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Abstract—Coordinating inverters at scale under uncertainty is
the desideratum for integrating renewables in distribution grids.
Unless load demands and solar generation are telemetered fre-
quently, controlling inverters given approximate grid conditions
or proxies thereof becomes a key specification. Although deep
neural networks (DNNs) can learn optimal inverter schedules,
guaranteeing feasibility is largely elusive. Rather than training
DNNs to imitate already computed optimal power flow (OPF)
solutions, this work integrates DNN-based inverter policies into
the OPF. The proposed DNNs are trained through two OPF
alternatives that confine voltage deviations on the average and
as a convex restriction of chance constraints. The trained DNNs
can be driven by partial, noisy, or proxy descriptors of the
current grid conditions. This is important when OPF has to be
solved for an unobservable feeder. DNN weights are trained via
back-propagation and upon differentiating the AC power flow
equations assuming the network model is known. Otherwise, a
gradient-free variant is put forth. The latter is relevant when
inverters are controlled by an aggregator having access only to
a power flow solver or a digital twin of the feeder. Numerical
tests compare the DNN-based inverter control schemes with the
optimal inverter setpoints in terms of optimality and feasibility.

Index Terms—Stochastic gradient descent; deep neural net-
works; primal-dual updates; inverter control; inverse function
theorem; reactive power compensation; stochastic optimization;
chance constraints.

I. INTRODUCTION

The high penetration of DERs (such as rooftop photo-
voltaics, batteries, and demand response devices) introduces
additional variability in distribution grid operation. Uncon-
trolled variations in power injections can in turn induce abrupt
fluctuations in nodal voltages. Fortunately, the smart inverters
interfacing DERs with the grid can propel their integration by
additionally providing reactive power support. The coordinated
control of DERs across a feeder can be formulated as an
OPF [1], [2]. If the grid is modelled using the AC power flow
equations, tackling this OPF using conventional optimization-
based solvers becomes formidable as DERs increase in num-
bers and need to be redispatched frequently under dynamic
conditions. At the same time, solving an OPF presumes that
all problem inputs (load demands and solar generation) are
precisely known. Nonetheless, such parameters are oftentimes
described stochastically, observed under noise and delays, or
the operator can monitor only few of them in real time.

Alternatively, recent literature advocates the use of machine
learning (ML) models to solve minimization problems under
the learning-to-optimize paradigm. Due to the rich modeling
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and fast inference capabilities of ML models, learning-to-
optimize becomes relevant to scenarios where large-scale
non-linear optimization tasks have to be solved frequently
and/or under uncertain or partially observed inputs. ML-
based schemes for tackling with the OPF have already been
explored and can be broadly classified into the OPF-then-learn
and OPF-and-learn categories. Methods within the former
category involve two steps. They first generate a labelled
training dataset by solving a large number of OPFs. The
features and labels of this dataset consist of the OPF input
parameters and outputs (optimal DER setpoints), respectively.
During the second step, an ML model is trained to predict
the dataset labels in the conventional supervised manner.
Within the OPF-then-learn category, kernel–based regression
has been employed to learn inverter control rules in [3], while
DNNs have been trained to predict OPF solutions under a
linearized [4] and the exact AC grid models [5], [6], [7], [8].
To expedite the first step, the sensitivity-informed learning
method of [9] and [10] trains a DNN to match not only the
OPF minimizers, but also their partial derivatives with respect
to the OPF inputs. Despite the data efficiency enhancement
offered by sensitivity-informed learning, the OPF-then-learn
strategy lacks feasibility guarantees and presumes OPF input
parameters are deterministic and known. Furthermore, generat-
ing labels by solving several OPFs incurs a significant compu-
tational overhead. Consequently, the OPF-then-learn strategy
is not well suited for scenarios where the optimal policies need
to be re-learned frequently on account of changing underlying
data distribution.

Instead of following the two-step approach of first gener-
ating OPF labels and then training the ML model, OPF-and-
learn approaches learn the ML model directly while solving
the OPF in a single step. Hence, methods within the OPF-and-
learn category are more suited for dynamic applications where
ML models needs to be continuously retrained. Under the
OPF-and-learn paradigm, reference [11] adopts support vector
machines (SVMs) to design inverter control rules, adjusted
to grid conditions in a quasi-stationary fashion. Albeit SVM-
based rules can be learned via a convex program, kernel func-
tions have to be specified beforehand. In [12], inverter control
rules are optimized along with capacitor status decisions to
minimize voltage deviations using a two-timescale reinforce-
ment learning (RL) approach yet no feeder-level constraints
are involved. Enforcing network constraints is challenging for
ML-based OPF methods. One could heuristically project the
ML prediction for the OPF solution [5], [11], or consider
penalizing constraint deviations [3], [4], [12].

An alternative for dealing with constraints in the learning-

ar
X

iv
:2

10
5.

00
42

9v
1 

 [
m

at
h.

O
C

] 
 2

 M
ay

 2
02

1



2 IEEE TRANSACTIONS ON SMART GRID (SUBMITTED MAY 2, 2021)

to-optimize process is through the discounted return functions
used in RL approaches. In this context, reference [13] updates
DNN-based inverter policies continuously by successively
linearizing feeder constraints. A similar safe RL learning
scheme is put forth in [14], which focuses on regulating the
number of voltage violations across nodes through a method
of multipliers strategy. However, both these works updated the
policy parameters by solving an optimization problem at every
update step that might be computationally intensive, restricting
their applicability on dynamic scenarios. Secondly, both [13]
and [14] focus on scenarios where measurements across feeder
nodes are available to policies in real time. Finally, RL-based
approaches are in general more complex in implementation,
which can be hindering their adoption by grid operators; e.g.,
the safe RL strategy of [14] involves nine different DNNs.

Primal-dual learning [15], provides a computationally less
intensive alternative to RL for handling feeder constraints.
Different from [13] and [14], primal-dual learning involves
simpler gradient-based updates of the policy parameters and
the related dual variables alike. Stochastic primal-dual updates
were first applied towards learning the optimal control policies
for smart inverters to enforce averaged voltage constraints in
conference precursor [16] of our work.

This work extends [16] in four fronts. Firstly, the underlying
feeder is represented using the exact AC model rather than
the approximate linearized model [17] previously employed.
This extension is non-trivial as the gradients needed for the
stochastic primal-dual updates of the DNN are now found
in an indirect manner using the underlying AC power flow
equations and the inverse function theorem. Secondly, we
illustrate the versatility of stochastic primal-dual updates as
they can cope with probabilistic voltage constraints via convex
restrictions [18]. Thirdly, we demonstrate that primal-dual
learning can also be employed when only partial information
is available in real-time. This adheres to practical setups
where the utility might have real-time telemetry only over a
subset of grid locations. Fourthly, we propose gradient-free
counterparts of the primal-dual updates that train the DNN
knowing only the values of voltages and injections. Such
approaches are useful when: i) DERs are optimized by an
entity other than the utility (e.g., an aggregator) that does not
know the feeder model and can only access a digital twin of
the grid; ii) The feeder model is known but complex (due
to the presence of transformers, capacitors, ZIP loads) and
differentiation becomes perplex, but the utility has access to
a power flow solver; and iii) The feeder model is incomplete
(secondary networks or regulator taps are unknown), but the
utility has access to smart meter readings.

The rest of the paper is organized as follows. Section II
formulates the task of DNN-based smart inverter control, and
puts forth an averaged and a probabilistic scheme. Section III
elaborates on primal-dual DNN learning for both schemes.
Section III calculates the gradients needed for the stochastic
updates, while the gradient-free implementation is presented in
Section IV. The novel DNN-based inverter control strategies
are evaluated using real-world data on the IEEE 37-bus feeder
in Section V. Conclusions are drawn in Section VI.

Notation: Lower- (upper-) case boldface letters denote col-

umn vectors (matrices), and calligraphic symbols are reserved
for sets. Symbol > stands for transposition and ‖x‖2 denotes
the `2-norm of x. Vectors 0 and 1 are respectively the vectors
of all zeros and ones of appropriate dimensions.

II. PROBLEM FORMULATION

Consider a feeder with N + 1 buses. The substation is
indexed by 0 and the remaining buses comprise the set
N := {1, . . . , N}.

Let pn + jqn be the complex power injection at bus n. Its
active power component can be decomposed as pn = pgn−pcn,
where pgn is the solar generation and pcn the inelastic load at
bus n. Its reactive power component can be similarly expressed
as qn = qgn − qcn. The vectors (p,q) collecting the power
injections at all non-substation buses can be decomposed as
p = pg − pc and q = qg − qc.

Let vector parameter θ := {pc,qc,pg} ⊆ R3N collect the
loads (active and reactive) and active solar generation at all
non-substation buses. We will henceforth term θ as the vector
of grid conditions. Given θ, the task of reactive power control
by DERs aims at optimally setting qg to minimize a feeder-
wide objective while complying with network and inverter
limitations. Starting with the latter, the reactive power injected
by inverter n is limited by its given apparent power limit s̄n.
Apparent power constraints are local and will be collectively
denoted by

qg ∈ Qθ :=

{
qg : |qgn| ≤

√
s2
n − (pgn)2 ∀n

}
. (1)

where the subscript in Qθ denotes that the feasible space
changes as the value of solar generation pg changes.

The task of coordinating inverters can be centrally handled
by an aggregator assigned to manage these DERs. The ag-
gregator finds the reactive power setpoints for DERs by min-
imizing ohmic losses on distribution lines while maintaining
voltage magnitudes within per-bus bounds [v,v] as

min
qt∈Qθ

`(q,θ) (2)

s.to v ≤ v(q,θ) ≤ v.

where v is the vector of bus voltage magnitudes. We will
henceforth refer to voltage magnitudes as voltages unless
stated otherwise. We slightly abuse notation and use q in lieu
of qg to unclutter notation, as qc is included in θ anyway. Note
that expressions `(q,θ) and v(q,θ) capture the dependence
of losses and nodal voltages on the reactive setpoints of DERs
q under the current grid conditions θ.

Solving (2) can be computationally and communication-
wise taxing if θ changes frequently. Moreover, by the time
(2) is solved and optimal setpoints are downloaded to DERs,
grid conditions θ may have changed rendering the computed
setpoints obsolete. To account for the uncertainty in θ, we
propose two stochastic formulations. The first formulation
replaces `(q,θ) and v(q,θ) with their averages:

min
qt∈Qθ

E[`(q,θ)] (3)

s.to v ≤ E[v(q,θ)] ≤ v
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where the expectation E is with respect to θ. We refer to (3)
as the averaged formulation. While the averaged formulation
takes care of uncertainties in θ, the obtained setpoints may vi-
olate the voltage limits in (2) quite frequently. This undesirable
behavior results from the fact constraining the average value
of voltages does not provide strong guarantees on their per-
instance values. Nevertheless, the averaged formulation has
an attractive structure that permits straightforward stochastic
gradient descent (SGD)-based steps to arrive at the optimal
setpoints as we will see later.

A more conservative approach is possible through the prob-
abilistic formulation

min
q∈Qθ

E[`(q,θ)] (4a)

s.to Pr [vn ≥ vn(q,θ)] ≤ α, ∀n ∈ N (4b)
Pr [vn ≤ vn(q,θ)] ≤ α, ∀n ∈ N (4c)

where (4b)–(4c) ensure each bus voltage remains within the
desired limits with a probability of at least 1 − α on each
side. Here α ∈ (0, 1) is a small violation probability. In
contrast to (3), the formulation in (4) focuses on restricting
the frequency of occurrence of voltage violations. Problem
(4) can be rewritten as

min
q∈Qθ

E[`(q,θ)] (5a)

s.to E [1(vn − vn(q,θ))] ≤ α, ∀n ∈ N (5b)
E [1(vn(q,θ)− vn)] ≤ α, ∀n ∈ N (5c)

where the indicator function 1(x) is defined as

1(x) =

{
1 , x ≥ 0
0 , x < 0

. (6)

The probabilistic formulation is difficult to handle since the
indicator function is neither convex nor differentiable. In
quest of workable alternatives, Section III pursues convex
approximations of constraints (5b)–(5c).

For now, let both formulations be represented by the general
stochastic program

min
q∈Qθ

E[`(q,θ)] (7)

s.to E[g(q,θ)] ≤ 0.

Note that solving (7) results in a single ‘one-size-fits-all’ q
that does not adapt to different θ’s. To render DER setpoints
responsive to grid conditions, we resort to a control policy,
where the reactive setpoints q are captured by a function
π(θ;w), which is parameterized by w.

Ideally, the control policy is driven by the vector of grid
conditions θ. Nevertheless, during real-time operation, the
operator controlling the DERs may not be able to observe
the complete θ. Instead, it may have to act upon a proxy φ
of the actual θ. The DER control policy driven by φ can then
be found by solving the constrained stochastic minimization

min
w:π(φ;w)∈Qθ

E[`(π(φ;w),θ)] (8)

s.to E[g(π(φ;w),θ)] ≤ 0.

The DER control policies found through (8) are adaptive
to the proxy vector φ and the optimization is over the

Fig. 1. Real-time operation of the proposed DER inverter control scheme.
Proxy vector φ consisting of measurements from nodes {2, 3, 4, 8} is
transmitted to the aggregator. The DNN-based policy acts upon φ to predict
setpoints q, which are then broadcast to the inverters at buses 2 and 8.

parameters w. Policies account for the uncertainty over θ, and
correspondingly φ. Note that the expectations in (8) couple the
system’s performance across OPF instances of θ.

The proxy vector φ can be chosen to represent the op-
erational setup for which the control policies are being de-
signed. In the absence of real-time measurements from all
nodes, and/or to save on communication overhead, vector φ
can consist of active line flows from distribution lines [16].
Meteorological data such as solar irradiance and ambient
temperature, which serve as surrogates for p, can also be
included in φ. One can also explore convolutional neural
networks (CNNs)-based policies that accept sky images in
place of solar irradiance measurements as inputs to be included
in φ. In Section V, a more straightforward scenario is explored
whereby measurements from a subset of buses in N are
assumed to be available in real-time, resulting in φ ⊂ θ.

Previous works have studied linear inverter control policies
of the form π(φ;w) = w>φ; see e.g., [19], [20], [21].
Nonetheless, the optimal policy π(φ;w) is not necessarily
affine in φ, especially when φ is a proxy for θ. The grand
challenge towards scalable inverter control is to design nonlin-
ear control policies. To this end, in [11], we modeled π(φ;w)
as a support vector machine (SVM) and designed the policy
through an OPF formulation. The advantage of SVM-based
policies is that they can be trained to optimality using convex
optimization. Nonetheless, selecting the appropriate kernel and
control input φ can be challenging. Inspired by their field-
changing performance in various engineering tasks, here we
propose capturing the DER control policy π(φ;w) using
DNNs, and learn weights w in a data-driven physics-aware
fashion.

Figure 1 depicts the real-time operation of the proposed
control strategy. The smart inverters to be controlled are
located on buses 2 and 8. The proxy vector φ ⊂ θ, consisting
of {pcn, qcn, pgn} measurements from buses 2, 3, 4 and 8, is
transmitted to the operator. The operator feeds φ as an input
to the DNN-based policy and predicts setpoints q. These set-
points are then broadcast to DER inverters for implementation.
It is worth emphasizing here that although the operator needs
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Fig. 2. DNN-based policy with modified activation layer to ensure π(φ;w) ∈
Qθ for all φ. The output neuron feeds into the tanh() activation function
and then scaled by

√
s2n − (pgn)2. The scaling operation involves a skip

connection from pgn, which is one of the inputs to the DNN.

to know pairs of (θ,φ) during training, the DNN-based policy
operates acting solely on φ.

III. PRIMAL-DUAL DNN TRAINING

The stochastic formulation in (8) is challenging to solve
on account of the expectation operator in both the objective
and constraints. Computing the needed expectations requires
knowing the probability density functions (pdf) of φ and θ.
Even if these pdfs are known, computing the expectations is
still non-trivial granted the policies π(φ;w) are non-linear in
φ. These complications promulgate a stochastic approximation
approach towards solving (8). In the conventional machine
learning setup, the weights of a DNN are found by minimizing
a data-fitting loss function under no constraints via stochastic
gradient descent. Here, to accommodate constraints, we adopt
the stochastic primal-dual updates of [15] as presented next.

Consider the Lagrangian function of the problem in (8)

L(w;λ) := E[`(π(φ;w),θ)] + λ>E[g(π(φ;w),θ)] (9)

where λ is the vector of Lagrange multipliers corresponding
to the constraints in (8). Vector λ concatenates the multipliers
λ and λ associated with the lower and upper voltage limits in
(3) and (5). A stationary point for the related dual problem

D∗ := max
λ≥0

min
w:π(φ;w)∈Qθ

L(w;λ) (10)

can be obtained iteratively using the primal-dual updates
indexed by k (cf. [15]):

wk+1 :=
[
wk − µw∇wL(wk;λk)

]
Qθ

(11a)

λk+1 :=
[
λk + µλ∇λL(wk+1;λk)

]
+

(11b)

where (µw, µλ) are positive step sizes. Here primal variables
are updated through projected gradient descent steps on the
Lagrangian function. Dual variables are updated through pro-
jected gradient ascent steps again on the Lagrangian function.
The operator [x]+ = max{x, 0} is applied entry-wise and
ensures λ ≥ 0 at all times.

The operator [·]Qθ
projects wk+1 such that π(φ;wk+1) ∈

Qθ for all φ. A direct way to confine the DNN output qgn
within ±

√
s2
n − (pgn)2 is to use the hyperbolic tangent (tanh)

as the output activation function and then scale the output by√
s2
n − (pgn)2. While the apparent power limit sn is known a

priori, the solar generation pn is available to the DNN as an
input. The required scaling is easily accommodated by minor

architectural modifications to the activation layer of the DNN.
Figure 2 illustrates this process for a single-output neuron.
Ensuring that π(φ;w) ∈ Qθ at all times obviates the need
for projecting the weight updates henceforth. Note that the
gradient ∇λL(w;λ) in the dual variable update in (11b) can
be substituted as ∇λL(w;λ) = g(π(φ;w),θ).

Following a stochastic approximation approach, the ensem-
ble averages in (9) are first surrogated by sample averages
computed over a set of K scenarios {φk,θk}Kk=1. The average
ohmic losses for example can be approximated as

E[`(π(φ;w),θ)] ' 1

K

K∑
k=1

`(π(φk;w),θk).

The previous notation captures the fact that the control policy
is fed by φ to determine q, but of course ohmic losses depend
on the actual θ. The updates in (11) are then simplified
by replacing the sample averages by a single scenario per
iteration. In other words, at iteration k, the gradients appearing
in (11) are computed for a single scenario k as [15]

wk+1 := wk − µw
(
∇w`

k +
(
∇wgk

)>
λk
)

(12a)

λk+1 :=
[
λk + µλg

(
π(φk;wk+1),θk

)]
+

(12b)

where ∇w`
k is the gradient of ` and ∇wgk is the Jacobian

matrix of g, both with respect to w and both evaluated
at (φk,wk,θk). The rest of this section explains how the
gradients appearing in (12a) can be computed for the averaged
and probabilistic formulations.

A. Averaged Formulation

For the averaged formulation, the stochastic primal-dual
updates can be obtained by replacing g(π(φ;w),θ) with the
constraint functions from (3) to get

wk+1 := wk − µw
(
∇w`

k +
(
∇wvk

)>
(λ

k − λk)
)

(13a)

λk+1 :=
[
λk + µλ

(
v − v

(
π(φk;wk+1),θk

))]
+

(13b)

λ
k+1

:=
[
λ
k

+ µλ

(
v
(
π(φk;wk+1),θk

)
− v

)]
+
. (13c)

To compute the Jacobian matrix ∇wv of voltages with
respect to DNN weights, we resort to the power flow equations.
Let vector ũ ∈ CN+1 collect the complex voltage phasors
at all buses and define ū := [Re(ũ)> Im(ũ)>]> ∈ R2N+2.
Vector u ∈ R2N is obtained by dropping the first and (N+1)-
th entries of ū. These two entries correspond to the substation
voltage ũ0, which is assumed constant. The sought Jacobian
matrix can be computed via the chain rule as

∇wv = ∇uv · ∇qu · ∇wq. (14)

We next elaborate on the three Jacobian matrices needed in
(14). The N × 2N matrix ∇uv can be readily computed by
definition of voltage magnitudes. Its (n,m)-th entry is

[∇uv]n,m =


un

vn
, m = n

un+N

vn
, m = n+N

0 , otherwise.
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We proceed with finding ∇qu. If p + jq is the vector of
complex power injections at all buses excluding the substation,
define s := [p> q>]>. Per the power flow equations, every
entry i of s can be expressed as a quadratic function of ū,
that is si = ū>Miū for a symmetric real-valued matrix Mi

derived from the bus admittance matrix of the feeder; see
e.g., [22] for the detailed expressions for Mi’s. Therefore, the
i-th row of the Jacobian matrix ∇ūs is given by 2ū>Mi. By
dropping the first and (N + 1)-th column of ∇ūs, we obtain
∇us. Under mild technical conditions, the inverse function
theorem predicates that

∇su = (∇us)
−1. (15)

Matrix ∇qu can be clearly obtained by keeping only the
last N rows of ∇su. The third matrix ∇wq can be readily
computed using gradient back-propagation across the DNN.

The gradient vector of ohmic losses with respect to the DNN
weights can be computed similarly as

(∇w`)
> = (∇u`)

> · ∇qu · ∇wq. (16)

The gradient ∇u` can be easily computed by recognizing

` =

N∑
n=0

pn = ū>

(
N∑
n=0

Mi

)
ū

where matrix M0 describes the power injection at the substa-
tion as p0 = ū>M0ū similar to the remaining injections. It is
then obvious that ∇ū` = 2

∑N
n=0 Miū. The gradient ∇u` of

(16) is found by dropping the first and (N + 1)-th entries of
vector ∇ū`.

B. Probabilistic Formulation

For the probabilistic formulation of (5), the update steps in
(12) cannot be applied directly. This is because constraints
(5b)–(5c) involve the indicator function that is not differ-
entiable, and so the Jacobian matrix ∇wg does not exist.
Moreover, these constraints are non-convex, thus prohibiting
stochastic (sub)gradient updates. To circumvent these compli-
cations, we instead turn to the convex CVaR approximations
to (5) using stochastic subgradient primal-dual updates.

We first briefly review the CVaR approximation of chance
constraints from [18], and then compute the related subgra-
dients. For some α ∈ (0, 1), consider the chance constraint
Pr[fθ(x) ≥ 0] = Eθ[1(fθ(x))] ≤ α, where function f
depends on the optimization variable x and a random variable
θ. Note that 1(fθ(x)) ≤ [1 + fθ(x)/t]+ for all fθ(x) and
t > 0. This is easy to verify by checking the two cases in
the definition of the indicator function in (6). Then, if there
exists a t > 0 satisfying Eθ [[1 + fθ(x)/t]+] ≤ α, the original
chance constraint Eθ[1(fθ(x))] ≤ α holds too. Since t > 0,
the restriction of the chance constraint can be alternatively
expressed as Eθ [[t+ fθ(x)]+] ≤ αt. In fact, the requirement
t > 0 can be dropped because for all negative t, the constraint
Eθ[t + fθ(x)]+ ≤ αt becomes infeasible. And for t = 0, the
restricted constraint yields Eθ [[fθ(x)]+] ≤ 0 or equivalently
fθ(x) < 0 for all θ, so that the original chance constraint
holds trivially. Therefore, imposing the convex constraint

Eθ [[t+ fθ(x)]+] ≤ αt for some t constitutes a restriction of
the original chance constraint Pr[fθ(x) ≥ 0] ≤ α.

By identifying fθ(x) with vn − vn(q,θ) and introducing
an auxiliary variable tn per bus n, we can now restrict the
voltage chance constraint in (5b) by imposing constraint

E [[tn + vn − vn(q,θ)]+] ≤ αtn, ∀n ∈ N .

The chance constraints of (5c) on upper voltage limits can
be treated similarly using variables tn’s. Collecting auxiliary
variables {tn, tn}Nn=1 in vectors t and t accordingly, we can
now formulate the convex restriction of (5) as

min
q∈Qθ,t,t

E[`(q,θ)] (17a)

s.to E [[t + v − v(q,θ)]+ − αt] ≤ 0 (17b)

E
[
[t + v(q,θ)− v]+ − αt

]
≤ 0. (17c)

For brevity, let the expressions inside the expectation op-
erator of (17b)–(17c) be represented by g (t,v(q,θ)) and
g
(
t,v(q,θ)

)
. Similar to (8), problem (17) can be tackled

using stochastic primal-dual updates upon replacing the en-
semble with sample averages over K scenarios. Different from
the averaged formulation however, the constraint functions
g (t,v(q,θ)) and g

(
t,v(q,θ)

)
are non-differentiable with

respect to (v, t, t). We use their subgradients instead.

wk+1 := wk − µw
(
∇w`

k +
(
∂wgk

)>
λk +

(
∂wgk

)>
λ
k
)

(18a)

tk+1 := tk − µt
(
∂tg

k
)>

λk (18b)

t
k+1

:= t
k − µt

(
∂tg

k
)>

λ
k

(18c)

λk+1 :=
[
λk + µλg

(
tk+1,v

(
qk+1,θk

))]
+

(18d)

λ
k+1

:=
[
λ
k

+ µλg
(
t
k+1

,v
(
qk+1,θk

))]
+
. (18e)

To compute the needed subgradients, recall that a subgra-
dient of f(x) = [x]+ can be found as

∂f(x) =

{
0 , x < 0
1 , x ≥ 0

= 1(x).

The subgradients involved in (18b)–(18c) can be computed
using the chain rule as

∂tg = dg (1 (t + v − v))− αIN
∂tg = dg

(
1
(
t + v − v

))
− αIN

where the indicator functions here are applied entrywise and
evaluate to vectors. In turn, the subgradients appearing in (18a)
can be found as

∂wg = ∂vg · ∇wv and ∂wg = ∂vg · ∇wv.

The Jacobian ∇wv has already been computed in (14), while
the subgradients with respect to voltage magnitudes are

∂vg = −dg (1 (t + v − v))

∂vg = dg
(
1
(
t + v − v

))
.



6 IEEE TRANSACTIONS ON SMART GRID (SUBMITTED MAY 2, 2021)

IV. GRADIENT-FREE IMPLEMENTATION

To compute the (sub)gradients appearing in the primal-dual
updates of Section III, an accurate model of the distribution
feeder (including its connectivity and line impedances) is
required. Such requirement may not be realistic under two
scenarios: i) If the utility does not have a detailed feeder
model; and ii) When inverters are controlled by a third-party
entity such as an aggregator with which the utility is reluctant
to share feeder models due to security and privacy limitations.
This section puts forth a gradient-free implementation of the
DNN updates relying on a digital twin that is a black-box or
query model of the feeder. Once fed with grid conditions θ
and inverter setpoints q, the digital twin provides the vector of
nodal voltages v and ohmic losses ` as its outputs. Through
this model, an aggregator can map injections to voltages and
losses yet without knowing the precise feeder model.

Lacking the feeder physical model precludes the sensitivity
calculations derived using the power flow equations. In other
words, one cannot compute the partial derivatives appearing
in the left-hand side of (14) and (16). Nonetheless, we can
aim directly for the Jacobian matrix ∇qv and the gradient
vector ∇q`, and approximate them through finite differences.
In detail, we resort to zeroth-order approximants (see [23]) of
the needed sensitivities by querying the digital twin twice to
obtain two function evaluations as:

∇̂q` =
`(q + εq̌,θ)− `(q− εq̌,θ)

2ε
q̌> (19a)

∇̂qv =
v(q + εq̌,θ)− v(q− εq̌, ,θ)

2ε
q̌> (19b)

where ε is the scale of perturbation, and q̌ is a perturba-
tion vector Gaussian distributed with zero-mean and standard
deviation σq̌. The quantities ε and σq̌ are treated as hyper-
parameters and are set during the training process.. The
approximations in (19) are carried out in three steps. First,
the DNN is presented with the input φ and its output q is
recorded. Second, the digital twin is presented with (q,θ)
and computes `(q,θ) and v(q,θ). Third, the digital twin is
presented with (q + εq̌,θ) and computes v(q + εq̌,θ). Fig 3
compares the steps for obtaining the quantities ∇w` and ∇wv
for the gradient-based and gradient-free approaches.

With the finite-difference approximants of (19) in place,
the gradient-free primal-dual updates are straightforward to
execute by approximating

(∇̂w`)
> = (∇̂q`)

>∇wq

∇̂wv = ∇̂qv · ∇wq

where ∇wq is again calculated gradient back-propagation.

V. NUMERICAL TESTS

The performance of the proposed DNN-based control strat-
egy was evaluated using a single-phase version of the IEEE
37-bus feeder. Real-world one-minute active load and solar
generation data were extracted for April 2, 2011 from the
Smart* project [24], [25]. For active loads, homes with IDs
20-369 were used. Averaged load demands were calculated by
considering 10 homes at a time, and were serially allotted to

Fig. 3. Steps for calculating ∇w` and ∇wv for the gradient-based (top)
and gradient-free (bottom) approaches. The gradient-based approach requires
a solution to the power flow equations in conjunction with the inverse function
theorem (Section III); the gradient-free obtains the desired quantities by
probing the digital twin and applying zero-order approximations.

Fig. 4. The IEEE 37-bus feeder used for the numerical tests. Node numbering
follows the format node number {panel ID}. The inverters at nodes
{12, 20, 22, 24, 25} provide reactive power control, whereas the rest operate
at unit power factor.

buses 2-36 of Fig. 4. The values of active loads were scaled so
their maximum active load per node matched its benchmark
value. Reactive loads were then added to each of these homes
by sampling lagging power factors uniformly within [0.9, 1.0]
and for each time interval. For solar generation, panel IDs
were matched to the buses as shown in Fig. 4. Solar generation
values were scaled so the maximum generation per panel was 2
times the benchmark value. Out of all the nodes with inverter-
interfaced solar generation, those at nodes {12, 20, 22, 24, 25}
were also providing reactive power support. The extracted
data points were considered as available forecasts for 4-hour
control periods. Appropriate training and testing scenarios
were created. Zero-mean white Gaussian noise was added to
the 240 one-minute data points from the forecast to create a
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total of 1200 samples. The standard deviation of the Gaussian
noise was set to 0.1 times the mean load forecast. Out of
the 1200 samples, 960 were used as the training set and the
remaining 240 formed the testing set. The training samples
were additionally randomly shuffled to promote better gener-
alization for the DNNs.

All tests were conducted on a 2.4 GHz 8-Core Intel Core
i9 processor laptop computer with 64 GB RAM. Simulation
scripts were written in Python and TensorFlow libraries to
implement and train the DNNs. For the tests presented, four-
layered fully connected DNNs were employed. The grid con-
ditions vector θ := [pg,pc,qc]

> consisting of measurements
from the M ≤ N buses equipped with smart meters were fed
as inputs to the DNNs. Therefore, the input layers were chosen
to have 3M neurons. The two subsequent hidden layers were
fixed to having 3N and 2N neurons, respectively. Finally, the
output layers had 5 neurons corresponding to the 5 inverters.
All but the final layers of the DNNs employed the ReLU
(rectified linear unit) activation with the final layers using a
scaled tanh activation to ensure the inverter limits qg ∈ Qt.
The weights for the DNN layers were initiated from a Gaussian
distribution with zero mean and a unit standard deviation. The
biases for the DNN layers, the dual variables, and the auxiliary
variables were all initialized at zero. Additional modelling and
training details are presented along with the discussions of the
results as follows.

A. Averaged Formulation

For the average formulation, the DNN was fed with the
complete vector of grid conditions θ obtained from measure-
ments collected at all buses. DNN weights were updated using
Adam with a learning rate of 0.001. Dual variables were
updated using SGD with a learning rate of 10 that decayed
with the square-root of the iteration index [26]. The model
was then trained for 15 epochs over the training scenarios.

To demonstrate the efficacy of the proposed approach, the
results are compared against a no compensation scenario,
which represents the grid conditions in the absence of reactive
power compensation by inverters. The DNN-based approach
is also benchmarked against an optimal approach that solves
the deterministic problem in (2) per minute. As discussed
previously, such optimal approach might not be realistic to
implement in real time due to the high computational burden.
Fig. 5 compares the average losses and bus voltages under
the three scenarios over the training set and during the high
solar period of 12–4 pm. Without any reactive power com-
pensation, buses {18, 19, 20, 21, 22, 33, 34} experience over-
voltages. The proposed DNN-based approach behaves as ex-
pected by lowering the average voltages at these buses down
to the acceptable range. The optimal approach also achieves
the same objective but by bringing all instantaneous voltages
to the desired range whenever feasible. Note that both the
DNN-based approach and the optimal approach incur higher
losses when compared to the no compensation scenario. This
is a result of increase in the magnitude of line currents on
account of reactive power withdrawals. Since the optimal
approach focuses on instantaneous voltage values rather than

Fig. 5. Top: Time-averaged losses during the 12–4 pm testing interval attained
by the instantaneously optimal control strategy of (2); the proposed DNN-
based inverter control; and no reactive power compensation by inverters.
Bottom: Box plots showing the first and third quantiles of the voltage
deviations experienced across buses under the three control strategies. The
proposed strategy achieves lower average losses over optimal inverter control
as voltages are not constrained within ±3% at all times.

Fig. 6. Results for averaged formulation over testing data during the
interval 12–4 pm: Average losses under the instantaneous optimal strategy,
the proposed DNN-based approach; and no reactive power compensation are
depicted on the top panel. Voltage deviations across buses under the three
strategies are shown at the bottom panel.

their averages, it incurs higher losses when compared to the
DNN-based approach. The trained DNN was then evaluated
over unseen scenarios of the testing set. As can be seen in
Fig. 6, the proposed approach performed remarkably well in
maintaining voltages within limits and lowering average losses
over the testing set.

Finally, the sample probabilities for voltage violations were
calculated for the resulting voltages from the no compensation
case and the proposed DNN-based approaches. For the buses
with non-zero values for these probabilities, radar plots were
drawn as shown in Fig. 7. The radial-axis represents the values
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Fig. 7. Voltage profiles during the 12–4 pm interval for averaged formulation.
Results under no reactive power compensation and under the proposed
DNN-based policies have been compared. Angular markings correspond to
bus numbers, whereas radial markings are sampled probabilities of voltage
violations.

Fig. 8. Results for probabilistic formulations for the 12–4 pm window. Voltage
profiles for different values of α = {0.7, 0.5, 0.3} are depicted. Angular
markings correspond to bus numbers whereas radial markings are sampled
probabilities of voltage limits violation.

for sample probabilities for voltage limit violations, whereas
the angular markings correspond to the bus numbers. One can
see that without any reactive power support, the grid faces a
high probability of voltage violations over both training and
testing. While the average formulation successfully regulates
the average voltages, its effect on reducing the total number
of occurrences of voltage violations is somewhat modest with
buses {19, 20, 21, 22, 23} violating the voltage limits for more
than half of the scenarios.

B. Probabilistic Formulation

Employing the DNN architecture from the previous sub-
section and the full input vector θ, updates in (18) were
applied to train the DNN for the probabilistic formulation. The
DNN weights were updated using Adam with a learning rate
of 0.001. For the auxiliary variables {t, t}, Adam optimizer
with a learning rate of 0.001 was deployed, and the dual
variables were updated using SGD with a learning rate of 1
that decayed with the square-root of the iteration index. The
model required a higher number of 20 epochs to converge
during training because of the additional primal variables t.
The experiments were conducted for the same time period of
12–4 pm. The experiments were repeated for three different
values of α = {0.7, 0.5, 0.3} and the radar plots for the
resulting sample probabilities of voltage violations are shown
in Fig. 8.

Fig. 9. Mean voltage deviations across the buses under gradient-based and
gradient-free approaches for the averaged formulation and during the testing
12–4 pm interval.

As desired, when compared to the averaged formulation,
the occurrences of voltage violations under the probabilistic
formulation were found to be drastically less for lower values
of α. Since the calculated sample probabilities came out to
be less than the set α, the results in Fig. 8 confirm the
conservative nature (restriction) of the convex approximations
in (17).

C. Gradient-free implementation

To quantify the accuracy of the gradient approximations in
(19), the DNNs for the averaged and probabilistic formulations
were trained under the gradient-free fashion. The scale of
perturbation ε was set to 0.1, and the perturbations q̌ were
sampled from a zero-mean Gaussian distribution with a unit
standard deviation. The gradient-free approaches were com-
pared to their gradient-based counterparts over the same time
periods and the results shown in Figs. 9-10.

Fig. 9 shows the mean voltage deviations across all the buses
and time under the two approaches. The gradient-free approach
incurs slightly higher voltage violations, but otherwise matches
the performance of the gradient-based approach surprisingly
well without any explicit knowledge of the underlying rela-
tionships. Similar results were confirmed for the probabilistic
formulation in Fig. 10, where both approaches yield similar
sample probabilities for voltage violations over training and
testing, with α = 0.5.

D. Partial inputs

To study the effect of partial DNN inputs on the control
performance of the learned DNN policy, we varied the number
of nodes whose data are telemetered in real time for the prob-
abilistic formulation. First, real-time meters were assigned to
all nodes with solar generation. Then, different input scenarios
were simulated by expanding the subset of inverter-equipped
nodes with real-time metering moving from nodes 2–11; nodes
2–16; nodes 2–21; and a full input vector consisting of all
nodes. The mean-sampled probabilities of voltage violations
across time and buses were recorded. The value of α was
set to 0.5 for all scenarios. Figures 11 and 12 show the
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Fig. 10. Comparison of gradient-based and gradient-free approaches for the
probabilistic formulation with α = 0.5 over the testing 12–4 pm window.
Voltage profiles for both approaches are depicted using polar plots.

Fig. 11. Mean sampled probabilities of voltage violations for the probabilistic
formulation with α = 0.5 during training over 12–4 pm. The dimension of the
DNN input increases as the number of nodes monitored in real time increases.

results recorded respectively during training and testing. The
results confirm the intuition that the performance of the control
policies improves as more real-time information is provided
to the DNN. As the nodes with real-time monitoring increase,
the sampled probabilities of voltage violations decrease.

VI. CONCLUSIONS

This work has presented a DNN-based approach for stochas-
tic optimal inverter control. To capture uncertainty, the grid
conditions have been modeled as random variables and the
associated inverter setpoints by a stochastic policy learned
through a DNN. The DNN is periodically trained offline to
minimize the average ohmic losses and maintain either the
average voltages within limits or the probability of voltage de-
viation occurrences low. Training is accomplished by adopting
existing stochastic primal-dual updates to the AC OPF setup.
The proposed scheme not only expedites the computation of
near-optimal inverter setpoints, but also resolves two practical
difficulties: d1) How to solve an OPF using only a power flow
solver or a digital twin of the feeder? and d2) How to deal
with an OPF if grid conditions are only partially known?

Fig. 12. Mean sampled probabilities of voltage violations for the probabilistic
formulation with α = 0.5 during testing over 12–4 pm. The dimension of the
DNN input increases as the number of nodes monitored in real time increases.

Numerical tests on the benchmark IEEE 37-bus feeder
showcase the salient features of the novel methodology. The
adopted stochastic primal-dual updates train a DNN-based
policy using a modest number of training samples. The
DNN is numerically shown to produce an inverter dispatch
that minimizes the OPF cost while satisfying the operating
constraints. Although the averaged formulation succeeds in
maintaining the voltage at each node within limits on the
average, violations do occur frequently. To that end, the
chance-constrained formulation may be more relevant. The
latter comes at minimal extra complexity over the averaged
formulation. Being a convex restriction the numerical tests
corroborate that it is a conservative yet safe scheme. Our
experiments have also shown how the DNN-based policy can
be driven with incomplete grid conditions, and demonstrated
the improvement in feasibility when more information is
presented to the DNN. A final interesting outcome is that
when the DNNs are trained using the gradient-free updates,
the degradation in performance is minimal although the learner
has less information about the feeder at its disposal.

Some open questions are to: i) Extend the implementation
to a multiphase grid model with detailed ZIP loads, regu-
lators, and capacitor banks; ii) Consider additional network
constraints and/or alternative objectives; iii) Experiment with
the frequency of re-training the DNN, the size of the training
dataset, and the way it has been generated; iv) Utilize the
DNN output only to warm-start an actual OPF solver; and v)
Optimally select the grid proxies to improve inverter control
performance under a communication budget.
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