R denote the
subnetwork under a cyberattack, and vR and v\R be the voltages for the attacked region and the remainder
of the system, respectively. The existing works (such as [14,20,23,24,39]) aim to find v̂ such that the global
metric ‖v − v̂‖ is minimized; however, this is not possible for real-world attacks since an intelligent attack
creates an unobservability issue in the model that relates the clean data to the entire system, which makes
the error ‖vR − v̂R‖ always stay significant. In this work, if v\R can be recovered correctly independent
of how the attacker has manipulated the data for R, we state that the lines on the boundary of the region
R do not allow the estimation error inside the attacked region to be propagated to the rest of the network.
This paper is the first work to develop a mathematical framework for finding the attacked region
R together with the state of the system in the uncompromised part of the grid, namely v\R, instead
of deriving restrictive conditions for finding the true state at all buses. Our method also provides a
vulnerability map for any power grid, as shown in Figure 2 for the U.S. grid. Based on the graphical mutual
incoherence condition to be discussed next, we can categorize each line as either robust or vulnerable. On
this map, if the connections between the region R and the rest of the grid are all robust lines, then no matter
how the measurements in this region, such as the power injections, voltage magnitudes, and power flows
are modified, the estimation error is only limited to this region and cannot propagate out of the boundary
formed by the robust lines to affect the rest of the grid in terms of ‖v\R − v̂\R‖. If even one line in the
surrounding subnetwork is vulnerable, then it is possible for the estimation error to propagate to the rest of
the grid. This vulnerability map is obtained without knowing the attack locations, and therefore it provides
a universal measure that applies to an exponential number of possible attack scenarios.
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Figure 2: Vulnerability map of the modified U.S. power grid, showing the robust (green) and vulnerable
(red) lines. This map corresponds to the case in which there are measurements of voltage magnitude and
power injections for each bus and there are measurements of real and reactive power flows for each line.

Boundary defense mechanism

Two-step pipeline for robust SE. A power network is modeled as a graph G = (N ,L) with the bus
set N and the line set L. In this paper, we focus on a two-step pipeline for robust SE. It is based on a
linear representation in a lifted space (subject to a low-rank constraint that will be ignored in the method),
which can express common types of measurements, such as the real and reactive power flows and voltage
magnitudes, as a linear function of variables [23, 24]. To obtain this representation, we compute the joint
sparsity pattern S of the measurement matricesM i in such a way that the (k, t)-th element [S]k,t is nonzero
if and only if there exists an index i ∈ {1, ...,m} with a property that [M i]k,t is nonzero. We consider a
linear basis that is obtained by collecting those variables of vv∗ that are at locations corresponding to the
nonzero elements in S. We denote this set of variables as x, which includes the voltage magnitude squares
xmg
k = |vk|2 for each bus k ∈ N as well as xre` = R(vkv∗t ) and xim` = I(vkv∗t ) for each line ` = (k, t)

for which [S]k,t is nonzero, where R(·) and I(·) denote the real and imaginary parts of a complex number.
Now, one can represent the measurements as:

y = Ax+w + b. (2)

Here, y is the set ofm sensor measurements ,A is a reconstructed sensing matrix lifted to a high dimension,
w is the dense random noise due to measurement errors, and b is the bad data vector with the support
supp(b). We assume that

[
A Isupp(b)

]
has full row rank, where Isupp(b) is obtained by selecting those

columns of the m-dimensional identity matrix that correspond to the support set supp(b). The elements of
x are correlated with each other via the hidden state v.
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The first step in SE is to solve a convex optimization to minimize the Huber loss of the regression error,

min
x∈X

m∑
i=1

fHuber(yi − [Ax]i;ψ), (3)

where fHuber(r;ψ) =

{
1
2r

2 |r| ≤ ψ
ψ(|r| − 1

2ψ) |r| > ψ
is the standard Huber loss parametrized by ψ. The vari-

able x can be assumed to be unconstrained, which results in a quadratic programming (QP) problem, as
in [23,24]. However, since the variables correspond to physical quantities, they can be mathematically con-
strained within a set of second-order cones (SOCs) to improve robustness, which results in a second-order
cone programming (SOCP) problem. Based on the solution of Step 1, the next step reconstructs the volt-

age phasors: the voltage magnitude |v̂k| is given by
√
xmg
k , and the phase difference θ̂k − θ̂t is given by

arctan
(
xim
`
xre
`

)
. In an ideal scenario with no dense noise or bad data, one can identify the state uniquely as

long as the subgraph associated with the adjacency matrix S forms a spanning tree of G.

Graphical mutual incoherence. We are concerned with the scenario where the data for an entire subregion
are compromised, which often arises from natural hazards, equipment faults, and even cyberattacks. We
consider the worst-case situation where the attacker can intelligently manipulate every sensor within the
region under attack to evade bad data detection. In this situation (illustrated in Figure 3), Newton’s method
(as the common method used in the industry) is particularly vulnerable because the influence of bad data
will propagate throughout the system when solving a nonlinear least-squares problem; on the contrary, the
two-step pipeline is completely robust to this situation. To formalize this, we propose a new notion for
network defense, referred to as “boundary defense mechanism.” For a given attack scenario, there is a
natural partition of the network into the attacked region, inner and outer boundaries, and safe region (Figure
4(A)). If the boundary defense is successful, then no matter how erroneous the state estimation within the
attacked region is, the estimates at the boundary and in the safe region are unaffected. This framework
is fairly general because it incorporates a wide range of adversarial scenarios that are localized, including
line outage (where the attack region consists of the two end buses of the line), down substation (where the
attack region is a single bus), natural disasters (where the attack region consists of the set of geographically
localized buses), and cyberattacks (where the attack region consists of the buses managed by some utility
company). Most importantly, we propose a metric called the “graphical mutual incoherence” (gMI) that can
be verified for each line in the network to address a large number of possible scenarios on a single map. Note
that gMI is defined independently of what part of the network is attacked. For each line i → j, we define
i as a node in the attacked region and j as a node in the boundary region (and vice versa for the reverse
direction). We useMi→j

bdX andMi→j
bd× to denote the index sets of the defending and defective measurements

on the boundary, respectively. Further, X i→j
bd indicates the set of variables associated with the boundary, and

Li→j
bd denotes the set of lines on the boundary (more details can be found in the supplementary material).

For the case of unconstrained QP in the first step, gMI for line i → j is given by the following minimax
optimization:

αLP
i→j = max

‖ξ‖∞≤1
min

h∈HLP(ξ)
‖h‖∞ (gMI-QP)

whereHLP(ξ) =
{
h | A>Mi→j

bdX,X i→j
bd

h+A>Mi→j
bd×,X

i→j
bd

ξ = 0
}

is the set of admissible h for a given vector ξ

in the unit hypercube. Here, ξ can be regarded as the subgradient of the bad data vector, and h is an auxiliary
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variable associated with good data. We use the subscript notationAMi→j
bdX,X i→j

bd
to indicate the submatrix of

A whose rows are indexed byMi→j
bdX and columns are indexed by X i→j

bd . Figure 4(B) illustrates the nodes
and lines relevant to the evaluation of four lines for a given attack scenario. The case of incorporating SOC
in the first step is treated similarly:

αSOCP
i→j (x) = max

‖ξ‖∞≤1
min

h∈HSOCP(ξ,x)
‖h‖∞ (gMI-SOC)

where HSOCP(ξ,x) is the set of admissible h. A vector belongs to this set if there exists a series of
nonnegative coefficients {ω`}`∈Li→j

bd
such that A>Mi→j

bdX,X i→j
bd

h + A>Mi→j
bd×,X

i→j
bd

ξ +
∑

`∈Li→j
bd

ω`T `x = 0,

where T ` is a coefficient matrix defined for every line ` ∈ Li→j
bd (see the supplementary material for more

details).
Firstly, it can be seen that (gMI-SOC) depends on the true state x. However, this dependence is not an

issue because it can be shown that for every x that corresponds to a complex voltage state of the system, it
holds that

αSOCP
i→j (x) ≤ αLP

i→j

In other words, the incorporation of second-order cone constraints always improves robustness. By defini-
tion, for a network with n` lines, we only need to evaluate 2× n` gMI indices (two for each line), which is
independent of the attack scenarios. For computational efficiency, even though (gMI-QP) and (gMI-SOC)
are defined as min-max problems, the outer maximization problems can be solved efficiently by enumera-
tion over the power set of the measurements located at the boundary (including power flows over the line
from bus j (boundary node) to bus i (attacked node) and power injections at bus j), which has at most 16
points for each line. We have also developed an algorithm by reformulating the min-max optimization as a
linear complementarity problem or a mixed-integer problem, as detailed in the supplementary material.

A B C

Figure 3: Evaluation of the boundary defense mechanism. (A) The grid is under “zonal attack,” where the
measurements within a zone are corrupted (shown in red). State estimation based on (B) Newton’s method
for nonlinear least squares, and (C) the proposed method with SOC constraints, where in both cases, buses
with an estimation error greater than 0.002 are marked in red. The errors propagate throughout the grid in
(B) but are contained within the zonal boundary in (C).

Theorem 1 (Boundary defense mechanism). Consider a partition of the network into the attacked, bound-
ary, and safe regions, where the bad data are contained within the attacked region. Assume that the following
two conditions are satisfied:
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Vulnerability index evaluation
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Figure 4: Illustration of the boundary defense mechanism. (A) Schematic diagram showing the attacked
nodes as well as inner and outer boundary nodes. (B) Graphical mutual incoherence evaluation. Only nodes
and lines considered in the evaluation are highlighted for each line evaluation, with each line direction
considered to be from the attacked node to the inner boundary node.

• Full column rankness condition: AMsf∪Mbd,Xsf∪Xbd
and QMbd,Xbd

=
[
AMbd,Xbd

I
(|Mbd|)>
Mbi

]
have full column rank, whereMsf , Mbi andMbo are the sets of measurements in the safe region,
inner boundary and outer boundary, respectively, Mbd = Mbi ∪ Mbo is the boundary measure-
ments, Xsf and Xbd are variables in the safe region and boundary, |Mbd| is the number of mea-
surements in the boundary, and I(|Mbd|)

Mbi
is the submatrix that consists of the Mbi columns of the

|Mbd|-dimensional identity matrix.

• Graphical mutual incoherence: For every line {i, j} that bridge the attacked region and the inner
boundary, where i and j are in the attacked region and inner boundary, respectively, it holds that
αi→j < 1− γ for some γ > 0.

Then, the solution obtained from the two-step pipeline has two properties: (i) every measurement flagged by
the algorithm correctly belongs to bad data, so there are no false positives in Step 1; and (ii) after removing
the subgraph of the attacked region from the main graph, direct recovery in Step 2 recovers the underlying
state of the system for the region that has not been attacked.

The above result holds true in the general case with dense noise for every measurement, except that
only those bad data that exceed a threshold can be detected with guarantees, and therefore those data be-
low the threshold are treated as dense noise. We relegate the details to the supplementary material. The
above theorem provides a modular approach for constructing theoretical guarantees for defense against bad
data. Various security indices have been proposed in the literature for DC [8, 9, 12] and AC SE [16, 37, 38].
However, they are based on a single attack plan generated by an optimization problem and cannot be mean-
ingfully applied to an exponential number of other attacks. On the contrary, with our method, the evaluation
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of the graphical mutual incoherence for each line is independent of the attack scenarios. As a consequence, a
boundary defense is established as long as there exists a subgraph enclosing the attacked region that satisfies
the conditions in Theorem 1, such as in the scenario illustrated in Figure 3. It is also worth mentioning that
we do not distinguish the causes of bad data, such as equipment failures, misrepresenting the physical model
due to time-varying changes in the network, or cyberattacks. The calculation of gMI also does not depend
on the sparsity of the attack vector.

Geographic mapping of vulnerabilities

Vulnerability map. Based on the mathematical tools developed in the previous section, we assess the
robustness of the synthetic U.S. grid. First, we visualize the gMI on the map for both (gMI-QP) and
(gMI-SOC) in Figure 5. Due to its dependence on the underlying state, (gMI-SOC) is shown for a pro-
file described by the dataset, which represents a snapshot of the operating status. This snapshot only serves
as an illustration of how much improvement in robustness is achieved by incorporating SOCs into a typical
operating condition. A line is considered “robust” if the gMIs in both directions are less than 1; otherwise,
it is “vulnerable” (a V-line). The plot shows a geographic distribution of robust/vulnerable lines for the
Eastern U.S. grid. It can be seen that the density of vulnerable lines is relatively high for populated areas,
such as Boston and New York, where we also observe a high density of robust lines. On average, 59% lines
are robust across the states, which are then split further into independent synchronous regions, as shown in
Table 1. In addition, the map validates that (gMI-SOC) always improves (gMI-QP), which implies that the
incorporation of SOCs can help rectify state estimations and detect bad data.

The vulnerability map can be used in various ways. For instance, it can be used to investigate whether
topological errors for a line or a substation can be contained locally, corresponding to the case in which there

A B

Figure 5: Comparison of vulnerability maps under different optimization strategies. Vulnerability
maps when using the proposed (A) QP and (B) SOCP are shown, where robust lines are marked in green,
and vulnerable lines are marked in red.
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A B

Figure 6: Comparison of bus critical index maps under different optimization strategies. Since the bus
critical indices are no larger than 3 within the map, we only show the locations with values 2 (yellow) and 3
(red) for the proposed (A) QP and (B) SOCP state estimation strategies.

is a model mismatch for a transmission line or substation, such that the associated measurements are largely
biased. While this is a challenging problem, it could be addressed systematically using the vulnerability
map. Specifically, if the erroneous line/substation is surrounded by robust lines, then it is guaranteed that
the error will be contained locally via the boundary defense mechanism. Otherwise, there is a possibility
that the error will “escape” through a vulnerable line, which is referred to as a “critical line (C-line)” or
a “critical bus (C-bus),” to affect the outside region. In particular, for topological errors such as line mis-
specification, it can be regarded as a pair of gross injection errors at the two ends of the line; hence, we can
identify it as long as the line is not a C-line. Summary statistics are shown in Table 1.

Criticality index for substations under cyberattack. Furthermore, we can extend the case study by defin-
ing a criticality index (CI) for each substation. The CI gauges how many nodes in a substation’s neighbor-
hood will be affected if it is down. The higher the value, the more crucial the situation is when the substation
is compromised. This situation is analogous to the cascading failures of generators, but the difference is
clear—our focus is on the robustness of the data analytics rather than the physical dynamics. For each sub-
station, the CI can be calculated as the size of the connected component rooted at the node, where an edge
between two nodes is present if and only if the physical line that connects them is vulnerable. We visualize
the distribution of the CIs on the map shown in Figure 6, and it can be seen that they are concentrated in
populated areas.

Relating vulnerability to network and optimization properties

Measurement types and locations. To investigate factors that affect gMI, we shift our focus to the under-
lying network and optimization properties. So far, our study has been conducted with respect to a specific
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Basic properties Properties of QP Properties of SOCP

Buses Lines V-lines C-lines C-bus Bus CI V-lines C-lines C-bus Bus CI

Texas 2,000 3,206 .3762 .4251 .4775 .20 .2979 .3674 .4225 .06

Western 10,000 12,706 .4715 .5231 .5313 .15 .3979 .4636 .4860 .06

Eastern 70,000 88,207 .4932 .5415 .5327 .14 .4104 .4780 .4810 .05

Table 1: Summary statistics of network properties and vulnerability characteristics. We show the
percentage of V-lines and C-lines among all network lines, and the percentage of C-buses among all network
buses for QP and SOCP. We also show the average bus critical index, which measures the influence of a
single-bus attack on the rest of the network.
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Figure 7: Comparison of different measurement profiles and redundancy. We consider three different
methods for sensor augmentation, as detailed in the main text. The redundancy value is calculated as the
number of sensors divided by 2× nb(number of buses)− 1, which represents the degrees of freedom in the
traditional power flow problem. Each point for the (A) RMSE and (B) F1 score is obtained by averaging over
100 independent simulations. The average value is shown by the solid line, and the 5% and 95% quantiles
are shown by the shaded region.

measurement profile which corresponds to the set of full nodal and branch measurements. Important ques-
tion are: How do the number and locations of measurement sensors affect line vulnerability? In particular,
does decreasing the number of sensors make the network significantly more vulnerable? What type of sensor
measurements can bolster boundary defenses?

For this purpose, we examine three methods used for “measurement augmentation.” The first method
(Method 1) starts from a spanning tree of the network and adds a set of lines to the tree incrementally to
obtain a subgraph that will be used for taking measurements. In this method, each bus is equipped with only
voltage magnitude measurements, and each line has three out of four branch flow measurements. The second
method (Method 2) starts with the full network, where each node has voltage magnitude measurements, and
each line has one real and one reactive power measurement, and it grows the set of sensors by randomly
adding branch measurements. The third method (Method 3) differs from Method 2 only in that it grows
the set of sensors by randomly adding branch measurements as well as nodal power injections. To evaluate
these three methods, we devise a “scattered attack” strategy, where we randomly select 25 lines from the
2000-bus Texas interconnection and corrupt all of its branch measurements, which amounts to 100 bad
pieces of data. We then employ our proposed method to first detect bad data, and then rerun SE on the
sanitized measurement set. The observation is that, in general, both the root mean squared error (RMSE)
and the F1 score for bad data detection are enhanced as more sensors are added to the network, as shown in
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Figure 8: Characterization of vulnerability based on measurement profiles. The five measurement
profiles used are: full nodal measurements and two/three/four branch flows per line (I/III/IV); real and
reactive power injections per bus and three branch flows per line (II); and voltage magnitude per bus and
three branch flows per line (V). For each state estimation method (QP or SOCP), we show the percentage of
(A) V-lines, (B) C-lines, and (C) C-buses within the Texas interconnection.

Figure 7. The F1 score is given by 2precision∗recall
precision+recall , where precision is the rate of true positives (i.e., correctly

identified bad data) among all data that are claimed to be bad, whereas recall is given by the percentage of
true positives identified as bad data) among all ground truth bad data. Specifically, an F1 score close to 1
indicates that the algorithm detects all bad data (high recall rate) and does not falsely blame the good data
(high precision rate).

There is also a major discrepancy among the different methods at the same level of measurement re-
dundancy. For instance, Method 1 significantly outperforms the other two methods at a low redundancy
rate, whereas Method 2 steadily outmatches Method 3 with more sensors. To explain this phenomenon, we
need to examine the types of available measurements. Thus, we select five typical measurement profiles as
snapshots of Figure 7 and calculate the percentage of V-lines and C-lines, and the average CI in each case
(Figure 8). It turns out that the inclusion of voltage magnitude or branch flow measurements can enhance the
robustness, whereas the addition of nodal power injections is a major factor in weakening the defense. For
example, with only voltage magnitude and branch flow measurements, the network is almost “everywhere
defendable,” namely, the locations of scattered attack can be detected accurately with high probability. On
the contrary, with the inclusion of nodal injections, even with a high rate of branch flow measurements,
the network is still vulnerable. Intuitively, this situation occurs because nodal power injections are highly
coupled measurements which depend on state variables for all lines connected to the node. When one or
a few of the branches are under attack, this scenario can lead to miscalculations for all incident lines. In
contrast, voltage magnitudes and branch flows are more localized in nature, and, when corrupted, they have
fewer effects on adjacent buses/lines.

Topological properties. In addition to the measurement set, network vulnerability also depends on topo-
logical properties. In particular, our findings show that the connectivity degree for each node is positively
correlated with line vulnerability (Figure 9(A)). A boundary defense node is increasingly likely to defend
against attacks as the degree increases. However, this trend is less obvious when the node is under attack,
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Figure 9: Characterization of vulnerability through nodal degrees. (A) Percentage of V-lines when the
nodes are at the boundary or in the attacked region. In this case, we distinguish the two directions of a line.
Percentage of (B) C-lines and (C) C-buses averaged over nodes with the same degree. Since the distribution
of nodal degrees is light-tailed, we group nodes of degree eight or higher in the same bin.

since high-degree nodes have more measurements from the region not under attack to leverage in order to
rectify the corrupted lines. On the other hand, it is more likely that a line will be critical if it is connected
to a high-degree bus, as is shown in Figure 9(B). This criticality can be explained via the definition of a
critical line, and as long as at least one of the remaining lines incident to that bus is vulnerable, the error
will propagate out through that vulnerable line. Similarly, a high-degree node is more likely to be a critical
bus. In addition to the degree of connections, which is a local property, we have observed an interesting
relation to the tree decomposition of the network, which provides a generalization of the method under dis-
cussion. However, due to the technicality of the explanation, we leave this observation to the supplementary
materials.

Optimization property. As for the optimization property, our theoretical analysis indicates that the incor-
poration of SOCs always improves line robustness (Proposition 2S), which can be verified visually in Figure
5 and observed in Figure 8 for different measurement profiles.

Conclusion

Our vulnerability analysis of power system state estimation is distinguished from previous works by its scal-
ability but also by the strong formal guarantees of a boundary defense against cyberattacks and a localized
vulnerability assessment that accounts for network and optimization properties. This study provides a set
of notions and tools—the development of graphical mutual incoherence, the boundary defense mechanism,
and the analysis of topological and optimization relations to vulnerability—that are applicable to a wide
range of graph-structured data.

Our analysis is based on the assumption that the amount of data is not too low—an assumption that is far
from being restrictive, as it is shown that with the right set of measurements, one can identify the true state
of the system with only one more sensor per bus, on average, compared to the classical setting of power flow
that is known to have multiple spurious local minima. More importantly, the emerging scenario of “abundant
but untrusted data” considered in this study is more practically realistic and algorithmically challenging than
the traditional scenario of “redundant and reliable data.” Based on a robust two-step algorithm, we developed
a boundary defense mechanism to defend against cyberattacks. This defense is drastically different from
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those proposed in the existing literature, since it addresses a vast number of attack and defense scenarios via
a single vulnerability map. By using this tool, this is the first work that performs a system-wide vulnerability
assessment of power networks at the size of the entire U.S. grid.

Based on the proposed mathematical framework, our analysis revealed several key factors that could
affect the robustness of a network. A highly connected node is able to defend against attacks if it occurs to
lie on the boundary, but it is also more prone to attacks resulting in higher collateral damage. For a given
topological structure, the inclusion of nodal power injection data can weaken the defense; by contrast, the
inclusion of voltage magnitude or branch power flow measurements can enhance the robustness against bad
data, giving rise to a higher bad data detection accuracy. From an algorithmic perspective, the incorpo-
ration of second-order cone constraints is theoretically shown to be beneficial for network robustness and
validated through extensive experiments. Our analysis offers a scientific foundation for vulnerability-based
resource allocation, which, in the case of a power grid, would be based on prioritizing the upgrade of sensing
infrastructure for critical locations.

Method summary

The power grid is modeled as a network of buses connected by transmission lines, where each bus is asso-
ciated with a complex voltage phasor as its state. Given the topology and measurement profile, some linear
basis variables can be constructed for each bus and branch adaptively—if there are no branch measurements
and nodal power injections on the connected buses, then the corresponding branch variables can be ignored.
Doing so ensures the sparsity of the basis. From the measurements, we first estimate the linear basis using
quadratic or second-order cone programming. Bad data detection is performed by thresholding the esti-
mated bad data vector. Then we rerun the estimation on the sanitized dataset, and the results are fed into the
second step in the pipeline to produce a state estimation.

We consider two types of attacks. The first attack is a “scattered attack” (Figure 7), where a random
subset of lines are chosen whose measurements are all corrupted. In this case, the bad data are scattered
throughout the network, and the goal is to recover the overall system state correctly. The second attack is a
“zonal attack” (Figure 3), where all measurements within a zone—usually governed by a single utility—are
corrupted. In this case, the goal is to identify the boundary of the attack and recover the state outside the
attacked zone correctly. In the case of a stealth attack, there is a problem of symmetry, namely, without
additional information, it is impossible to decide which zone is under attack since the only inconsistency
is observed at the boundary. To avoid this case, we arbitrarily break the symmetry by introducing some
sensors within the attacked zone that are more secure than others in such a manner that their values cannot
be modified. We can also perform posterior inference based on our prior knowledge of which zones are
more likely to be secure.

The vulnerability analysis is based on the partition of measurements and variables into attacked and
boundary categories (Figure 4). The graphical mutual incoherence is defined by a min-max problem which
is NP-hard in general. However, this set-up does not pose a computational challenge since the gMI for each
line can be calculated through an efficient enumeration strategy that scales exponentially according to the
number of bad measurements that is limited for a line. The gMIs for the entire U.S. grid (more than 100,000
lines) can be obtained in less than a day on a personal computer. For a large-scale instance, we propose two
reformulations of the problem, namely, a linear complementarity problem and mixed-integer programming,
which can be employed to solve the problem efficiently. The critical index for buses (Figure 6) is obtained by
counting the size of the subgraph rooted at the substation and linked by a directional edge that is vulnerable.
A critical line is identified when any one of the adjacent lines pointing outwards is vulnerable.
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The formal result of the boundary defense mechanism is established through a series of propositions
and lemmas. The key steps include: (1) a “glueable property,” which shows that a local graphical mutual
incoherence property implies a global property (Lemmas 9S and 15S in the supplementary material), (2) a
result that establishes that a boundary defense can stop error propagation (Lemmas 5S and 12S), and (3)
a statistical analysis of the first-step algorithm based on concentration bounds and a primal-dual witness
argument (Theorems 10S, 11S, 17S, and 18S). Further details on the linear representation, two-step pipeline
algorithm, theoretical analysis, and experimental setup are given in the supplementary materials.
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[17] Yang Weng, Marija D Ilić, Qiao Li, and Rohit Negi. Convexification of bad data and topology error
detection and identification problems in ac electric power systems. IET Generation, Transmission &
Distribution, 9(16):2760–2767, 2015.

[18] Gaoqi Liang, Junhua Zhao, Fengji Luo, Steven R Weller, and Zhao Yang Dong. A review of false data
injection attacks against modern power systems. IEEE Transactions on Smart Grid, 8(4):1630–1638,
2016.

[19] Yu Zhang, Ramtin Madani, and Javad Lavaei. Conic relaxations for power system state estimation
with line measurements. IEEE Transactions on Control of Network Systems, 5(3):1193–1205, 2017.

[20] R. Madani, J. Lavaei, and R. Baldick. Convexification of power flow equations in the presence of noisy
measurements. IEEE Transactions on Automatic Control, 64(8):3101–3116, 2019.

[21] Daniel K Molzahn, Ian A Hiskens, et al. A survey of relaxations and approximations of the power flow
equations. Foundations and Trends R© in Electric Energy Systems, 4(1-2):1–221, 2019.

[22] G. Wang, G. B. Giannakis, and J. Chen. Robust and scalable power system state estimation via com-
posite optimization. IEEE Transactions on Smart Grid, 10(6):6137–6147, 2019.

[23] Ming Jin, Igor Molybog, Reza Mohammadi-Ghazi, and Javad Lavaei. Towards robust and scalable
power system state estimation. In IEEE Conference on Decision and Control, 2019.

[24] Ming Jin, Igor Molybog, Reza Mohammadi-Ghazi, and Javad Lavaei. Scalable and robust state esti-
mation from abundant but untrusted data. IEEE Transactions on Smart Grid, 2019.

[25] Alessandro Vespignani. Complex networks: The fragility of interdependency. Nature, 464(7291):984,
2010.

15



[26] Alexander A Ganin, Emanuele Massaro, Alexander Gutfraind, Nicolas Steen, Jeffrey M Keisler,
Alexander Kott, Rami Mangoubi, and Igor Linkov. Operational resilience: concepts, design and anal-
ysis. Scientific reports, 6:19540, 2016.

[27] Adam Birchfield, Ti Xu, Kathleen Gegner, Komal Shetye, and Thomas Overbye. Grid structural
characteristics as validation criteria for synthetic networks. IEEE Transactions on Power Systems,
32(4):3258–3265, 2017.

[28] R Baldick, KA Clements, Z Pinjo-Dzigal, and PW Davis. Implementing nonquadratic objective func-
tions for state estimation and bad data rejection. IEEE Transactions on Power Systems, 12(1):376–382,
1997.

[29] William F Tinney and Clifford E Hart. Power flow solution by newton’s method. IEEE Transactions
on Power Apparatus and Systems, (11):1449–1460, 1967.

[30] Fred C Schweppe and J Wildes. Power system static-state estimation, part i: Exact model. IEEE
Transactions on Power Apparatus and Systems, (1):120–125, 1970.

[31] Gang Wang, Ahmed S Zamzam, Georgios B Giannakis, and Nicholas D Sidiropoulos. Power system
state estimation via feasible point pursuit: Algorithms and cramér-rao bound. IEEE Transactions on
Signal Processing, 66(6):1649–1658, 2018.

[32] Yuejie Chi, Yue M Lu, and Yuxin Chen. Nonconvex optimization meets low-rank matrix factorization:
An overview. arXiv preprint arXiv:1809.09573, 2018.

[33] Joshua Comden, Andrey Bernstein, and Zhenhua Liu. Sample complexity of power system state
estimation using matrix completion. arXiv preprint arXiv:1905.01789, 2019.

[34] Ramtin Madani, Somayeh Sojoudi, Ghazal Fazelnia, and Javad Lavaei. Finding low-rank solutions of
sparse linear matrix inequalities using convex optimization. SIAM Journal on Optimization, 27(2):725–
758, 2017.

[35] Shigenori Naka, Takamu Genji, Toshiki Yura, and Yoshikazu Fukuyama. A hybrid particle swarm
optimization for distribution state estimation. IEEE Transactions on Power Systems, 18(1):60–68,
2003.

[36] Weimin Ma and James S Thorp. An efficient algorithm to locate all the load flow solutions. IEEE
Transactions on Power Systems, 8(3):1077–1083, 1993.

[37] Gabriela Hug and Joseph Andrew Giampapa. Vulnerability assessment of ac state estimation with
respect to false data injection cyber-attacks. IEEE Transactions on Smart Grid, 3(3):1362–1370, 2012.

[38] M. Jin, J. Lavaei, and K. H. Johansson. Power grid AC-based state estimation: Vulnerability analysis
against cyber attacks. IEEE Transactions on Automatic Control, 64(5):1784–1799, 2019.

[39] Yu Zhang, Ramtin Madani, and Javad Lavaei. Conic relaxations for power system state estimation
with line measurements. IEEE Transactions on Control of Network Systems, 5(3):1193–1205, 2018.

16


