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Abstract: Finding the equilibrium strategy of agents is one of the central problems in game
theory. Perhaps equally intriguing is the inverse of the above problem: from the available finite
set of actions at equilibrium, how can we learn the utilities of players competing against each
other and eventually use the learned models to predict their future actions? Instead of following
an estimate-then-predict approach, this work proposes a decision-focused learning (DFL) method
that directly learns the utility function to improve prediction accuracy. The game’s equilibrium
is represented as a layer and integrated into an end-to-end optimization framework. We discuss
the statistical bounds of covering numbers for the set of solution functions corresponding to the
solution of a generic parametric variational inequality. Also, we establish the generalization bound
for the set of solution functions with respect to the smooth loss function with an improved rate.
Moreover, we proposed an algorithm based on the iterative differentiation strategy to forward
and backpropagate through the equilibrium layer. The convergence analysis of the proposed
algorithm is established. Finally, We numerically validate the proposed framework in the utility
learning problem among the agents whose utility functions are approximated by partially input
convex neural networks (PICNN).

Keywords: data-driven decision-making, game theories, agent technology for business and
economy, social resource planning and management, machine learning, statistical analysis, and
multi-agent systems.

1. INTRODUCTION

The concept of equilibrium is fundamental in several
disciplines, including economics, management science, oper-
ations research, and engineering Heidarkhani et al. (2019).
The use of variation inequality (VI) provides a powerful
unifying approach for the study of equilibrium problems
Kostreva (1990). VI typically arises in network systems
where problems are modeled using cooperative and nonco-
operative game approaches Scutari et al. (2010).

Traditionally, game theory focuses on depicting competing
players’ behaviors and their interactions using complicated
mathematical models Roughgarden (2010). For a set of
players in a game, the aim is to optimize their utility
functions. These utility functions depend on the players
and other players’ strategies. Each individual tries to attain
an outcome that is best for him/herself (Nash equilibrium)
Facchinei and Pang (2003); Roughgarden (2010). However,
the utility function used to calculate the equilibrium is not
directly observable. While it can be estimated or modeled,
a small error can potentially affect the resulting equilibrium
Jia et al. (2018).

Equally interesting and practical is the inverse game
problem, that is, investigating the utility functions of
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individuals that lead to the observed equilibrium (see, for
example, Ratliff et al. (2014); Kuleshov and Schrijvers
(2015); Bertsimas et al. (2015); Jia et al. (2018); Molloy
et al. (2022); Ding et al. (2022); Adams et al. (2022)).
Since previous equilibrium actions are often observable
experimentally, it is possible to construct the agents’ utility
functions from the observed equilibrium.

Prior studies follow a two-stage approach (i.e., estimate-
then-predict), where the utility function parameters are
first learned based on specific optimality criteria. Then,
a plug-in estimator is used to predict future equilibrium
actions Ratliff et al. (2014); Bertsimas et al. (2015). The
main issue lies in the propagation of estimation error
to the downstream prediction, which is unaccounted for
during the learning stage. In contrast, we propose a DFL
approach where the downstream optimization problem
is plugged into the prediction model. In order to make
evidence-based decisions, In this paper, we design a decision-
focused learning approach as a mathematical program
with equilibrium constraints (MPEC) problem using finite
instances of available actions.

The prime advantage of DFL is that the prediction error
is directly minimized during the learning process. Such
approach has been studied for convex Elmachtoub and
Grigas (2020), combinatorial Mandi et al. (2020); Feber
et al. (2020), and stochastic Donti et al. (2017) optimization



problems. Statistical bounds in these settings have been
studied in Balghiti et al. (2021); Wang et al. (2020);
Bertsimas and Kallus (2019); Hu et al. (2021). Closely
related to our setting is the work on zero-sum, extensive-
form games Ling et al. (2018). However, the analysis of
statistical complexity and the statistical bounds for these
settings has not yet been thoroughly established.

In this work, game equilibrium is represented as a layer
and integrated into an end-to-end optimization framework.
The key contributions can be summarized as the following:

• We discuss the statistical bounds of covering numbers
for the set of solution functions corresponding to the
solution of affine parametric variational inequalities.

• We establish a generalization bound for the set
of solution functions of affine variational inequali-
ties for smooth loss function with an improved ex-
cess risk bound from O

(√
R̂
n log1.5 (n) + log3(n)

n

)
in Sre-

bro et al. (2010) to O
(√

R̂
n log (n) + log2(n)

n

)
, where

R̂ is the empirical risk of the hypothesis class.
For the solution functions of generic variational
inequalities, we provide an excess risk bound of

O

(√
R̂
n log1.5(n)C

( 2k
n +1)

y +
log3(n)C

( 4k
n

+2)
y

n

)
, where Cy is the

upper bound value of the solution function and k is
the number of times the solution function is piecewise
continuously differentiable within each piece.

• We propose an algorithm based on the iterative dif-
ferentiation (ITD) strategy to calculate the gradient
of the decision-focused objective with respect to the
learning parameters (i.e., implicit gradient). Specifi-
cally, the implicit gradient is obtained by using the
notion of merit function (D-gap function) and fixed-
point equations in Section 3.

• We extend the convergence analysis of the current
literature of bilevel optimization problems Al-Shedivat
et al. (2017); Huisman et al. (2021); Finn et al.
(2019); Raghu et al. (2019); Franceschi et al. (2018),
network games Parise and Ozdaglar (2019), and
iterative method of variational inequalities Shehu et al.
(2019) to the proposed algorithm with a nonconvex
optimization problem as the decision-focused objective.
We show that the update of the proposed algorithm
for K iterations converges to a stationary point with
a rate O(1/K).

Notation. for convenience, we use ∥ · ∥ for the standard
Euclidean norm. We use PY (ω) for the projection of ω
onto set Y . In the generalization error bound analysis, we
represent the function class as H. A function in a class PCk

is piecewise smooth, and k times continuously differentiable
within each piece.

2. PROBLEM FORMULATION

Consider a non-cooperative game among d players, each
player j has a strategy vector y(j) selected from a set
Yj,u,ω ⊆ Rpj , where u ∈ Rq is the context and ω ∈
Rm is the learning parameter. The utility of agent j
depends on y(j), and the strategy vector of other agents
y(−j), where y(−j) = {y(1), . . . , y(j−1), y(j+1), . . . , y(d)}
denotes the set of strategies of all agents except agent

j. Participants aim to maximize their utility functions and
attain an individually optimal strategy Facchinei and Pang
(2003); Roughgarden (2010). We provide a framework that
supports the parametric estimation of the utility functions.

In parametric estimation, the utility function belongs to a
known parametric family. We denote the utility function
for parametric estimation with known parametric family
as gj(·, u, ω) : Yu,ω → R, where Yu,ω = Y1,u,ω × Y2,u,ω ×
· · ·×Yd,u,ω ⊆ Rp. In a more realistic setting where the true
parametric family is unknown, we propose to estimate the
unknown utility by a partially input convex neural network
(PICNN) Amos et al. (2017) with the learning parameter ω,
expressed as ĝj(·, u, ω) : Yu,ω → R. Also, ĝj(·, u, ω) depends
on unknown parameter ω and must be inferred form data.

The parameters of the utility functions are learned through
observations. In particular, we would like to learn the
parameter ω from a dataset {(u1, y1), . . . , (un, yn)} that
consists of n pairs of context u and agent actions y at
the equilibrium by minimizing some loss represented by
f(m(u, ω), y). The loss function f(m(u, ω), y) represents a
measure of the quality of prediction by comparing the ob-
jective value of the solution generated using the prediction
model and the observed actions at the equilibrium.

minimize
ω∈Ω

Φ(ω) := f(m(u, ω), y) (1)

where m(u, ω) ∈ Yu,ω ⊆ Rp is the predictor function
of users’ action used for estimating y with a learning
parameter ω. The goal of decision-focused utility learning
is to find ω that parameterizes the utility function such
that the prediction error is minimized.

One question is how to choose the prediction model m(u, ω).
Variation inequality is a modeling tool that captures the
decision-making in game theory. Because we know the
structure of our problem is a game, we make a structural
assumption that the prediction model is a solution function
of some governing variational inequality, where the param-
eters of the solution functions are trained in an end-to-end
fashion. We start by defining the parametric variational
inequality as the following

VI(Yu,ω, Fu,ω), (2)
where Fu,ω : Yu,ω → Rp is an equilibrium map formed
by the gradients of individual agent utility functions. For
clarification, the set Yu,ω and mapping Fu,ω are represented
as follows

Yu,ω ≜
d∏

j=1

Yj,u,ωj
and Fu,ω ≜

∇y(1) ĝ1(y, u, ω1)
...

∇y(d) ĝd(y, u, ωd)

 . (3)

Solving a parametric VI(Yu,ω, Fu,ω) is to find y∗ ∈
SOL (Yu,ω, Fu,ω); i.e., y∗ ∈ SOL (Yu,ω, Fu,ω) if and only
if y∗ ∈ Yu,ω and satisfies the following inequality

Fu,ω(y
∗)T (z − y∗) ≥ 0, for all z ∈ Yu,ω, (4)

where y∗(u, ω) is the true Nash function. In our case,
the goal is to find a solution function m(u, ω) that
approximates the true Nash function y∗(u, ω) well. The
solution function plays a significant role in modeling
such complex phenomena and decision-making processes.
Moreover, the solution function is differentiable so that
the parameters of the solution function can be trained in
an end-to-end framework through the implicit gradient



as developed in section 3. From the above discussion, the
general framework is illustrated in Fig. 1.

3. METHODOLOGY

The decision focus utility learning problem in our setting
is to learn the utility functions parameters ω such that
the prediction error in the final stage is minimized; such
a model should be trained robustly and in an end-to-end
fashion.

A gradient-based method is used to solve (1). In forward
propagation, we evaluate the prediction loss function, which
in turn depends on the solution function of VI in (2). In
order to solve the VI problem. We begin with necessary
assumptions on the problem (2) structure.

Assumption 1. The following hold for problem (2):

(a) For any u ∈ U and ω ∈ Ω, the map Fu,ω(·) is con-
tinuous differentiable, L− Lipschitz, and µ− strongly
monotone with respect to y ∈ Yu,ω.

(b) Sets Ω and U are closed, convex, and bounded such
that for finite scalars Ū and Ω̄, we have U ≜ {u ∈
U | ∥u∥ ≤ Ū}, Ω ≜ {ω ∈ Ω | ∥ω∥ ≤ Ω̄}.

(c) For any i ∈ [nineq], j ∈ [neq], we have linear functions
θineqi : Rp × Rm → R and θeqj : Rp × Rm → R such
that that the set-valued map Yu,ω is bounded polyhedral
given as

Yu,ω = {y ∈ Rp : θineqi (y, u, ω) ≤ 0, for all i ∈ [nineq]
θeqj (y, u, ω) = 0, for all j ∈ [neq]}

(5)

Under Assumption 1 on Fu,ω and Yu,ω, we establish the
required conditions for the existence and uniqueness of
the solution of VI(Yu,ω, Fu,ω) using the proposed approach.
In this paper, the regularized D-gap function, which is a
metric to characterize the optimality of the solution of
the VI problem in (2), is considered and defined as the
following.
Definition 1. For any scalars b > a > 0, y ∈ Rp, the gap
function of ϕab(y, ω) is defined as ϕab(y, ω) ≜ ϕa(y, ω) −
ϕb(y, ω), where for some c > 0 and any positive definite
matrix G, ϕc(y, ω) is given by
ϕc(y, ω) ≜ sup

z∈Yu,ω

{
⟨Fu,ω(y), y − z⟩ − c

2 (y − z)TG(y − z)
}
. (6)

The advantages of using the regularized gap functions
appear in analyzing the convergence rate of various iterative
techniques. Also, considering the regularized gap functions
is useful to derive the implicit gradient, as we will show
later in Lemma 1.

Considering Definition 1, for some y(u, ω), if the value
function ϕab(y(u, ω), ω) = 0, then y solves VI(Yu,ω, Fu,ω(·))
Facchinei and Pang (2003). Using the definition of the
D-gap function, in the following result, we show that
the solution of VI can be neatly obtained by solving a
fixed-point equation via a projector operator, which paved
the way to accomplish forward propagation. Note that,
implicit differentiation can be used to derive ∇ωy to support
backpropagation. That is, to update the value of ωk, we
obtain the gradient of the objective function with respect to
the parameter ω. As the solution function is also a function
of ω, the key is to obtain ∇ωy.

Lemma 1. Let Assumption 1 hold and y ∈ Yu,ω be a
solution of the VI, i.e., y ∈ SOL(Yu,ω, Fu,ω(·)). Then for
scalars b > 0, we have the following

(a) For scalar b > 0, we have
y = z∗b (y, ω), (7)

where z∗b (y, ω) = PYu,ω

(
y − 1

bFu,ω(y)
)

is the unique
solution of ϕb(y, ω).

(b) The implicit gradient ∇ωy can be obtained by solving
the following linear equation:

∇ωy = ⟨∇yz
∗
b (y, ω)︸ ︷︷ ︸

term 1

,∇ωy⟩+∇ωz
∗
b (y, ω)︸ ︷︷ ︸

term 2

, (8)

where terms 1, and 2 can be obtained from differenti-
ating through the solution of the projection problem in
(a).

Due to space limitations, we provide all the proofs in this
online document Al-Tawaha et al. (2022). Lemma 1 implies
that finding a solution to VI(Yu,ω, Fu,ω) is equivalent to
finding a fixed point of z∗b (y, ω), that accomplishes the task
of forward propagation through the variation inequality.
The existence and uniqueness of the solution function,
which can be established under Assumption 1, enables us to
implicitly differentiate through z∗b (y, ω) to derive ∇ωy that
fulfills the backward propagation through the variational
inequality. Note that we avoid the backpropagation by
unrolling the forward computations within an automatic
differentiation in evaluating the implicit gradient. We
obtain the implicit gradient by using the ideas of the D-gap
function and fixed-point equations. Therefore, the proposed
approach does not require the storage of intermediate terms
of the iterative method to compute the fixed point, making
it computationally efficient.

4. PROPERTIES OF THE SOLUTION FUNCTION OF
VI

This section provides a mathematical characterization of
the properties of the solution functions of parametric
variation inequalities. Specifically, we answer the question:
What is the class of the solution functions of variation
inequalities? We start by discussing a simple case where
Fu,ω is affine mapping and Assumption 1 (b and c) hold
on set Yu,ω. As we will show later, solving these variation
inequalities using the proposed approach is equivalent to
solving multi-parametric quadratic programming.
Lemma 2 (Theorem 3.1 Pistikopoulos et al. (2020)).
Considering a multi-parametric quadratic programming
problem (mp-QP), and let Assumption 1 (c) hold on
set Yu,ω, then the optimizer z∗b (y, ω) is continuous and
piecewise affine.

Note that, from Lemma 1, the solution of the parametric
variation inequality is given by the projection of y −
1
bFu,ω(y) on Yu,ω, then this projection problem is an mp-
QP.

Next, we discuss the class of solution functions for generic
variational inequalities. For the general case analysis, we
extend assumption 1(c). We assume that the set valued-
map Yu,ω satisfies constraint qualifications (CQs), including
Mangasarian-Fromovitz constraint qualification (MFCQ),
Constant Rank Constraint Qualification (CRCQ), and
Strong Coherent Orientation Condition (SCOC). Under
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Fig. 1. In the general framework, players’ utility functions are approximated using (PICNN). A VI is an embedding
layer in the learning, which can capture proper inductive bias, such as the equilibrium of a game. This framework
connects a learning model and a VI in an end-to-end differentiable learning framework.

these assumptions, we can show that the solution function
is piecewise continuous PC1.
Lemma 3 (Theorem 4.2.16 Luo et al. (1996)). Let the
set valued-map Yu,ω̄ such that constraint qualifications
(MFCQ, CRCQ, SCOC) are satisfied. Now let y∗(ū, ω̄)
be the solution of SOL(Yu,ω̄, Fū,ω̄(·)). Then, there exists
a neighborhood Ω̄ × Ȳ of (ω̄, ȳ), such that y : Ω̄ → Ȳ is
piecewise smooth PC1 and y is a unique solution map of
VI(Yu,ω, Fu,ω(·)).

5. BOUNDS ON GENERALIZATION ERROR

One fundamental theoretical question is about the learn-
ability of the solution functions. In this section, we start
by discussing the covering number of the set of solution
functions, which are the cornerstones to establish the
generalization error boundsMohri et al. (2018).

5.1 Covering number bound

We obtain the L2 covering number bounds for the affine
parametric variational inequality solution function. The
L2 covering number N2(ϵ,H,Dn) of the set of solution
function H define as H = {m(., ω) : ω ∈ Ω}. at ϵ accuracy
with respect to L2 metric defined over n data points as
follows
Definition 2 (Definition 1 Zhang (2002)). Given ob-
servations Dn = {u1, . . . , un} and vectors m(Dn, ω) =
[m(u1, ω), . . . ,m(un, ω)] ∈ Rn parameterized by ω for any
m ∈ H , the L2 covering number, denoted as N2(ϵ,H,Dn),
is the minimum number l of a collection of vectors
v1, . . . , vl ∈ H such that ∀ω ∈ Ω, v ∈ H there exists an
vj such that √√√√ 1

n

n∑
i=1

(m (ui, ω)− vj (ui, ω))
2 ≤ ϵ.

We define Np(ϵ,H, n) = supDn
Np (ϵ,H,Dn) .

Note that based on Lemma 3, the solution functions are
piecewise affine functions with parameter ω ∈ Ω. We
provide an important result for L2 covering number bounds
for the set of solution functions H.
Lemma 4. Consider problem (2). Provided Assumption
1 holds, we bound the L2 covering number for the set of
solution function H as

log(N2(ϵ,H, n)) ≤
p∑

i=neq

(nineq

i

)2M2Ω̄2Ū2

ϵ2
,

where M > 0 is the universal constant, Ω̄, and Ū are the
nonnegative scalars, introduced in Assumption 1(b).

The above bound implies that the number of inequality
constraints increases the complexity of the class of solution
functions. The proof of the proposed bound consists of
two stages: we start by bounding the number of critical
regions, then we combine it with the covering number
within each region. Also note that for each critical region,
the covering number is bounded by a constant depending
on the parameter and the input spaces’ bounds.

To sum up this section, the critical implications of Lemma 4
is that the solution function of affine parametric variational
inequalities is statistically learnable.

5.2 Generalization Bound

In this section, we start by deriving the generalization
bound with an improved rate for the function class corre-
sponding to the solution function of the affine variational
inequality. Then, we derive the generalization bound for
the solution function of the generic variational inequalities.
We consider the input space as context U ⊆ Rq and
the output space is the equilibrium actions of players
Yu,ω ⊆ Rp. The available finite set of samples is Dn =
{(u1, y1), . . . , (un, yn)} (sampled in i.i.d. fashion). We also
specify the loss function ℓ : H× Yu,ω → R, to be Lℓ Lips-
chitz smooth, bounded, and nonnegative. Let the empirical
risk be denoted by R̂(m) = 1

n

∑n
i=1 ℓ(m(ui, ω), yi), and the

true risk as R(m) = E[ℓ(m(u, ω), y)]. We start by defining
an empirically restricted class.
Definition 3. For the set of solution function H, loss
function ℓ, dataset {(ui, yi)}ni=1, and a nonnegative scalar
r, we define the following empirically restricted class

Lℓ(r) ≜
{
ℓ : (u, ω, y) → ℓ(m(u, ω), y) : m ∈ H, R̂(m) ≤ r

}
.

Restricted function class is machinery considered in Bartlett
et al. (2005); Srebro et al. (2010) for proving possible
fast rates based on local Rademacher complexity. We also
use empirically restricted class and provide a generaliza-
tion bound with further improvement over the existing
generalization bound in Srebro et al. (2010) for smooth,
nonnegative, bounded loss function.
Theorem 1. For an Lℓ-smooth, nonnegative, and bounded
loss function such that |ℓ| ≤ ℓmax, for any δ ∈ (0, 1), we
have that with probability at least 1 − δ over a random
sample size n, for any m ∈ H corrosponding to the solution
function of affine variational inequality

R (m) ≲ R̂ (m) +O

(√
R̂(m)

n
log (n) +

log2 (n)

n

)
.

To prove the rate of generalization bound in the Theorem
1, we start by bounding the Rademacher complexity of



the empirically restricted class in terms of L2 covering
number. Then, instead of bounding L2 covering number of
the empirically restricted class in terms of fat-shattering
dimension, we bound L2 covering number of the empirically
restricted class directly in terms of L2 covering number of
the hypothesis class. Specifically, by using the fat-shattering
dimension, the rate of generalization error is given by

R (m) ≲ R̂ (m) +O

(√
R̂(m)

n
log1.5 (n) +

log3 (n)

n

)
.

Note that the previous generalization bound is obtained
by bounding fat-shattering dimension Alon et al. (1997),
which leads to bounds worse than the ones that can
be obtained in terms of L2 covering number. Next, we
extend the generalization bound for the solution function of
generic parametric variation inequalities, where the solution
function is a piecewise smooth function.
Theorem 2. For a function class with Lℓ-smooth, non-
negative, and bounded loss function such that for all u, ω,
we have ∥m(u, ω)∥ ≤ α0, than with 1 − δ confidence, for
any m ∈ H, the empirical loss is bounded as

R(m) ≲ R̂(m) +O

(√
R̂(m)

n log1.5(n)α
( 2k

n +1)
0 +

log3(n)α
( 4k

n
+2)

0

n

)
.

The proof of Theorem 2 is based on the result provided in
Srebro et al. (2010); we start by bounding the Rademacher
complexity by the covering number of the solution functions
of generic variational inequalities.

6. ERROR BOUNDS AND CONVERGENCE
ANALYSIS

In this section, we discuss the error bounds on the
gradients of the decision focus objective in (1), obtained
from Algorithm 1 and provide the convergence results in
Theorem 3. Note that for notational simplicity, in this
section, we assume that y ∈ Yu,ω ⊆ Rpn and Fu,ω(y) :
Rpn → Rpn by considering a batch learning set up.

Algorithm 1 Decision-focused iterative implicit gradient
Input: ω1, scalar b > 0, and stepsize β.
1: for k = 1, . . . , K do
2: for t = 1, . . ., T do
3:

z∗b(yt, ωk) = argmax
z∈yu,ω

{
⟨Fu,ωk

(yt), yt − z⟩ − b
2∥yt − z∥2

}
(9)

yt+1(u, ωk) := z∗b (yt, ωk). (10)
4: end for
5: Obtain ∇yzb(yk, ωk) and ∇ωzb(yk, ωk) through the

differentiation of the optimization problem (9).
6: Evaluate ∇ωyk from (8).
7: Evaluate the gradient for problem (1) objective as

∇ωΦ(ωk) = ∇ωf(yk(ωk), y) + ⟨∇yf(yk(ωk), y),∇ωyk(ωk)⟩
8: Update ωk using the following gradient update

ωk+1 = PΩ {ωk − β∇ωΦ(ωk)},
9: end for

We start here by providing a set of standard assumptions
on function, f , and on the fixed-point in problem (1) and
(7), respectively.
Assumption 2. Consider problem (1). The gradient of
the objective function f(y, ω) has the following properties:

(a) We assume the Lipschitz smoothness property for
f(y, ω̄) with respect to y, i.e. for any ω̄ ∈ Ω, and
y1, y2 ∈ Yu,ω, we have

∥∇ωf(y1, ω̄)−∇ωf(y2, ω̄)∥ ≤ Lfω∥y1 − y2∥
and ∥∇yf(y1, ω̄)−∇yf(y2, ω̄)∥ ≤ Lfy∥y1 − y2∥.

(b) We assume the Lipschitz smoothness for f(ω, ȳ) with
respect to ω for any ȳ ∈ Yu,ω, i.e. for any ω1, ω2 ∈ Ω,
and y ∈ Yu,ω, we have

∥∇ωf(ȳ, ω1)−∇ωf(ȳ, ω2)∥ ≤ L̄fω∥ω1 − ω2∥
and ∥∇yf(ȳ, ω1)−∇yf(ȳ, ω2)∥ ≤ L̄fy∥ω1 − ω2∥.

(c) Function f is M−Lipschitz with respect to both pa-
rameter ω ∈ Ω and y ∈ yu,ω.

(d) Jacobians ∇ωz
∗
b (y, ω) and ∇yz

∗
b (y, ω) are Lipschitz

continuous with constants Lωin and Lyin , respectively.

Lipschitzness in Assumption 2(c) of the function f is to
ensure the gradient is bounded; also, the other assumptions
characterized the smoothness of the objective function.
Moreover, we provide an assumption on the fixed-point
problem such that the jacobian of the projection operator
is smooth with respect to y and ω. We also assume there
exists a bound on the update from equation (10), such that
∥y∥ is bound by Cy, then form Grazzi et al. (2020) for all
y the value of ∥∇ωz

∗
b (y, ω)∥ is bounded by C ′

ωin
. We start

by obtaining the contraction constant of the fixed-point
equation. Under Assumption (1) on the mapping Fu,ω(·),
if we let b = L2

µ , then the fixed-point equation obtained

from 10 is contraction with constant qω =
√
1− µ2

L2 ≤ 1.

In the following result, we comment on the Lipschitz
continuity of the solution function.
Lemma 5. Consider problem 2. The solution function
of the VI denoted by m(u, ω) is Lipschitz continuous with

respect to ω with parameter LS, where LS =
C′

ωin

1−qω
.

In Algorithm 1, the solution of the VI is characterized by
fixed-point iterations. In the following result, we character-
ize the tracking error defined by ∥yt − y∗∥ after t number
of steps, and we show that yt converges to y∗ at least
R-linearly.
Lemma 6 (Theorem 12.6.1 Facchinei and Pang (2003)).
For ω ∈ Ω, the iterative update of yt, obtained from equation
(9) in Algorithm 1 converges to the limit point y∗ with an R-
linear rate, after iteration t of the inner loop in Algorithm
1

∥yt − y∗∥ ≤

√
ϕab(y0, ω)

η1

1

1−
√

η2
η1+η2

(√
η2

η1 + η2

)t

,

where η1, η2, and δ are the nonnegative scalars such that
for any ω ∈ Rm, and y ∈ Rpn we have
ϕab(yt, ω)− ϕab(z

∗
b (yt, ω), ω) ≥ η1∥yt − z∗(yt, ω)∥2and

min(ϕab(yt, ω), ϕab(z
∗
b (yt, ω), ω)) ≤ η2∥yt − z∗b (yt, ω)∥2

for all x with ∥yt − z∗b (yt, ω)∥ ≤ δ.

With the contraction property of the fixed-point equation,
we can obtain the error bound between the implicit gradient
from iterative update (9) in Algorithm 1 and the actual
implicit gradient, which is an essential step to establish the
final bound.
Proposition 1 (Proposition 2.1 Grazzi et al. (2020)).
Let Assumptions 1, and 2 hold. Then, we have that the
error bound of the implicit gradient at the iterative update



obtained from equation (9) after T iterations, and the true
gradient of the fixed-point of the VI in problem (2) as
follows

∥∇ωyT −∇ωy
∗∥ ≤ (Lωin + LyinLs)Cyq

T−1
ω T + Lsq

T
ω .

Next, we will discuss one of the main results of this work.
We show that the update from Algorithm 1 converges to
local optimum with O(1/K). Because the loss function is
generally nonconvex, we use the gradient norm as the
convergence criterion, which is standard in nonconvex
optimization.
Theorem 3. Let Assumption 1 and 2 hold. Consider the
update from step 6 of Algorithm 1. We show that sequence
{ωk} converges to a stationary point with a rate O(1/K)
for K iterations
min

k∈{0,...,K}
∥∇ωΦ(ωk)∥2

≤ Φ(ω0)−Φ(ωK+1)

β( 1
2
−βL)K

+M

( β
2
+β2LΦ

β
2
−β2LΦ

)(
(Lωin + LyinLs)CyqTω (T + 1) + Lsq

T+1
ω

)
+

Lfω + LfyLS

1−
√

η2
η1+η2

(
β
2
+ β2LΦ

β
2
− β2LΦ

)√
zb(y0, ωk)

η1

(√
η2

η1 + η2

)T+1

.

where LΦ ≜ LfωLS + L̄fω + LfyL
2
S + L̄fyLS .

Note that the last two terms above go to zero with an
increasing number of inner iterations T . We hereby focus
on establishing the nonasymptotic convergence analysis of
the outer-level update {ωk} from Algorithm 1. Therefore,
assuming the inner-level converges R-linearly, we bound
the last two terms with ϵ, and we secure the rate of O

(
1
K

)
.

7. NUMERICAL EXPERIMENTS: ESTIMATING
UTILITY FUNCTION OF 2 PLAYERS

Consider a Cournot competition of d number of players.
In this experiment, we let the number of players d = 2
with their combined strategy vector y = [y(i); y(−i)] ∈ R4.
Then, a data set is generated {(ui, yi)}10i=1, where the yi
is at Nash equilibrium. After we get hold of the data set,
in the actual implementation of Algorithm 1, we assume
that utility functions are not known to us. We use and
modify the ideas of the PICNN to approximate the utility
of agents and estimate utility functions using Algorithm 1.

PICNNs, proposed in Amos et al. (2017), are convex
neural networks in some of their inputs, provided that
the activation functions are convex and non-decreasing.
Also, all the weights in the convex path are non-negative.
From the inherent convexity assumption of PICNN in y,
the map Fu,ω, formed by the gradient of utility functions,
is a monotone map. We leverage automatic differentiation,
a utility already implemented in Tensorflow and PyTorch,
to compute the gradients of ĝi with respect to yi for
all agents. To be in line with Assumption 1, we add a
regularization term to ĝi(·, u, ω) to be strongly convex,
which in turn yields a strongly monotone map Fu,ω. In the
construction of PICNN, each agent’s utility function has 4
layers. Each layer consists of 32 neurons for both convex and
nonconvex paths. We use the soft plus activation function,
a continuous, differentiable, and convex function.

After constructing the parametric equilibrium map Fu,ω,
we solve the variation inequality using the fixed point
method. The optimization problem in (9) is solved using
CvxpyLayer Agrawal et al. (2019), iteratively, with ϵ

Fig. 2. Mean squared error for training and testing loss on
a logarithmic scale.

accuracy such that the stop criteria is ∥yt+1 − yt∥ ≤ ϵ.
Then, we obtain ∇yzb(yk, ωk) and ∇ωzb(yk, ωk) and by
solving the linear system in (8), we compute ∇ωy.

The utility functions of the agents, represented by PICNNs,
are updated using gradient descent with adaptive learning
rate β using ADAM optimizer such that the parameters in
the convex direction are non-negative.

A test data set of {(ui, yi)}1000i=1 samples is generated
to validate the estimated parameters’ quality. At each
iteration, the mean square error of training and testing
error for learning PICNN parameters are reported on a
log scale as shown in Fig. 2. We can see that the PICNN
with VI has the expression capability to fit the data and
predict the equilibrium actions completely. Moreover, the
learning with the VI models is explainable and robust. A
relatively small number of training samples was enough to
capture the utility function and accurately predict players’
equilibrium actions.

8. CONCLUSION AND FUTURE DIRECTIONS

In this paper, a decision-focused learning approach was
investigated. In order to make evidence-based predictions,
An algorithm based on the iterative differentiation strategy
to calculate the implicit gradient was proposed. A numerical
example was carried out to show the advantages of
the proposed approach. In our settings, PICNNs were
designed and modified for estimating the utility functions
of individual agents, then auto-differentiation was used to
construct Fu,ω. The following conclusions can be drawn

• The covering number for the set of solution functions
of an affine parametric variational inequality can be
bounded.

• We derived the implicit gradient using the parametric
D-gap function and claimed the existence and unique-
ness of the gradient.

• The generalization bound for the set of solution
functions with respect to smooth loss function with
an improved rate can be established.

• The error bounds on the gradients and the convergence
results based on the proposed algorithm was provided.
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Appendix A. PROOFS OF SECTION 3

A.1 Proof of Lemma 1

Proof. For any point y ∈ Yu,ω, from Definition 1 and taking
G as an identity matrix, we have the following
ϕab(y, ω) =ϕa(y, ω)− ϕb(y, ω)

= sup
z∈Yu,ω

{
⟨Fu,ω(y), y − z⟩ − a

2
∥y − z∥2

}
− sup

z∈Yu,ω

{
⟨Fu,ω(y), y − z⟩ − b

2
∥y − z∥2

}
.

(A.1)
Let us now consider z∗c (y, ω) as the unique optimal
solution of sup

z∈Yu,ω

{
F (y, ω)T (y − z)− c

2∥y − z∥2
}

for c >

0. Therefore, we can now bound equation (A.1) as the
following

ϕab(y, ω) = ⟨Fu,ω(y), y − z∗a(y, ω)⟩ −
a

2
∥y − z∗a(y, ω)∥2

− ⟨Fu,ω(y), y − z∗b (y, ω)⟩+
b

2
∥y − z∗b (y, ω)∥2

≥⟨Fu,ω(y), y − z∗b (y, ω)⟩ −
a

2
∥y − z∗b (y, ω)∥2

− ⟨Fu,ω(y), y − z∗b (y, ω)⟩+
b

2
∥y − z∗b (y, ω)∥2

≥b− a

2
∥y − z∗b (y, ω)∥2. (A.2)

Let us now consider ys ∈ Y as the stationary point.
Therefore, from Definition 1, we have ϕab(ys, ω) = 0. Now
from equation (A.1) and taking into account b > a > 0, we
obtain

ys = z∗b (ys, ω). (A.3)
This shows part (a). Note that the above equation is a fixed-
point equation in y, a function of ω. We now differentiate
equation (A.3) and try to obtain the value for implicit
gradient ∇ωy at the point ys. We have

∇ωy = ∇ωz
∗
b (y, ω) = ⟨∇yz

∗
b (y, ω),∇ωy⟩+∇ωz

∗
b (y, ω).

Appendix B. PROOFS OF SECTION 5

B.1 Proof of Lemma 4

Proof. From Lemma 3, we have the solution map of the
inner level problem as the piecewise affine map. From (Xu
and Lou, 2021, Lemma 2), The piecewise affine function is
the solution to the multiparametric quadratic programming
problem (mp-QP). Taking Assumption 1 into account and
for appropriate H ≻ 0, problem mp-QP is presented in the
following
y∗(u, ω) = argmin

z∈Yu,ω

zTHz (QPmp)

subject to θineqi (z, u, ω) ≤ 0 ∀i ∈ {1, . . . , nineq}
θeqj (z, u, ω) = 0 ∀j ∈ {1, . . . , neq},

where u ∈ Rq and ω ∈ Rm are the input and parameter.
z ∈ Yu,ω ⊂ Rp is an optimization variable. Denote y∗(ω, u)
as the solution function of problem (QPmp), λ∗(ω, u) as
the optimal dual variable. Note that the optimal solution

y∗(ω, u) is fully characterized by the KKT conditions for
particular values of ω and input u. Consider the set A∗

u,ω
which contains all the sets of possible active constraints

A∗
u,ω ≜ {i ∈ {1, . . . , nineq} | θineqi (y, u, ω) = 0}.

Then, the optimal solution is the affine function within
the region where such active constraints hold. The active
set depends on the set of active inequalities. For each set
α ∈ A∗

u,ω, we define a unique region CRα (that we will
refer to as the critical region).

Every critical region is uniquely defined by its active set.
The upper bound on the number of critical regions is given
as follows Pistikopoulos et al. (2019)

p∑
i=neq

(
nineq
i

)
, (B.1)

this represents all the possible combinations of inequality
constraints. Using this, we now establish the covering
number bound for the function class H.

Lemma 7 (Corollary 9 Kakade et al. (2008); Ledoux and
Talagrand (1991) ). For a linear function class F , with
a finite sample of dataset {(u1, y1), . . . , (un, yn)}, we have
the bound on L2 covering number as

∀ϵ > 0, log(N2(ϵ,F , n)) ≤
2M2Ω̄2Ū2

ϵ2
,

where M > 0 is the universal constant (Kakade et al.,
2008, Corollary 9). The rest of the scalars are introduced
in Assumption 1(b).

From Lemma 7, we have covering number for function class
F as

log(N2(ϵ,F , n)) ≤
2M2Ω̄2Ū2

ϵ2
.

Now taking into account the piecewise affine structure
of the solution from Lemma 3 and the upper bound the
maximum number of the critical region set in (B.1), we
have the required result.

B.2 Proof of Theorem 1

Proof. In order to prove Theorem 1, We start by providing
a bound of Rn(H). From Dudley’s integral, we have

Rn(H) ≤ inf
α>0

{
4α+ 10

∫ α0

α

√
logN2(ϵ,H, n)

n
dϵ

}

= inf
α>0

{
4α+

10√
n

∫ α0

α

√
logN2(ϵ,H, n)dϵ

}
.

substituting logN2(ϵ,H, n) from Proposition 4, we have
Rn(H) ≤

inf
α>0

4α+
10√
n

√√√√ p∑
i=neq

(
nineq
i

)
2M2Ω̄2Ū2

∫ α0

α

dϵ

ϵ

 .

Let C1 = 10
√∑p

i=neq

(
nineq

i

)
2M2Ω̄2Ū2, we have



Rn(H) ≤ inf
α>0

{
4α+

C1√
n

∫ α0

α

dϵ

ϵ

}
=

inf
α>0

{
4α+

C1√
n
(log (α0)− log (α))

}
.

For the above optimization problem, we have an optimum
α∗ as

α∗ =
C1

4
√
n
.

Substituting value for α, we have

Rn(H) ≤ C1√
n
(1 + log (α0))−

C1√
n
log

(
C1

4
√
n

)
=
C1√
n
(1 + log (α0))−

C1√
n
log

(
C1

4

)
− C1√

n
log

(
1√
n

)
=
C1√
n

(
1 + log (α0)− log

(
C1

4

))
︸ ︷︷ ︸

term 1

− C1√
n
log

(
1√
n

)
.

Then, we define the term 1 as C2. By this, we provide
a bound on Rn(H). In order to complete the proof of
Theorem 1, consider Dudley’s integral for an empirically
restricted loss function composite with the function class
H, as the following from Lemma A.3 in Srebro et al. (2010)

Rn(Lℓ(r))

≤ inf
α>0

{
4α+ 10

∫ √
ℓmaxr

α

√
logN2(ϵ,Lℓ(r), n)

n
dϵ

}
.

(B.2)
Next, from the Lℓ-smoothness of loss function, we have the
following bound on N2(ϵ,Lℓ(r), n) Srebro et al. (2010)√√√√ 1

n

n∑
i=1

(ℓ (m (ui) , yi)− ℓ (vj (ui) , yi))
2

≤

√√√√6Lℓ

n

n∑
i=1

(ℓ (m (ui) , yi)− ℓ (vj (ui) , yi)) (m (ui)− vj (ui))
2

≤

√√√√6Lℓ

n∑
i=1

(ℓ (m (ui) , yi)− ℓ (vj (ui) , yi))

√√√√ 1

n

n∑
i=1

(m (ui)− vj (ui))
2

=
√

12LℓnrN2(ϵ,H, n)

=
√
nN2(

ϵ
√
12Lℓr

,H, n).

Taking logarithms, and substituting in relation (B.4), we
have
Rn(Lℓ(r)) ≤

inf
α>0

4α+ 10

∫ √
ℓmaxr

α

√
1
2
log (n) + logN2

(
ϵ√

12Lℓr
,H, n

)
n

dϵ

 .

(B.3)

Consider N2

(
ϵ√

12Lℓr
,H, n

)
from Lemma 4. Next, from

the piecewise linear function class, denoting

C3 =

p∑
i=neq

24

(
nineq
i

)
LℓM

2Ω̄2Ū2.

Substituting in equation (B.3), we bound Rn(Lℓ(r))

Rn(Lℓ(r)) ≤ inf
α>0

4α+ 10

∫ √
ℓmaxr

α

√
C3r
ϵ2 + 1

2 log (n)

n
dϵ

 ,

= inf
α>0

{
4α+ 10

√
log (n)

n

(√
ℓmaxr − α

)
+10

√
C3r

n

(
log
(√

ℓmaxr
)
− log (α)

)}
,

≤ inf
α>0

{
4α+ 10

√
log (n)

n

(√
ℓmaxr

)
+10

√
C3r

n

(
log
(√

ℓmaxr
)
− log (α)

)}
,

For the above optimization problem, we have an optimum
α∗ as

α∗ =
10

4

√
C3r

n
.

Substituting value for α, we have

Rn(Lℓ(r)) ≤ 10

√
C3r

n
+ 10

√
log (n) ℓmaxr

2n

+ 5

√
C3r

n
log

(
4ℓmaxn

25C3

)
.

Next, we bound the above inequality using the definition for
the sub-root function Bartlett et al. (2005), ψn(r) such that
for all r > 0, we have Rn(Lℓ(r)) ≤ ψn(r). The function ψn

defined on [0,∞). Also, it is non-negative, non-decreasing,
and ψ(r)/

√
r is non-increasing. Consider the following sub-

root function

ψn(r) = 10

√
C3r

n
+ 10

√
log (n) ℓmaxr

2n

+ 5

√
C3r

n
log

(
4ℓmaxn

25C3

)
.

Solving for the maximum solution r∗n of ψn(r) = r, we get

r∗n =

(
10

√
C3

n
+ 10

√
log (n) ℓmax

2n

+5

√
C3

n
log

(
4ℓmaxn

25C3

))2

.

Now from Bousquet (2002) and Srebro et al. (2010), we
have the following hold for r∗n and any h ∈ H

R(m) ≲ R̂(m) + 45r∗n

+
√
R(m)

(√
8r∗n +

√
4ℓmax(log(1/δ) + 6 log log n)

n

)

+
20ℓmax(log(1/δ) + 6 log log n)

n
.

By defining an alphanumeric constant K < 105, we can
write the above as

R(m) ≲ R̂(m) +K

(√
R̂(m)

(√
r∗n +

√
ℓmax log(1/δ)

n

)

+r∗n +
ℓmax log(1/δ)

n

)
,



substituting the value for r∗n, we have

R(m) ≲ R̂(m) +K

(√
R̂(m)

(√
ℓmax log(1/δ)

n
+ 10

√
C3

n

+10

√
log(n)ℓmax

2n
+ 5

√
C3

n
log

(
4ℓmaxn

25C3

))

+

(
10

√
C3

n
+ 10

√
log(n)ℓmax

2n

+5

√
C3

n
log

(
4ℓmaxn

25C3

))2

+
ℓmax log(1/δ)

n



B.3 Proof of Theorem 2

Proof. Consider Dudley’s integral for an empirically re-
stricted loss function composite with the function class H,
as the following from Lemma A.3 in Srebro et al. (2010)

Rn(H) ≤ inf
α>0

{
4α+ 10

∫ cmax

α

√
logN2(ϵ,H, n)

n
dϵ

}
.

(B.4)

≤ inf
α>0

{
4α+ 10

∫ cmax

α

√
logN∞(ϵ,H, n)

n
dϵ

}
(B.5)

Next, we bound the entropy of L∞- covering number of
piecewise smooth functions given in Vaart (1994)

logN∞(ϵ,H, n) = Kλ(X 1)

(
1

ϵ

)n/k

(B.6)

Rn(H) ≤ inf
α>0

{
4α+ 10

√
Kλ (X 1)

n

∫ α0

α

(
1

ϵ

)n/2k

dϵ

}

≤ inf
α>0

{
4α+

10
√
Kλ (X 1)n

k + n
α
( 2k

n +1)
0

}

≤ 10

√
Kλ (X 1)

n
α
( 2k

n +1)
0

≤ C0α
( 2k

n +1)
0√
n

,

where λ(X 1) is the Lebesgue measure of the set {x : ∥x−
X∥ < 1}, C0 = 10

√
Kλ (X 1) and α0 = supm∈H

√
1
n

∑n
i=1 (m(ui, ω))

2.
Substituting this in the following result in Srebro et al.
(2010)

R(h) ≤R̂(h) +K

(√
R̂(h)

(√
Lℓ log

1.5(n)Rn(H) +

√
ℓmax log(1/δ)

n

)
+Lℓ log

3(n)R2
n(H) +

ℓmax log(1/δ)

n

)
,

yields

R(h) ≤R̂(h) +K

√R̂(h)
√

LℓC0 log
1.5(n)α

( 2k
n +1)

0√
n

+

√
ℓmax log(1/δ)

n

)
+
LℓC

2
0 log

3(n)α
( 4k

n +2)
0

n

+
ℓmax log(1/δ)

n

)
.

Appendix C. PROOFS OF SECTION 6

C.1 Proof of Lemma 5

Proof. Note that, under Assumption 1 on the mapping
Fu,ω(·), if we let b = L2

µ , then the fixed-point equation
obtained from 10 is contraction with constant qω =√

1− µ2

L2 ≤ 1, that means, we have

∥∇yzb(y, ω)∥ ≤ qω ≤ 1,

Therefore,
∞∑
k=1

∥∇yzb(y, ω)∥k ≤ 1

1− qω
,

Next, differentiate through the fixed point equation y =
z∗b (y, ω) we have the following

∇ωy = ⟨∇yz
∗
b (y, ω),∇ωy⟩+∇ωz

∗
b (y, ω). (C.1)

Note that we assume there exists a bound on the update
from equation (10), such that ∥y∥ is bound by Cy, then
form Grazzi et al. (2020) for all y the value of ∥∇ωz

∗
b (y, ω)∥

is bounded by C ′
ωin

. Then, we have (I −∇yz
∗
b (y, ω))

−1
=∑∞

k=1 ∥∇yzb(y, ω)∥k ≤ 1
1−qω

. Then, we can conclude the
following

∥∇ωy∥ ≤
C ′

ωin

1− qω
= LS . (C.2)

C.2 Proof of Lemma 9

Lemma 8. Provided Assumption 2 hold on the objective
function of problem (1). For ω1, ω2 ∈ Ω, we have the
following

∥∇ωΦ(ω1)−∇ωΦ(ω2)∥ ≤ LΦ∥ω2 − ω1∥,

where LΦ ≜ LfωLS + L̄fω + LfyL
2
S + L̄fyLS .

Proof. Consider ∥∇ωΦ(ω1)−∇ωΦ(ω2)∥.
∇ωΦ(ω1) =∇ωf(y

∗(ω1), ω1)

+ ⟨∇yf(y
∗(ω1), ω1),∇ωy

∗⟩,
∇ωΦ(ω2) =∇ωf(y

∗(ω2), ω2)

+ ⟨∇yf(y
∗(ω2), ω2),∇ωy

∗⟩.

Using the triangle inequality, Cauchy-Schwarz, and by
adding and subtracting ∇ωf(y

∗(ω2), ω1)+⟨∇yf(y
∗(ω1), ω2),∇ωy

∗⟩
we can write



∥∇ωΦ(ω1)−∇ωΦ(ω2)∥
≤ ∥∇ωf(y

∗(ω1), ω1)−∇ωf(y
∗(ω2), ω1)∥

+ ∥∇ωf(y
∗(ω2), ω1)−∇ωf(y

∗(ω2), ω2)∥
+ ∥∇ωy

∗∥∥∇yf(y
∗(ω1), ω1)−∇yf(y

∗(ω2), ω1)∥
+ ∥∇ωy

∗∥∥∇yf(y
∗(ω2), ω1)−∇yf(y

∗(ω2), ω2)∥

Next, from Assumption 2, we bound the above as
∥∇ωΦ(ω1)−∇ωΦ(ω2)∥
≤ Lfω∥y∗(ω2)− y∗(ω1)∥
+ L̄fω∥ω2 − ω1∥
+ Lfy∥∇ωy

∗∥∥y∗(ω2)− y∗(ω1)∥
+ L̄fy∥∇ωy

∗∥∥ω2 − ω1∥∥

Recalling the Lipschitz continuity of solution function
from Lemma 5, we have ∥∇ωy∥ ≤ Ls. Also, ∥y∗(ω1) −
y∗(ω2)∥ ≤ Ls∥ω1 − ω2∥, so that

∥∇ωΦ(ω1)−∇ωΦ(ω2)∥
≤
(
LfωLS + L̄fω + LfyL

2
S + L̄fyLS

)
∥ω2 − ω1∥

C.3 Proof of Lemma 6

Proof. From the definitions of η1, η2, δ, we have
ϕab(yt, ω)− ϕab(yt+1, ω) ≥ η1∥yt − yt+1∥2, (C.3)
ϕab(yt+1, ω) ≤ η2∥yt − yt+1∥2. (C.4)

Note that from the condition in C.3, the sequence {ϕ(yt)}
is decreasing, so it converges. The condition C.4 implies
{ϕ(yt)} converges to zero. From the above two conditions,
we have

ϕab(yt+1, ω) ≤
η2

η1 + η2
ϕab(yt, ω).

For sufficiently large t, iterating the above inequality and
utilizing the condition C.3, we have

η1∥yt − yt+1∥2 ≤ ϕab(yt, ω) ≤
(

η2
η1 + η2

)t

ϕab(y0, ω),

this can be written as

∥yt − yt+1∥ ≤

√
ϕab(y0, ω)

η1

(√
η2

η1 + η2

)t

.

That implies

∥yt − yt+m∥ ≤

√
ϕab(y0, ω)

η1

t+m−1∑
j=t

(√
η2

η1 + η2

)j

.

Therefore, {yt} is a Cauchy sequence that converges to a
limit point (y∗). Utilizing the continuity of function ϕab,
we have

∥yt − y∗∥ ≤

√
ϕab(y0, ω)

η1

1

1−
√

η2

η1+η2

(√
η2

η1 + η2

)t

.

C.4 Proof of Preposition 1

Proof. The proof follows the proof of Proposition 2.1 in
Grazzi et al. (2020). Consider equation (10). Differentiating
yT+1 = z∗b (yT , ω) we have the following at yT and y∗.

∇ωyT = ⟨∇yz
∗
b (yT−1, ω),∇ωyT−1⟩+∇ωz

∗
b (yT−1, ω),

∇ωy
∗ = ⟨∇yz

∗
b (y

∗, ω),∇ωy
∗⟩+∇ωz

∗
b (y

∗, ω). (C.5)

Next, we substitute the above in ∥∇ωyT −∇ωy
∗∥. Then,

we add and subtract ⟨∇yz
∗
b (yT−1, ω),∇ωy

∗⟩ we have

∥∇ωyT −∇ωy
∗∥

≤∥∇yz
∗
b (yT−1, ω)−∇yz

∗
b (y

∗, ω)∥ ∥∇ωy
∗∥

+ ∥∇yz
∗
b (yT−1, ω)∥ ∥∇ωyT−1 −∇ωy

∗∥
+ ∥∇ωz

∗
b (yT−1, ω)−∇ωz

∗
b (y

∗, ω)∥ .
Note that, we show that z∗b (., ω) is Lipschitz continuous
with constant qω, we have

∥∇yzb(y, ω)∥ ≤ qω,

also, from Lemma 5, we have

∥∇ωy
∗∥ ≤

C ′
ωin

1− qω
= Ls. (C.6)

Therefore, from Assumption 1 and 2, we bound the above
as

∥∇ωyT −∇ωy
∗∥ ≤ (Lωin + LyinLs) ∥yT−1 − y∗∥

+ qω ∥∇ωyT−1 −∇ωyT ∥ .

Note that, by setting uT−1 = ∥yT−1 − y∗∥, ∇uT =
∥∇ωyT −∇ωy

∗∥ , and α = (Lωin + LyinLs) , we have

∇uT ≤ qω∇uT−1 + αuT−1.

Next, utilizing a result on the recursive error bound from
Lemma 1, Section 2.2 in Polyak (1987), yields

∇uT ≤ qTω∇u0 + αTqT−1
ω u0.

Then, using the following bounds from the bound on
the update from equation (10) iteration, we establish the
required result on the error bound.

u0 = ∥y∗ − y0∥ ≤ Cyin
,

∇u0 = ∥∇ωy
∗ −∇ωy0∥ ≤ Ls,

C.5 Proof of Theorem 3

Proof. We start by stating an important lemma,

Lemma 9. Provided Assumption 2 hold on the objective
function of problem (1). For ω1, ω2 ∈ Ω, we have the
following

∥∇ωΦ(ω1)−∇ωΦ(ω2)∥ ≤ LΦ∥ω2 − ω1∥,

where LΦ ≜ LfωLS + L̄fω + LfyL
2
S + L̄fyLS .



Proof. Consider ∥∇ωΦ(ω1)−∇ωΦ(ω2)∥.
∇ωΦ(ω1) =∇ωf(y

∗(ω1), ω1)

+ ⟨∇yf(y
∗(ω1), ω1),∇ωy

∗⟩,
∇ωΦ(ω2) =∇ωf(y

∗(ω2), ω2)

+ ⟨∇yf(y
∗(ω2), ω2),∇ωy

∗⟩.

Using the triangle inequality, Cauchy-Schwarz, and by
adding and subtracting ∇ωf(y

∗(ω2), ω1)+⟨∇yf(y
∗(ω1), ω2),∇ωy

∗⟩
we can write

∥∇ωΦ(ω1)−∇ωΦ(ω2)∥
≤ ∥∇ωf(y

∗(ω1), ω1)−∇ωf(y
∗(ω2), ω1)∥

+ ∥∇ωf(y
∗(ω2), ω1)−∇ωf(y

∗(ω2), ω2)∥
+ ∥∇ωy

∗∥∥∇yf(y
∗(ω1), ω1)−∇yf(y

∗(ω2), ω1)∥
+ ∥∇ωy

∗∥∥∇yf(y
∗(ω2), ω1)−∇yf(y

∗(ω2), ω2)∥

Next, from Assumption 2, we bound the above as
∥∇ωΦ(ω1)−∇ωΦ(ω2)∥
≤ Lfω∥y∗(ω2)− y∗(ω1)∥
+ L̄fω∥ω2 − ω1∥
+ Lfy∥∇ωy

∗∥∥y∗(ω2)− y∗(ω1)∥
+ L̄fy∥∇ωy

∗∥∥ω2 − ω1∥∥

Recalling the Lipschitz continuity of solution function
from Lemma 5, we have ∥∇ωy∥ ≤ Ls. Also, ∥y∗(ω1) −
y∗(ω2)∥ ≤ Ls∥ω1 − ω2∥, so that

∥∇ωΦ(ω1)−∇ωΦ(ω2)∥
≤
(
LfωLS + L̄fω + LfyL

2
S + L̄fyLS

)
∥ω2 − ω1∥

Now, in order to prove Theorem 3, consider problem (1).
Let the estimate and true total gradient of the objective
function be given by

∇ωΦ̂(ωk) =∇ωf(yT+1(ωk), ωk)

+⟨∇yf(yT+1(ωk), ωk),∇ωyT+1(ωk)⟩
∇ωΦ(ωk) =∇ωf(y

∗(ωk), ωk)

+ ⟨∇yf(y
∗(ωk), ωk),∇ωy

∗(ωk)⟩.
Using the Lipschitz smoothness of f , and by adding and
subtracting ⟨∇yf(yT+1(ωk), ωk),∇ωy

∗(ωk)⟩, we have

∥∇ωΦ̂(ωk)−∇ωΦ(ωk)∥
≤∥∇ωf(yT+1(ωk), ωk)−∇ωf(y

∗(ωk), ωk)∥
+ ∥∇ωk

y∗∥∥∇yf(yT+1(ωk), ωk)−∇yf(y
∗(ωk), ωk)∥

+ ∥∇yf(yT+1(ωk), ωk)∥ ∥∇ωyT+1(ωk)−∇ωy
∗(ωk)∥

From the boundedness of ∥y∗(ωk)∥ in C.6, and Assumption
2, we have

∥∇ωΦ̂(ωk)−∇ωΦ(y
∗(ωk)∥

≤(Lfω + LfyLS) ∥yT+1(ωk)− y∗(ωk)∥︸ ︷︷ ︸
term2

+M ∥∇ωyT+1(ωk)−∇ωy
∗(ωk)∥︸ ︷︷ ︸

term 3

.

Next, we bound terms 2 and 3 in the above from the results
in Lemma 6 and Proposition 1, we have
∥∇ωΦ̂(ωk)−∇ωΦ(ωk)∥

≤(Lfω + LfyLS)

√
ϕab(y0, ωk)

C1

1

1−
√

C2

C1+C2

(√
C2

C1 + C2

)T+1

+M
(
(Lωin

+ Lyin
Ls)Cyin

qTω (T + 1)

+Lsq
T+1
ω

)
. (C.7)

Next, taking into account the Lipschitz smoothness of the
objective function (Lemma 9) for problem (1), we have the
following for any two ωk, ωk+1 ∈ Ω

Φ(ωk+1) ≤ Φ(ωk)

+ ⟨∇ωΦ(ωk), ωk+1 − ωk⟩+
LΦ

2
∥ωk+1 − ωk∥2.

Substituting the update rule from Algorithm 1, utilizing
the nonexpansiveness of the projection mapping, Cauchy-
Schwarz inequality, we obtain

Φ(ωk+1) ≤ Φ(ωk)

−
(
β

2
− β2LΦ

)
∥∇ωΦ(ωk)∥2

+

(
β

2
+ β2LΦ

)
∥∇ωΦ(ωk)−∇ωΦ̂(ωk)∥2︸ ︷︷ ︸

term 4

.

Substituting the bound for term 4 from C.7, we have
Φ(ωk+1) ≤ Φ(ωk)

−
(
β

2
− β2LΦ

)
∥∇ωΦ(ωk)∥2

+ (Lfω + LfyLS)

√
ϕab(y0, ωk)

η1

(
β
2 + β2LΦ

)
1−

√
η2

η1+η2

(√
η2

η1 + η2

)T+1

+M

(
β

2
+ β2LΦ

)(
(Lωin

+ Lyin
Ls) ηyin

qTω (T + 1) + Lsq
T+1
ω

)
.

Taking summation on both sides over k from 0 to K, we
have
min

k∈{0,...,K}
∥∇ωΦ(ωk)∥2

≤ Φ(ω0)− Φ(ωK+1)

β
(
1
2 − βL

)
K

+
Lfω + LfyLS

1−
√

η2

η1+η2

(
β
2 + β2LΦ

β
2 − β2LΦ

)√
ϕab(y0, ωk)

η1

(√
η2

η1 + η2

)T+1

+M

(
β
2 + β2LΦ

β
2 − β2LΦ

)(
(Lωin + LyinLs)Cyinq

T
ω (T + 1) + Lsq

T+1
ω

)
.

Note that the last two terms above go to zero with increas-
ing inner iterations T . We hereby focus on establishing the
nonasymptotic convergence rate of the outer-level update
{ωk} from Algorithm 1. Therefore, assuming the inner-level
converges R-linearly, we bound the last two terms with ϵ,
and we secure the rate of O

(
1
K

)
.
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