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Abstract— This paper introduces a method for personaliz-
ing energy optimization using large language models (LLMs)
combined with an optimization solver. This approach, termed
human-guided optimization autoformalism, translates natural
language specifications into optimization problems, enabling
LLMs to handle various user-specific energy-related tasks. It
allows for nuanced understanding and nonlinear reasoning
tailored to individual preferences. The research covers common
energy sector tasks like electric vehicle charging, HVAC control,
and long-term planning for renewable energy installations. This
novel strategy represents a significant advancement in context-
based optimization using LLMs, facilitating sustainable energy
practices customized to individual needs.

I. INTRODUCTION

Despite computational advances, the complex challenges
of meeting energy demands and reducing carbon emissions
persist. Optimization techniques, as seen in EV charging [1],
energy storage [2], renewable investments [3], smart building
operations [4], and demand side management [5], hold great
promise. However, the broader democratization of these
tools remains a significant hurdle. This paper tackles this
issue, advocating for the accessibility and practicality of
advanced computational methods for all, especially the un-
derserved [6]. The emergence of LLMs offers a breakthrough
in overcoming these barriers. We demonstrate that LLMs can
bridge the gap between the high costs of traditional optimiza-
tion and the need for personalized, accessible solutions. Our
goal is not industry-grade optimization, but rather to provide
users with tools for informed decision-making, potentially
involving optimization problem formulation. This approach
leverages LLMs to streamline modeling and optimization,
enabling interaction through natural language without exten-
sive programming or mathematical optimization knowledge.

Technical challenges and solutions. While LLMs such as
OpenAI’s ChatGPT offer a natural substrate for conversa-
tional AI (a technology that enables machines to understand,
interpret, and engage in natural conversations), it is essential
to recognize that current LLMs have not excelled in tasks like
arithmetic and logical reasoning [7]. Recent works have in-
troduced methods such as chain of thoughts [8] (and variants
such as algorithm of thoughts [9]), which prompts a series
of intermediate reasoning steps, and autoformalism [10],
which automatically translates natural language mathematics
to formal specifications and proofs. However, many energy
problems, like energy storage control and long-term planning
for PV panel installation, demand complex decision-making.
These problems differ from arithmetic reasoning, common-
sense reasoning, and symbolic reasoning in the following
aspects: Complexity, as they often involve numerous vari-
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Fig. 1: Comparison of the baseline method (simple prompt-
ing with GPT-4) and EC using either CVXPY or SCIPY as
the code projection layer across various problem categories.
Success rate denotes the percentage of instances in which the
provided answer aligns with user expectations, satisfies all
given constraints, and is either close to or exactly optimal.

ables, constraints, and objectives with potentially nonlinear
relationships between variables; and incomplete information,
as energy systems are influenced by various factors, such as
user preferences, which may not be provided in the initial
problem description.

A. Contributions
In this research, we address the above challenges as

follows. To manage complexity, we develop a procedure
to map a problem description to code using the grammar
of packages that support optimization formulation, and to
iteratively formulate, debug, and execute the program. We
also introduce external tooling to execute the written code
and solve the formulated optimization using dedicated al-
gorithms. Furthermore, we implement prompt engineering
techniques to enable LLMs to accurately understand and
respond to user-specific preferences. To address incomplete
information, we leverage the reasoning capabilities of LLMs
to identify key parameters and use a question-and-answer for-
mat in natural conversations to solicit this information from
users. Additionally, we employ LLMs for auto-informalism
to explain the solution to users. An overview of the EC
framework is depicted in Fig. 2. This approach bears dual
benefits: it not only guides the user through complex nonlin-
ear reasoning tasks of energy saving planning but also offers
an insightful explanation of the solution.

We further demonstrate the possibility of our proposed ap-
proach in solving a variety of tasks within the energy domain,
ranging from EV charging, HVAC and battery control, to
long-term planning problems such as cost-benefit evaluation
of installing rooftop solar PVs, heat pumps, and battery
sizing. In comparison to the simple prompting method,
where the task description is directly presented to the LLM,



our proposed EC framework improves the success rate, as
illustrated in Fig. 1. Although the optimizations formulated
are not exceedingly sophisticated, we find that the LLM
effectively addresses the problem to a considerable degree.
Throughout the remainder of the paper, unless specified
otherwise, we refer to OpenAI’s ChatGPT (GPT-4) when
mentioning LLM.

B. Related Work
Recent work has explored using LLMs for mathematical

autoformalization, converting natural language into formal
languages like Isabelle/HOL [11]. Analogously, we use in-
termediaries like SCIPY and CVXPY to transform intuitive
formulations of optimization problems into standard form
[12]. Despite few CVXPY examples online, LLMs exhibit
surprising adeptness, albeit with occasional syntax errors that
we correct via Python debugging. While LLMs struggle with
multi-step problems [13], techniques like in-context learning
[14] and algorithmic search [9] have shown promise. We
present a novel viewpoint using optimization itself as a rea-
soning tool to enrich existing LLM augmentation techniques
[15]. LLMs can also revise responses given feedback, e.g. in
question-answering and code debugging [16]. We incorporate
revisions based on programming language feedback and user
requests, enabling rapid error correction.

Optimizing energy systems requires commonsense reason-
ing and domain knowledge [17]. Prior work has used ML
and expert systems [18], but we harness LLM expertise for
optimization through natural language interaction. To our
knowledge, we are the first to tackle non-trivial, energy-
specific problems with incomplete information this way.

The remaining sections of this paper are structured as
follows. Section II describes our proposed framework in
detail, including the design principles and the optimization
autoformalism approach. Section III presents experimental
results that demonstrate the effectiveness of our approach
in solving various energy-related tasks. We discuss the po-
tential and future directions of conversational AI for energy
sustainability and conclude in Section IV.

II. ENERGY CONCIERGE FRAMEWORK

Using an EV charging query as an example, our Energy
Concierge operates as follows:

1) User submits natural language request (e.g. optimize
my charging schedule). LLM determines if it is an
optimization problem.

2) If so, LLM requests input parameters needed to solve
it. It may ask clarifying questions (e.g. charging ca-
pacity? preferred hours?).

3) LLM formulates Python code with user information,
translating the query into an optimization problem via
autoformalism.

4) Interface executes code to solve problem, with debug-
ging iterations if needed.

5) LLM explains the optimal solution clearly (charging
schedule, cost savings). Enabling informed user deci-
sions.

Fig. 2: Energy Concierge framework. The user engages with
an LLM through natural language queries and responses.
The LLM identifies the necessary input parameters for opti-
mization and generates Python code to address the problem.
The program interface then executes the code and relays the
solution back to the LLM, which subsequently provides a
clear explanation to the user.

Through interactivity and personalization grounded in opti-
mization and autoformalism, this conversational framework
empowers users to improve energy efficiency.

A. Optimization autoformalism
A general optimization problem can be written as:

minimizex2Rp f(x; ✓)

subject to gi(x; ✓)  0, i = 1, 2, . . . ,m

hj(x; ✓) = 0, j = 1, 2, . . . , n,

(P (✓))

where we seek to minimize the objective function f(x; ✓)
subject to a set of inequality constraints gi(x; ✓)  0, and
equality constraints hj(x; ✓) = 0. Here, x 2 Rp is the
decision variable and ✓ is the collection of hyperparameters
that defines the optimization instance, including objective
and constraint functions; in other words, the solution of
the optimization P (✓) can be regarded as a function of the
hyperparameters ✓ [19].

Optimization techniques can be used to solve energy-
related problems [1]–[5]. Automating the formulation and
solution of optimization problems is essential due to the tech-
nical skills gap, challenges in manually incorporating user
preferences and constraints, and the inefficiencies in manual
modifications based on user feedback. The human-guided
autoformalism proposed in this study automatically translates
natural language task specifications to optimization instances.
However, directlying implementing this approach may face
issues such as ambiguity, incompleteness, and incorporating
user-specific preferences. The subsequent subsections will
delineate strategies to address them.

1) Optimization formulation: The optimization process
begins with identifying the objective function, decision vari-
ables, and constraints from the user’s task description [T].
We tested two approaches:



• Approach 1: Directly ask the LLM to identify the
optimization components in [T].

• Approach 2: First prompt the LLM to identify the
5 most important parameters in [T], then use these
parameters to formulate the optimization instance.

Approach 2 outperforms Approach 1 because LLMs like
GPT-4 are trained on diverse data, not just optimization tasks.
Asking for the top 5 parameters simplifies the task and pro-
vides context, helping LLMs generate more precise optimiza-
tion formulations [8], [9]. Directly requesting optimization
formulations (Approach 1) can introduce ambiguityDirectly
requesting optimization formulations can introduce ambigu-
ity; initial parameter identification (Approach 2) reduces this
uncertainty.

After identifying the essential parameters, the natural
language query is transformed into a computational instance
using the prompt: “Write a Python code using [lib] to solve
this optimization problem,” where [lib] is either CVXPY or
SCIPY. We found that SCIPY yields a higher success rate
(71% to 100%) compared to CVXPY (51% to 80%) (see
Fig. 1). This difference is likely due to SCIPY’s broader
acceptance and longer existence in the Python community,
resulting in more SCIPY-related content available online for
the model to leverage during training.1

2) Solving an optimization and debugging: To address
LLMs’ limitations in nonlinear reasoning [7], we enable
the model to interact with an external Python program to
solve optimization tasks. We extract the code block from
the LLM’s output using regular expressions, searching for
unique delimiters enclosing the code. This method reliably
extracts code without requiring a large labeled dataset, unlike
training a machine learning model [20]. During development,
we encountered two types of errors in the LLM-generated
code: erroneous translation into an optimization problem and
syntactic bugs in an otherwise correctly translated problem.2

To rectify translation errors, we rely on user interaction
and clarification of the formulated optimization. For syntactic
errors, we use an automated process: identify the error
message, feed it to the LLM to isolate relevant code snippets,
generate potential remedies, and assess the proposed solu-
tions in a new iteration (Fig. 7 in Appendix). Taking multiple
code samples before debugging often results in fewer LLM
queries (Fig. 5). By following this procedure, we successfully
resolved most errors encountered during our experiments.

3) Optimization auto-informalism: After discovering the
optimal solution, the LLM articulates the results in a com-
prehensible, natural language format. This system provides
detailed explanations of the optimal solution and any con-
straints or preferences factored in during the optimization
process (Steps 7a and 7b in Fig. 2). This auto-informalism
approach complements autoformalism by offering intuitive

1A search on GitHub (as of 4/25/24) returns 8K repositories for ”SCIPY”
and only 272 for ”CVXPY,” supporting our preference for SCIPY.

2Errors can also arise due to the limitations of the optimization solvers,
but since most energy problems involve linear or quadratic convex opti-
mization, we presume such errors are comparatively infrequent. We do not
classify infeasibility as an error.
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Fig. 3: A comparison of EV charging plans to improve
the cost and load on the grid. Observations reveal that EC
effectively capitalizes on hours with lower prices in contrast
to the baseline.

insight into the optimization outcomes.

III. EXPERIMENTS AND CASE STUDIES

This section examines the potential of LLM-based auto-
formalism in real-time decision-making (Sec. III-A) and sus-
tainable long-term planning (Sec. III-B). A general analysis
of the proposed methods is provided in Sec. III-C. The [21,
appendix] offers example interactions.

A. Real-time decision making
1) Smart EV charging: The core issue in smart EV

charging is to optimize EV charging patterns to balance
power grid loads, mitigate energy costs, and fulfill user pref-
erences [1]. EC can correspond user-provided information to
optimization parameters, such as the maximum charging rate.
It grasps the user’s charging availability and translates this
information into decision variables and constraints, leading
to an optimized schedule (see Fig. 3).

2) HVAC control: HVAC control is a pivotal issue that
has been extensively studied [4]. However, the algorithms
that have been developed are often more advanced than
the current control panels in most buildings, leading to a
disconnect between sophisticated methods and user compre-
hension. The heart of the issue is to discover a setpoint
that ensures a comfortable indoor climate while minimizing
energy consumption. EC provides clear and actionable advice
like “Set your thermostat to the optimal temperature (75�F in
this case) during hot, humid days...” with a clear rationale. It
also offers customized suggestions based on user conditions,
along with valuable energy efficiency tips such as “monitor
your energy consumption”, and “adapt to changing condi-
tions”. Nevertheless, the cost of simplicity is the inability
to perform sophisticated controls like pre-heating/cooling,
which entails heating the room in anticipation of occupancy
and can only be accounted for through a multiperiod formu-
lation involving intricate room thermal dynamics [4].

3) Battery charging control: This problem involves opti-
mizing the charging and discharging cycles of a home battery
system, considering factors such as electricity pricing, solar
generation, and household demand, as seen in competitions
like the CityLearn Challenge [22]. As discussed in [23],
selecting the appropriate optimization problem for a given
context is crucial. Unlike [23], where the context is derived



from a reward signal, our context is provided by the user in
natural language. The EC interprets this context accurately
to establish the right optimization problem.

EC successfully formulates an accurate objective that com-
putes the weighted sum of total electricity cost, considering
the electricity price. It also correctly formulates the lower
and upper limits for the charging and discharging variables,
the temporal interdependence of the state of charge and
the charging rate, and the maximum capacity constraint.
The energy balance constraint identified demonstrates LLM’s
understanding of world modeling, including this constraint
without specific user instruction. EC’s explanation further
shows an understanding of physical constraints and its over-
all objective. However, EC implicitly assumes that excess
energy produced each hour can be sold back to the grid at
the same rate as it was purchased, which is not typically
the case. Future work can explore methods to encourage
EC to be more explicit about assumptions when constructing
optimization instances.

B. Long-term planning for sustainability

1) Cost-benefit analysis of installing rooftop solar PVs:
To perform a cost-benefit analysis of solar PV, one must
estimate the costs and benefits over the system’s lifespan
and compare them to a relevant alternative system [24].

EC shows proficiency in understanding physical con-
straints, such as the stipulation that the panel area shouldn’t
surpass the roof area, and proposes that the installed area
be adequate to supply the electricity demand. However, it
operates under a few assumptions, such as the user planning
to source all electricity demand from PV to fully leverage
the budget, and that the PV’s efficiency stands at 0.12. While
these assumptions are generally sensible, stating them in
the explanations would make the model’s workings more
transparent. Additionally, the model seems to underutilize the
user’s provided information, such as the building’s location,
which could potentially inform the required area-to-power
conversion efficiency more accurately. This is understandable
given the model’s lack of access to an external database,
and future work that enhances this capability could be a
worthwhile pursuit.

2) Cost-benefit analysis of installing a heat pump: Key
considerations in the cost-benefit analysis of a heat pump
include the initial cost of installation, which can vary based
on the type, size, and complexity of the system, as well as
the availability of incentives and rebates [25].

Similar to the PV installation scenario in Sec. III-B.1,
EC proficiently identifies pivotal relationships, including the
annual operating cost of a central AC and a heat pump.
EC’s approach focuses on optimizing annual savings, leaving
the actual estimation of the payback period to the user.
For instance, EC calculates that the annual savings with a
heat pump equals $550, then elaborates on how to use this
data for investment decisions, suggesting “If the purchase
and installation of the heat pump cost $5,000, the payback
period would equate to around 9.1 years ($5,000 / $550).”
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Fig. 4: The efficiency of EC when integrated with SCIPY
is gauged by the compilation success of the Python code it
generates, the solution’s precision, and the lucidity of the
explanation presented to the user. The black lines highlight
the performance shifts observed when employing CVXPY.

Fig. 5: (A) A comparative analysis of the number of itera-
tions needed to achieve executable code across all problem
categories (note that none of the experimental instances use
4 iterations). (B) A comparison of the average number of
code generations needed for EC to produce executable code,
limited to a maximum of 5. The black bars represent the
variation in iterations across problem categories over 20
random runs.

EC also suggests users compare alternatives, plan long-
term strategies, evaluate environmental impact, and seek
incentives or rebates. This shows that EC can provide not
only a decision but also the context and information nec-
essary to empower users to make more cost-effective and
environmentally conscious choices.

C. General findings and analysis

To elucidate the types of errors EC commits, we display
the success rates concerning error-free code production,
logical correctness of the code, and the ability to articulate
the solution derived from the optimization code to the end
user in Fig. 4. Our framework enables EC to achieve a 100%
compilation rate. When EC generates an error-free optimiza-



tion code, it consistently explains the results to the end
user. SCIPY outperforms CVXPY in overall performance,
aligning with our observation that SCIPY has broader online
recognition and use, where most LLMs receive training.

Fig. 5 presents the average number of code regenerations
needed and the average debugging iterations required to
obtain syntax error-free optimization code. Although each
subproblem within the optimization problem category ex-
hibits different success rates, a relatively low number of code
regenerations are typically needed. When the LLM consis-
tently commits errors, incorporating debugging information
in our framework is essential for achieving optimization solu-
tions. Reducing the number of generated code samples from
s = 5 to s = 1 slightly increases the required debugging
iterations across all examples, suggesting that debugging is
a more efficient error-handling strategy compared to simple
regeneration.

Estimating the Probability of One-Round Autoformal-
ism Success. The aforementioned results allow us to infer
the probability of generating valid code successfully, denoted
as p. We postulate that the event of successfully generating
valid code is independent and identically distributed for the
same category of problems, following a truncated geometric
distribution with a cap at 5 trials. Based on this supposition,
we deduce that

P5
k=1 k(1�p)k�1p+6

P
k�6(1�p)k�1p =

z, where z signifies the number of generations needed to
achieve success (with generations capped at 5, as shown in
Fig. 5), and p is the probability of success to be estimated.
Substituting the values for z from Fig. 5 into the equation and
solving for p, we obtain the one-round autoformalism success
rates p = 0.8, 0.25, 0.38, 0.53, 0.83, 0.38 for the problems
of EV Charging, Battery Charging, Battery Capacity, Solar
Panel, HVAC Control, and Heat Pump Investment, respec-
tively.

Estimation of the Probability of Debugging Success.
We posit that the event of successful debugging, given the
presence of an erroneous code, is independent and identically
distributed across all problem classes. Using Fig. 5, we first
normalize the frequency of the required number of debugging
iterations by the frequency of generating an erroneous code
in the first run (i.e., 1 � 0.7 = 0.3). This reveals that the
frequencies of observing debugging iterations 1, 2, 3, 4, and
� 5 are represented by yk, where k 2 {1, 2, ..., 5}. Let q
denote the probability of successfully debugging the code.
From this, we can construct a system of polynomial equa-
tions in the form of (1 � q)k�1q = yk for k 2 {1, 2, 3, 4},
and 1 �

P4
k=1(1 � q)k�1q = y5 given that debugging is

capped at 5 iterations. Using a line search between 0 and 1
in increments of 0.01, we calculate the values of ŷ1 to ŷ5
for each q using the specified equations, and determine the
mean squared error (MSE) between the vectors ŷ and y. Our
optimal estimate for the probability is q = 0.26.

Optimality Gap and Improvement Over Baseline. The
optimality gap for a feasible solution is calculated as the ratio
v/v⇤�1, where v denotes the objective value of the candidate
solution and v⇤ signifies the optimal value of the corre-
sponding minimization problem. In Fig. 4, we classify test
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Fig. 6: We assess the average optimality gap by compar-
ing the exact solution of the optimization problem with
the solution determined by EC, alongside evaluating the
enhancement over the baseline in terms of optimality.

cases as correct only if they equate to the globally optimal
solution value, i.e., a 0% optimality gap. Additional results
presented in Fig. 6 demonstrate the average optimality gap
when incorrect logic within the code results in the omission
of key parameters (such as the efficiency of a battery). Our
framework was evaluated using 20 examples for each energy
optimization problem, including EV charging. As depicted,
the instances display an optimality gap generally within the
20% range, with the majority under 10%.

For the baseline method, the model was simply prompted
with our question along with necessary parameters to solve
the optimization problem. We noticed that even when the
problem is clearly an optimization issue, LLMs may opt
to generate responses by attempting to apply logic towards
reaching an answer. As seen in Fig. 6, this approach does not
yield favorable results in comparison to the EC framework.
This can be attributed to the fact that many energy-related
optimization problems of importance do not yield closed-
form solutions, making the correct utilization of convex
program solvers critical.

We further report on the improvement over the baseline,
measured by vb/v � 1, where vb represents the objective
value of the baseline solution. As is evident, the improvement
can amount to as much as 60%, with most instances falling
within the 30% range. Some of the problems yielding the
greatest improvements include Solar Panel, Heat Pump,
Battery Charging, and EV Charging, which encompass both
real-time decisions and long-term investments.

IV. DISCUSSIONS AND CONCLUSION

Conversational AI for sustainability has long seemed
aspirational, but LLMs offer new potential. By providing
an intuitive interface, our framework helps individuals en-
gage more consciously about energy use. Greater awareness
drives sustainable behaviors like responsible consumption,
efficiency, and solar adoption [26], [27].

Households average 3.5 kWh peak electricity use, while
EV chargers approach 10 kWh. EV charging at peak triples
load, straining infrastructure. Utilities offer off-peak rates,
but financial incentives alone don’t fully shift behaviors—
an “efficiency gap” phenomenon [26], [27]. Our framework
simplifies this via conversation. With 2022’s 3 million EVs,
adopting off-peak charging could save $876 million annually
(at $0.06 vs $0.14 per kWh rates) [28], [29]. With 2035’s



projected 73 million EVs [30], savings could reach $21.3
billion. Beyond consumer savings, off-peak charging lessens
grid stress, stabilizes prices, and reduces needs for new
plants. By simplifying optimization, our system enables
impactful sustainability actions.

A key limitation of EC is its reliance on the LLM’s
ability to accurately formulate optimization problems, ensur-
ing proper alignment of objectives and constraints. Incorrect
formulations can lead to ineffective or harmful solutions,
despite the perceived reliability of these systems. Auto-
informalism (Sec. II-A.3) helps mitigate this risk by scru-
tinizing problem formulations more carefully and alerting
users to potential issues or assumptions. Enhancing auto-
informalism’s effectiveness is thus critical for reliable solu-
tions. Additional reliability methods like validation routines,
robustness testing, and expanded user feedback loops can
further strengthen the framework.

While we merely sketch out the potential, the pro-
posed shift towards human-guided optimization autoformal-
ism could democratize access to sophisticated technologies
and set the stage for a more equitable and sustainable future.
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