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Abstract

High-quality data is critical to train performant Machine Learning (ML) models,
highlighting the importance of Data Quality Management (DQM). Existing DQM
schemes often cannot satisfactorily improve ML performance because, by design,
they are oblivious to downstream ML tasks. Besides, they cannot handle various
data quality issues (especially those caused by adversarial attacks) and have limited
applications to only certain types of ML models. Recently, data valuation ap-
proaches (e.g., based on the Shapley value) have been leveraged to perform DQM;
yet, empirical studies have observed that their performance varies considerably
based on the underlying data and training process. In this paper, we propose a
task-driven, multi-purpose, model-agnostic DQM framework, DATASIFTER, which
is optimized towards a given downstream ML task, capable of effectively removing
data points with various defects, and applicable to diverse models. Specifically,
we formulate DQM as an optimization problem and devise a scalable algorithm
to solve it. Furthermore, we propose a theoretical framework for comparing the
worst-case performance of different DQM strategies. Remarkably, our results show
that the popular strategy based on the Shapley value may end up choosing the worst
data subset in certain practical scenarios. Our evaluation shows that DATASIFTER
achieves and most often significantly improves the state-of-the-art performance
over a wide range of DQM tasks, including backdoor, poison, noisy/mislabel data
detection, data summarization, and data debiasing.

1 Introduction

High-quality data is a critical enabler for high-quality Machine Learning (ML) applications. However,
due to inevitable errors, bias, and adversarial attacks occurring during the data generation and
collection processes, real-world datasets often suffer various defects that can adversely impact the
learned ML models. Hence, Data Quality Management (DQM) has become an essential prerequisite
step for building ML applications.

DQM has been extensively studied by the database community in the past. Early works [1, 2, 3]
consider DQM as a standalone exercise without considering its connection with downstream ML
applications. Studies have shown that such ML-oblivious DQM may not necessarily improve model
performance [1]; worse yet, it may even degrade model performance [4]. More recent work started
to tailor the DQM strategies to specific ML applications [5, 6, 7]. Still, they apply only to simple
models such as convex models, nearest neighbors, and specific data quality issues such as outlier
detection. In parallel with these research efforts, the ML community has intensively investigated
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techniques focused on addressing a broad variety of data quality issues, such as adversarial [8, 9] and
mislabeled [10, 11] data detection, anomaly detection [12], dataset debiasing [13, 14, 15]. However,
a DQM scheme that can comprehensively remedy various types of data defects is still lacking.

Our paper aims to address the limitations of prior DQM schemes by developing a unified DQM
framework with the following properties: (1) multi-purpose – to handle various data quality issues;
(2) task-driven – to effectively utilize the information from downstream ML tasks; and (3) model-
agnostic – to incorporate different ML models. The line of existing work closest to achieving these
goals is what we will later refer to as data valuation-based approaches. These approaches first adopt
some importance quantification metric, e.g., influence functions [10], Shapley values [16, 17] and
least cores [18], to quantify each training point according to the contributions toward the training
processes, then decide which data to retain or remove based on the valuation rankings. While some
existing data valuation-based approaches satisfy the three desiderata, empirical studies have shown
that their performance varies considerably based on the underlying data and the learning process.
Moreover, there is no clear understanding of such performance variation or formal characterization of
the worst-case performance.

In this paper, we start by formulating various DQM tasks into optimal data selection problems. The
goal is to find a subset of data points that achieve the highest performance for a given ML task. We
propose DATASIFTER, a multi-purpose, task-driven, model-agnostic DQM framework that first learns
a data utility model from a small validation set, then selects the subset of data points by optimizing
the acquired utility model. With the acquired data utility model, DATASIFTER can go beyond the
functionalities offered by existing DQM schemes and further estimate the utility of selected data
points. Such information could help data analysts to decide how many data points to choose or
whether there is a need to acquire new data. Furthermore, we present a novel theoretical framework
based on domination analysis which allows one to rigorously analyze the worst-case performance of
data valuation-based DQM approaches and compare them with our approach. Specifically, we show
that data valuation-based DQM approaches have unsatisfying worst-case performance guarantees. In
particular, the popular Shapley value-based approach will select the worst data in some commonly
occurring scenarios. We conduct a thorough empirical study on a range of ML tasks, including
adversarially perturbed data detection, noisy label/feature detection, data summarization, and data
debiasing. Our experiments demonstrate that DATASIFTER achieves and most often significantly
improves the state-of-the-art performance of data valuation-based approaches on various tasks.

2 Related Work

The major differences between this paper and the related works are summarized in Table 1.

Method Type Multi- Task- Model- Est.
purpose Driven Agnostic Utility

Traditional × × × ×
Data Cleaning × ◦ ◦ ×
Perm-Shapley [19] X X X ×
TMC-Shapley [16] X X X ×
G-Shapley [16] X X × ×
KNN-Shapley [20] × × X ×
Least Core [18] X X X ×
Leave-one-out [10] X X X ×
Infl. Func. [10] × X × ×
TracIn [11] × X × ×
DATASIFTER X X X X

Table 1: Summary of the differences between previous
works with our methods (DATASIFTER). ◦ means only
some of the techniques in the type satisfy the property.

Data Cleaning. Classical data
cleaning methods are based on sim-
ple attributes of a dataset such as
completeness [3], consistency [21],
and timeliness [2]; however, these
attributes may not necessarily cor-
relate with the actual utility of data
for training machine learning mod-
els. Recent works leverage the infor-
mation about downstream ML tasks
to guide the cleaning process. Ac-
tiveClean [5] explored task-driven
data cleaning for convex models
by selecting data points for human
screening. BoostClean [22] sought
to automate the manual cleaning by
determining a predefined cleaning strategy from a library using boosting. AlphaClean [7] also aimed
to automate the cleaning process but relied on parallelized tree search. However, those framework’s
efficacy and generalizability are limited by the cleaning library. Furthermore, the recursive nature
of the automatic selection process constrained the use case of those methods to only small models
and datasets. CPClean [6] proposed a different strategy for nearest neighbor models based on the
concept of Certain Prediction. Still, CPClean is designed explicitly for SQL datasets with greedy
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repairing, making it difficult to generalize to larger-scaled cases like image datasets. In summary,
the state-of-the-art data cleaning methods are only applicable to certain classes of ML models and
datasets. Besides, adapting those cleaning works to other domains requires manual recollection of
the cleaning library or human intervention, which can be impractical in many cases.

Data Importance Quantification. One simple idea to quantify data importance is to use the leave-
one-out error. [10] provides an efficient algorithm to approximate leave-one-out error for each training
point. Recent works leverage credit allocation schemes originated from cooperative game theory
to quantify data importance. Particularly, Shapley value has been widely used [16, 17, 20, 23, 24],
as it uniquely satisfies a set of desirable axiomatic properties. More recently, [18] suggests that the
Least core is also a viable alternative to Shapley value for measuring data importance. However,
computing the exact Shapley and Least core values are generally NP-hard. Several approximation
heuristics, such as TMC-Shapley [16], G-Shapley [16], KNN-Shapley [20], have been proposed for
the Shapley value. Despite their computational advantage, they are biased in nature. On the other
hand, unbiased estimators such as Permutation Sampling [19] and Group Testing [17] still require
retraining models many times for any descent approximation accuracy. TracIn [11] estimates the
importance by tracing the test loss change caused by a training example during the training process.
The representer point method [25] captures the importance of that training point by decomposing
the pre-activation prediction of a neural network into a linear combination of activations of training
points. Many of the aforementioned works can only be applied to differentiable models.

3 Formalism and Algorithmic Framework

In general, DQM aims to find a subset of data points with the highest utility. We use the data utility
function to characterize the mapping from a set of data points to its utility. Formally, given a dataset
D of size n, a data utility function U : 2D → R maps a set of data points S ⊆ D to a real number
indicating the performance of the ML model trained on the set, such as test accuracy and fairness.

With the notion of the data utility function, one can abstract DQM tasks as a data selection problem:
max|S|=k U(S), where k indicates the selection budget with 0 < k < n, which can be predetermined
(e.g., based on the prior knowledge about potential data defects or computational requirements).
Moreover, the DQM tasks without a specific selection budget can be reduced to a sequence of data
selection problems with different values of k.

With the abstraction above, one straightforward way to optimally select data is to exhaustively
evaluate U(S) for all possible size-k subsets S ⊆ D and choose the one that achieves the highest
utility. Of course, this naive algorithm requires prohibitively large computational resources because
the number of utility evaluations is exponential in k, and worse yet, each evaluation of data utility
function requires retraining the model. Fortunately, recent work shows that many common data utility
functions can be effectively learned with a relatively small amount of samples [26] because they
are “approximately” submodular [27]. The “approximate submodularity” property allows efficient
maximization of data utility functions through simple greedy algorithms [28, 29, 30, 31, 32]. Hence,
combining data utility function learning and greedy search enables an efficient algorithm for data
selection problems.

Specifically, we extend and generalize the data utility learning and optimization technique originally
proposed in [26] for active learning to DQM. The proposed DQM framework, termed DATASIFTER,
proceeds in two phases: learning and selection phase.

Learning Phase. Figure 1 depicts the learning phase of the DATASIFTER, which consists of a utility
sampling step and a utility model training step. In particular, we assume that we have access to a
small validation set representative for potential test samples. Thus, the utility of any given subset can
be estimated by feeding the model with this subset then evaluating its performance over the validation
set. In the utility sampling step, we randomly sample subsets of the training set, estimate the utility of
each sampled subset, and label each using its utility score. We will refer to the scored subset as utility
samples hereinafter. To accelerate this step for large models such as deep nets, a small proxy model
(such as logistic regression) can be used for approximating the utility since data utilities evaluated
on deep nets and logistic regression are positively correlated, as shown in [15]. In the utility model
training step, we learn a parametric model for the data utility function using the utility samples;
particularly, our experiments adopt DeepSets [33] as the utility model. For a large dataset, the utility
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Figure 1: Overview of the learning phase, which consists of two functional steps, the utility sampling
step and the training step of the utility ML model. We randomly select subsets from the raw data
during the sampling step and assign a utility score on each set based on the downstream ML model’s
performance evaluated over a validation set. Then, we train the utility ML model that uses those
scored pairs to acquire the ability to predict a performance score for a collection of data.

sampling step could be conducted on a small portion of the dataset. Our empirical studies show that
the learned utility model can still extrapolate the utility for the unseen part of the dataset.

Figure 2: Predicted vs. True Utility for unseen
subsets of logistic regression classifier trained
on a synthetic dataset. Details are presented in
supplementary materials.

Selection Phase. We select high-quality
data through optimizing the learned model for
data utility functions obtained from the previ-
ous phase; specifically, we adopt a linear-time
stochastic greedy algorithm [34] to perform op-
timization.

Clearly, DATASIFTER is an optimal solution to
the data selection problem if the validation data
matches the test data exactly and there are no
computational constraints. In practice, despite
limited validation dataset and limited computa-
tional resources, DATASIFTER is still very effec-
tive in selecting high-quality data or filtering bad
data as we will show in the evaluation section. In
addition, with the learned data utility model, DATASIFTER can provide an estimate of the utility for
the selected dataset (see example in Figure 2), which will be useful for data analysts to decide the
number of data points to select.

4 Worst-Case Analysis

This section presents a theoretical framework for comparing the worst-case performance between
DATASIFTER and data valuation-based DQM schemes, such as leave-one-out (LOO), Shapley value,
and Least core1, and we assume no computational constraints.

We start by abstracting a general notion from data valuation-based DQM schemes in the literature.
We call an algorithm that returns S ⊆ D of size k a heuristic to a (size-k) data selection problem
on D. The typical pattern of data valuation-based heuristics is that they first rank the data points
according to their corresponding data importance metric and then prioritize the points with the highest
importance scores. We will define the heuristics matching this selection pattern as linear heuristics.
Definition 1 (Linear heuristic). We sayM is a linear heuristic for data selection problem if for every
instance I = (D, U),M works as follows:

1. Assign a score v = (v1, . . . , vn) for every data point i ∈ D.
1Least core may not be unique. In this paper, when we talk about the least core, we always refer to the least

core vector that has the smallest `2 norm, following the tie-breaking rule in the original literature [18].
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2. Sort D in the descending order according to v and obtain sorted data sequence D′. Certain
rules are applied to break tie.

3. For any query of selecting k high-quality data points, return the first k data points in D′.

Our theoretical framework for studying the worst-case performance of data selection heuristics
extends the domination analysis initially proposed in [35]. Our worst-case performance metric is
domination number, which measures how many subsets achieve lower utility than the selected set in
the worst-case scenario.
Definition 2 (Domination number). The domination number of a heuristicM for the data selection
problem is the maximum integer d(n, k) s.t., for every problem instance I = (D, U) on a dataset D
of size n and utility function U ,M(I, k) produces a size-k subset S ⊆ D which has utility U(S) no
worse than at least d(n, k) size-k subsets.

The domination number is well defined for every data selection heuristic. A heuristic with a higher
domination number may be a better choice than a heuristic with a smaller domination number due
to the better worst-case guarantee. The best heuristic for data selection has domination number
d(n, k) =

(
n
k

)
for every k ≤ n, which means that it will select the size-k data subset with the highest

utility for every possible data utility function.

Clearly, assuming no computational constraints, DATASIFTER is among the best heuristics which
achieve the largest possible domination number. In contrast, the following result shows that no linear
heuristic is the best whenever n ≥ 3. We will defer all proofs to Appendix.
Theorem 1. For n ≥ 3, there exists no linear heuristic M s.t. d(n, k) =

(
n
k

)
for every k ∈

{1, . . . , n}.

Furthermore, we can tighten the upper bound of the domination number for data valuation-based
heuristics by noticing another common property: two data points will receive the same importance
score if they contribute equally to all possible subsets of the training data. This property is often
referred to as symmetry axiom in the literature.
Definition 3 (Symmetry axiom). We say a linear heuristicM satisfies symmetry axiom if its scoring
mechanism satisfies: [(∀S ∈ D \ {i, j})U(S ∪ {i}) = U(S ∪ {j})] =⇒ vi = vj .

Figure 3: Results of data selec-
tion with different heuristics on
a tiny dataset with natural redun-
dancy. Dataset and implementa-
tion are detailed in the Appendix.

The symmetry axiom may be desired for application scenarios
requiring fairness, e.g., data importance scores are used to
assign monetary rewards for data sharing or responsibility
for ML decisions. However, for data selection, symmetry
axiom may be undesirable because simply gathering high-
value data points may lead to a set of redundant points. Based
on this intuition, the following theorem gives an upper bound
of domination number for non-trivial linear heuristics that
with symmetry property.
Theorem 2. If a linear heuristicM assigns different scores
to different data points and satisfies symmetry axiom, then
the domination number of M is d(n, k) ≤ c

(dn/ce
k

)
where

c =
⌊
n
k

⌋
.

To better illustrate the issue raised by symmetry axiom, we
evaluate the LOO, Shapley, and least core heuristic on a syn-
thetic dataset with 15 training data points (so that we can
compute the exact Shapley and least core values, as well as
obtain the optimal solution for data selection problem). The
utility metric is the test accuracy of a Support Vector Machine (SVM) classifier trained on the dataset.
We simulate the natural redundancy in a dataset by replicating 5 data points three times and adding
slight Gaussian noise to differentiate. Figure 3 shows that with small selection budgets, the subsets
selected by all the heuristics have low utility as the heuristics fail to promote diversity during selection.

Notably, we show that the Shapley value heuristic would select the data subset with the lowest utility
for certain data utility functions, including submodular ones. The Shapley value of a training point is
calculated by taking a weighted average of the contribution of the point to all possible subsets of the
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training set, and the weights are independent of the selection budget k. Moreover, the Shapley value
of training data weights higher for its marginal contributions on small datasets. Thus, data points that
make a larger contribution on tiny datasets may be assigned with higher Shapley value, even if they
make little or negative contributions in every dataset of desired selection size k.
Theorem 3. For any n ≥ 4 and k ∈ {1, . . . , n}, the domination number of Shapley value is
d(n, k) = 1, even if the utility function U is submodular.

5 Evaluation

Task Datasets
Main Text Appendix

I. Backdoor Detection CIFAR-10 [36] MNIST[37]
II. Poisoned Data Detection CIFAR-10 [36] Dog vs. Cat [38]
III. Noisy Feature Detection CIFAR-10 [36] MNIST [37]
IV. Mislabeling Detection SPAM [39] CIFAR-10 [36]
V. Data Summarization PubFig83 [40] COVID-CT [41]
VI. Data Debiasing Adult [42] COMPAS [43]

Table 2: Summary of DQM tasks and datasets.
We discuss one dataset for each task and defer the
results over the other dataset to the Appendix.

We evaluate DATASIFTER on six DQM tasks,
as listed in Table 2. We consider various
benchmark models and datasets used in past
literature for each DQM task. Since we can
observe similar results on different datasets,
this section will only describe the result
on one representative dataset for each task
and leave the other dataset in the Appendix.
Finally, we discuss the scalability of the
DATASIFTER on larger datasets. The imple-
mentation details and the additional results
are presented in the Appendix.

5.1 Baselines

We focus on comparing data valuation-based approaches as they are closest to achieving the properties
of multi-purpose, task-driven, and model-agnostic. We omit the data cleaning methods from the
comparison as their applicability is limited to specific DQM tasks and specific models. Specifically,
we consider the following eight state-of-art data valuation-based approaches: (1) Shapley Permutation
Sampling (Perm-SV) [19], a Monte Carlo-based algorithm for Shapley value estimation. (2) TMC-
Shapley (TMC-SV) [16], a refined version of the Perm-SV, where the computation is focused on
the subsets whose utility changes significantly when an extra point is added. (3) G-Shapley (G-SV)
[16], which approximates the Shapley value by anticipating the utility change caused by an extra
point with its gradient. (4) KNN-Shapley (KNN-SV) [20], which approximates the Shapley value
by using the K-Nearest-Neighbor as a proxy model. (5) Least Core (LC) [18], another data value
notion in cooperative game theory. (6) Leave-one-out (LOO) [16] evaluates the change of model
performance when a data point is removed. (7) Influence Function (INF) [10], which approximates
the LOO error with influence functions. (8) TracIn [11], which traces the test loss change during the
training process whenever the training point of interest is utilized. (9) Random is a setting where we
randomly select a subset from the target dataset.

For fair comparison between DATASIFTER and baselines, we fix the number of utility sampling as
4000 for DATASIFTER and baseline algorithms that require utility sampling. The implementations
of DATASIFTER and baseline algorithms will be detailed in the Appendix. We repeat model training
ten times for each selected set of data points to obtain the error bars.

5.2 Results

5.2.1 Filtering out Harmful Data

Training data could be contaminated by various harmful examples, e.g., backdoor triggers, poison
information, noisy/mislabeled samples. Our goal here is to identify data points that are most likely to
be harmful. These points can either be discarded or presented with high priorities to human experts
for manual cleaning. To evaluate the performance of different DQM techniques, we examine the
training instances according to the quality ranks outputted by each method and plot the change of the
fraction of detected corrupted data with the fraction of the checked training data. Additionally, for
poisoned/backdoor data detection, we plot the change of Attack Success Rate (ASR), and for noisy
feature/label detection, we plot the change of model accuracies after filtering out the low-quality data
points selected by each technique. The validation data in utility sampling are 300 clean data points
sampled from the test data of the corresponding datasets.
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Figure 4: The experimental results and comparisons of the DATASIFTER under the case of filtering
out harmful data (application I-IV). The light blue region in each (a) graph represents the area that a
method is no better than a random selection. For I.(b) and II.(b), we depict the Attack Success Rate
(ASR), where a lower ASR indicates a more effective detection. For III.(b) and IV.(b), we show the
model test accuracy, where a higher accuracy means a better selection.

I. Backdoor Detection. Backdoor attacks [44, 45] embed an exploit at training time that is sub-
sequently invoked by the presence of a “trigger” at test time. They are considered particularly
dangerous since they make models predict a target output on inputs with predefined triggers while
still retain state-of-the-art performance on the clean data. Since data points with the backdoor triggers
contribute little to the learning of clean validation samples, we could expect to identify them by
minimizing the data utility model. This experiment studies the effectiveness of DATASIFTER for
removing backdoored examples. We evaluate BadNets [45] and Trojan attack [46], the two most
famous backdoor attacks in the literature. We adopted a three-layer CNN as the target model, a
poison rate of 0.2, and a target label ‘Airplane.’ Figure 4 I.(a) and I.(b) elaborate the Trojan attack
detection results for a 1,000-size randomly selected subset of the CIFAR-10 dataset. As we can see,
DATASIFTER significantly outperforms other DQM approaches; for instance, it achieves a detection
rate of 90% with 51.17% fewer inspected data points than the others.

II. Poisoned Data Detection. Adversaries make slight modifications to some training samples in
data poisoning attacks to cause malicious behaviors in the test phase (e.g., misclassifying target
test examples). We evaluate different DQM techniques on two popular attacks, namely, feature
collision attack [47] and influence function-based attack [10]. These two are clean-label poisoning
attacks where the attacker does not need to control the labeling of training data. We left the detailed
descriptions of the attacks in the Appendix. Figure 4 II.(a) and II.(b) show the results for feature
collision attack [47] on a 500-size randomly selected CIFAR-10 subset, where 50 data points of
class ‘cat’ are perturbed with features extracted from a ‘frog’ sample in the test set. We see that
DATASIFTER significantly outperforms all other DQM methods in the poisoned data detection task;
for instance, it attains a 90% detection rate with 75.41% fewer examined data points.

III. Noisy Feature Detection. Noise in features originated from sampling or transmitting (e.g.,
Gaussian noise) may decrease classification accuracy. Following the settings in [26], we add white
noise to clean samples, and we evaluate the performance of each DQM technique on detecting those
samples. For the CIFAR-10 dataset, we corrupt 25% of the train data images by adding white noise.
Based on Figure 4 III.(a) and III.(b), we can conclude that DATASIFTER significantly outperforms all
other methods on this task; for example, it achieves a 90% of detection rate by examining 67.25%
fewer data points. Meanwhile, the KNN-SV approach exhibits a distinctive trend – it only starts
finding the noisy data points until filtering out a certain amount of clean data. This is mainly because
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all noisy data points are out-of-distribution (OOD). The mechanism of KNN-SV tends to assign 0
values to OOD data points, while it will also assign negative values to some clean data points. We
provide a more detailed explanation in the Appendix.

IV. Mislabeling Detection. Labels in the real world are often noisy due to automatic or non-expert
labeling. Following [16, 23], we perform experiments on two datasets and present the results of
SVM trained on Enron1 SPAM dataset [39] and the CIFAR-10 dataset. We adopt a bag-of-words
representation of the Enron1 for training. The noise flipping ratio is 15%. Under this setting,
Influence-based techniques and G-SV are not applicable since they require the model trained with
gradient-based approaches. Figure 4 IV.(a) and IV.(b) show that although DATASIFTER does not attain
the highest detection rate, the accuracies of the model trained on the selected data are competitive
with the most effective approaches. For the Enron SPAM dataset, a small amount of mislabeled data
points do not significantly affect the model performance; thus, those mislabeled samples could evade
our detection based on the validation performance. By comparing Figure 4 IV.(a) and IV.(b), we can
tell such evasion is acceptable as the model trained over the data points selected by DATASIFTER still
achieves a competitive accuracy. On the other hand, we find KNN-SV and LOO can accomplish a
decent detection rate but end up with a lower validation accuracy. This is because they select very
unbalanced data points, as both of them satisfy the symmetry axiom discussed in Section 4.

5.2.2 Selecting High-quality Data

Figure 5: The experimental results and comparison of the
DATASIFTER under the case of selecting high-quality data (ap-
plication V and VI). We depict the validation accuracy for both
cases. A higher accuracy indicates a better performance.

The DQM tasks considered
in this section aim to select
a subset that is most likely to
help improve model test accu-
racy and fairness.

V. Data Summarization.
Data summarization aims to
select a small, representative
subset from a massive dataset,
which can retain a compara-
ble utility to that of the whole
dataset. We use a convolu-
tional neural network trained
on the PubFig83 dataset in
this experiment. Figure 5
V shows that DATASIFTER
and KNN-SV significantly
outperform all the other DQM techniques, which have similar performance as the random selection.

VI. Data Debiasing. We explore whether DQM techniques can help select a subset of training data
that improves both fairness and performance for the ML task. We use logistic regression trained on
the UCI Adult Census dataset as the task model. We measure the fairness by weighted accuracy
– the average of model classification accuracy over females and that over males. G-SV, KNN-SV,
and Influence-based techniques are not applicable for this application since they either require the
model trained using the SGD, or are designed for computing data importance when the metric is test
accuracy or loss. Therefore, we only compare with the remaining six baselines. Figure 5 VI shows
that DATASIFTER achieves the top-tire performance along with the Perm-SV.

5.3 Comparisons on Larger Datasets

We compare the scalability between DATASIFTER and other baselines on large datasets. We show the
results for backdoor detection on a 10,000-size Trojan square poisoned CIFAR-10 subset here. For
DATASIFTER, we only sample data subset utilities from 1000 data points as we did in Section 5.2.1 I,
but use the learned utility model to select data points on the entire 10,000 data points. When executed
on NVIDIA Tesla K80 GPU, the clock time for the utility sampling step is within 5 hours for 4000
utility samples with a small CNN model, as the data size is fairly small. The LOO, the Least core,
and all the Shapley value-based approaches except KNN-SV did not terminate in 24 hours, so we
remove them from comparison. As we can see from Figure 6, DATASIFTER once again outperforms
all the remaining approaches. The results show that the learned utility model can also provide utility
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estimations for a set of unseen data points, which largely improves the scalability of DATASIFTER.
On the contrary, the existing valuation-based approaches cannot predict the importance of unseen
data points. Thus their utility sampling has to be conducted over the entire dataset.

6 Limitations of the DATASIFTER

Figure 6: The experimental results and comparison of the
DATASIFTER and baseline algorithms for detecting backdoored
data on larger datasets.

We now discuss two limita-
tions of the DATASIFTER.

Scalability. While Section
5.3 shows that DATASIFTER
is often much more efficient
than most of the other DQM
schemes with similar design
goals, its scalability to large
dataset still needs further in-
vestigation. DATASIFTER
could be slow as the utility
sampling step requires retrain-
ing models for thousands of
times. Although we already
have several solutions for im-
proving the scalability, such
as using a smaller proxy model and/or only conduct utility sampling on a small portion of the dataset,
it might still require hours of training. Further improving the scalability of DATASIFTER through
some efficient approximation heuristics of data utility functions would be interesting future works.

Utility Learning Model. In this work, we use the popular set function learning model–DeepSet–as
our utility learning model for all of the experiments. However, as shown in several previous works [48,
49, 26], many data utility functions using commonly used learning algorithms are close to submodular
functions. While DeepSet-based utility learning models have already shown promising results in
our experiment, DeepSets does not provide a mechanism to incorporate such prior knowledge. As
another interesting line of future work, we would like to exploit the approximate submodularity of
these kinds of data utility functions and use more fine-grained architectures or training algorithms for
utility learning, e.g., submodular regularizations [50].

7 Conclusion

This paper presents DATASIFTER as a unified framework for realizing task-driven, multi-purpose,
model-agnostic data quality management. We theoretically analyzed the worst-case performance
of existing data valuation-based DQM schemes and show that these approaches suffer unsatisfying
performance guarantees. This sheds light on the empirical observations that existing data valuation-
based DQM schemes exhibit significant performance variation over different datasets and tasks.
Based on an extensive evaluation of the DATASIFTER over six types of DQM tasks and eight different
datasets, we showed that DATASIFTER is more comprehensive and robust than the state-of-the-art
DQM approaches with similar design goals. For future work, we would like to further improve the
scalability of the DATASIFTER as well as design utility learning models that are better aligned with
the properties of data utility functions.
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A Proof of Theorem 1

Theorem 1. For n ≥ 3, there exists no linear heuristic M s.t. d(n, k) =
(
n
k

)
for every k ∈

{1, . . . , n}.

Proof. Suppose, for contradiction, that there exists a linear heuristicM s.t. d(n, k) =
(
n
k

)
for all k.

For a dataset D and utility function U , WLOG assume that the ranks (in non-ascending order) output
byM in the Step 2 of Definition 1 is (1, . . . , n). Then it means

U({1}) ≥ U(S) for all S s.t. |S| = 1,

U({1, 2}) ≥ U(S) for all S s.t. |S| = 2,

. . .

U({1, . . . , n− 1}) ≥ U(S) for all S s.t. |S| = n− 1.

We construct a simple counter example of U to demonstrate such aM does not exist: let n = 3, we
define U as follows:

U(∅) = 0,

U({1}) = 7, U({2}) = U({3}) = 5,

U({1, 2}) = 9, U({1, 3}) = 9, U({2, 3}) = 10,

U({1, 2, 3}) = 10.

To make d(3, 1) = 3,M must choose 1 for k = 1. However, for size-2 subsets,M can only choose
between {1, 2} and {1, 3}, whose utilities are both 9 < U({2, 3}). Therefore, d(3, 2) = 2 <

(
3
2

)
=

3.

B Proof of Theorem 2

To formally state and prove Theorem 2, we introduce the formal definition of data type here.
Definition 4. Given a dataset D and utility function U , if for all subset S ⊆ D \ {i, j}, we have

U(S ∪ {i}) = U(S ∪ {j}),

we say two data points i and j are of the same type.

In other words, two data points are of the same type if they will be scored equally by every linear
heuristic that satisfies Symmetry Axiom. Theorem 2 essentially says that for all linear heuristic that
will assign different scores to different types of data points, their domination numbers can be further
upper bounded. We stress that this is a very mild assumption, especially when the space of the scores
are continuous, which are the case for most of the existing data importance scoring mechanisms.

To simplify the notations for set operations, we use k × {D} to denote a dataset that contains k
replicates of data point D, and we also denote the union of two data sets S1 ∪ S2 = S1 + S2. The
proof idea of Theorem 2 is to construct a balanced dataset that contains same amount of data points
from the same types. If a linear heuristicM satisfies symmetry axiom, thenM has to select data
points of the same type when the target selection number is small, as all data points of the same type
will receive the same scores. Of course, a dataset of only one type of data points will have nearly no
utility.
Theorem 2 (Restated). If a linear heuristicM satisfies symmetry axiom and will always assign
different scores for different types of data points, then the domination number d(n, k) ofM is upper

bounded by bn/kc
(d n

bn/kce
k

)
for each k ∈ {1, . . . , n}.

Proof. Suppose there are c types of data points: D1, . . . , Dc. Let r = n mod c. We construct the
dataset D that contains bn/cc data points for each of D1, . . . , Dn−r, and contains dn/ce data points
for each of Dn−r+1, . . . , Dn. We construct utility function U as follows:

U(∅) = 0;

U(i1 × {D1} . . .+ ic × {Dc}) = 1,
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for every tuple of non-negative integers (i1, . . . , ic) s.t. 1 ≤
∑c

j=1 ij ≤ n, except that

U(k × {D1}) = . . . = U(k × {Dc}) = 0

for all k ≤
⌊
n
c

⌋
. This construction reflects the rationale that a dataset that only contains one type of

data points (e.g. all of the same label) provide little information for the ML task.

Since M satisfies symmetry axiom, we know that all data points of the same type will receive
the same scores. Besides, we know that data points of different types will receive different scores.
Therefore, when the target selection size k ≤

⌊
n
c

⌋
,M will return k × {Dj}, which has the worst

utilities for subset at size k and there are (c− r)
(bn/cc

k

)
+ r
(dn/ce

k

)
such subsets that only contains

single types of data points. For each k, by taking the largest possible c such that k ≤
⌊
n
c

⌋
, we obtain

the desired bound.

We note that the upper bound is non-trivial for every k ≤ n/2. We also note the assumption thatM
always assigns different scores for different data types can be further relaxed as long as there exists
such a balanced dataset described in the proof thatM assigns different scores for different data types.

C Proof of Theorem 3

Given a dataset D = {1, . . . , n} and a submodular utility function U , the Shapley value is computed
as

vshap(i) =
1

n

∑
S⊆D\{i}

1(
n−1
|S|
)[U(S ∪ {i})− U(S)

]
(1)

Theorem 3 (Restated). The domination number d(n, k) of Shapley value is 1 for every n ≥ 4 and
any k ∈ {1, . . . , n}, even if we restrict the utility function U to be submodular.

Proof. We first consider the case when k ≥ 3.

We construct an instance of a dataset D = {1, . . . , n} and a submodular utility function U as follows:

U(∅) = 0;

U({1}) = U({2}) = . . . = U({k}) = 7, U({i}) = 5 for i ≥ k + 1;

U(S) = 2|S|+ 5 for all S s.t. 2 ≤ |S| ≤ k − 1;

U({1, . . . , k}) = 2k + 4, U(S) = 2k + 5 for all other S s.t. |S| = k;

U(S) = 2k + 5 for all S s.t. |S| ≥ k + 1.

We can compute Shapley value according to its definition in (1):

vshap(1) = . . . = vshap(k) =
1

n

[
7 +

2(k − 1) + 4(n− k)
n− 1

+ 2(k − 3) +
2
(
n−1
k−1
)
− 1(

n−1
k−1
) ]

=
1

n

[
2k + 3 +

4n− 2k − 2

n− 1
− 1(

n−1
k−1
)]

vshap(k + 1) = . . . = vshap(n) =
1

n

[
5 +

2k + 4(n− k − 1)

n− 1
+ 2(k − 3) +

1(
n−1
k−1
)]

=
1

n

[
2k + 1 +

4n− 2k − 4

n− 1
− 1(

n−1
k−1
)]

Since

vshap(1)− vshap(k + 1) =
1

n

[
2 +

2

n− 1
− 1(

n−1
k−1
) − 1(

n−1
k

)] ≥ 2

n(n− 1)
> 0,
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we know thatM will always output {1, . . . , k}, which achieves the lowest utility among all data
subsets of size k. Therefore, Shapley value’s domination number d(n, k) = 1 for all 3 ≤ k ≤ n− 1.

We then consider the case when k = 2. The submodular data utility functions for the case of k ≥ 3
can be easily adapted as follows:

U(∅) = 0;

U({1}) = U({2}) = 7, U({i}) = 5 for i ≥ 3;

U({1, 2}) = 8, U(S) = 9 for all other S s.t. |S| = 2;

U(S) = 9 for all S s.t. |S| ≥ 3.

The Shapley value is computed as follows:

vshap(1) = vshap(2) =
1

n

[
7 +

1 + 4(n− 2)

n− 1

]
=

1

n

[
11− 3

n− 1

]

vshap(3) = . . . = vshap(n) =
1

n

[
5 +

4 + 4(n− 3)

n− 1
+

2

(n− 1)(n− 2)

]
=

1

n

[
9− 4

n− 1
+

2

(n− 1)(n− 2)

]
Since

vshap(1)− vshap(3) =
1

n

[
2 +

2

n− 1
− 1(

n−1
k−1
) − 1(

n−1
k

)] ≥ 2

n(n− 1)
> 0,

we know thatM will always output {1, . . . , 2}, which achieves the lowest utility among all data
subsets of size 2. Therefore, for Shapley value, d(n, 2) = 1.

Finally, we consider the case when k = 1. Similarly, we construct a submodular utility function as
follows:

U(∅) = 0;

U({1}) = 6, U({i}) = 7 for i ≥ 2;

U({1, i}) = 11 for i ≥ 2, U({i, j}) = 9 for i, j ≥ 2;

U(S) = 11 for all S s.t. |S| ≥ 3.

The Shapley value is computed as follows:

vshap(1) =
1

n
[6 + 4 + 2] =

12

n

vshap(i) =
1

n

[
7 +

5 + 2(n− 2)

n− 1
+

2(n− 2)(n− 3)

(n− 1)(n− 2)

]
=

1

n

[
11− 1

n− 1

]
<

12

n
= vshap(1).

Therefore, Shapley value’s domination number d(n, k) = 1 for k = 1.

D Experiment Details and Results on More Datasets

D.1 Details of Figure 2

In Figure 2 of the maintext, we showed the predicted vs true data utility values (test accuracy) for
a synthetic dataset with logistic regression. For the synthetic data generation, we sample 200 data
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points from 50-dimensional standard Gaussian distribution. All of the 50-dimensional parameters
are independently and uniformly drawn from [−1, 1]. Each data point is labeled by the sign of its
vector’s sum. The data utility model we use is a three-layer MLP (note that a set function can be
represented by a function on {0, 1}n in a natural way).

D.2 Details of Figure 3

In Figure 3 of the maintext, the tiny synthetic dataset is generated by sample data points from a
2-dimensional standard Gaussian distribution, where the mean vector of the Gaussian distribution is
(0.1,−0.1). Each data point is labeled by the sign of its vector’s sum. We first sample 9 data points
with positive label and 2 data points with negative label. We then replicate each of the two negatively
labeled data points for two times. To simulate natural noise, we add Gaussian noise to the copied
data vector with scale 10−5. By sampling and copying, we obtained 15 data points with natural
redundancy. Since there are only 6 data points with negative label, they tend to be assigned with
larger (and similar) importance scores by linear heuristics like Shapley value. Both Shapley and Least
core thus rank negative points with higher importance. This means that when the target selection size
is less than 6, the selected dataset will have only single kind of labels and no information about the
other label class at all. As shown in Figure 3, both Shapley and Least core achieves trivial utility for
the first 6 selected data points.

D.3 Baseline Implementation

For fair comparisons between DATASIFTER and baselines, we fix the total number of utility sampling
as 4000 for DATASIFTER and baseline algorithms that require utility sampling, including Perm-SV,
TMC-SV, G-SV, and LC. Following the settings in [16], we set the performance tolerance in TMC-
Shapley as 10−3. Following the settings in [20], we set K = 5 for KNN-Shapley. We use CVXOPT2

library to solve the constrained minimization problem in the least core calculation. For influence
function technique, we rank training data points according to their influences on the model loss over
the validation data. The code is adapted from the PyTorch implementation of influence function on
GitHub3. For TracIn technique, we only use the parameters in the last layer, following the settings in
[11]. We sample checkpoints for every 15 epochs. The implementation is adapted from the official
GitHub repository4.

D.4 Details of Datasets Used in Section 5

CIFAR-10 [36]. CIFAR-10 consists of 60,000 3-channel images in 10 classes (airplane, automobile,
bird, cat, deer, dog, frog, horse, ship and truck). Each image is of size 32× 32.

MNIST [37]. MNIST consists of 70,000 handwritten digits. The images are 28 × 28 grayscale
pixels.

Dog vs. Cat [38]. Dog vs. Cat dataset consists of 2000 images (1000 for ‘dog’ and 1000 for ’cat’)
extracted from CIFAR-10 dataset. Each image is of size 32× 32.

Enron SPAM [39]. Enron SPAM dataset consists of 2000 emails extracted from Enron corpus [51].
The bag-of-words representation has 10714 dimensions.

PubFig83 [40]. PubFig83 is a real-life dataset of 13,837 facial images for 83 individuals. Each
image is resized to 32× 32.

Covid-CT [41]. The COVID-CT-Dataset has 746 CT images in total, containing 349 images from
216 COVID-19 patients and the rest of them are from healthy people. The dataset is separated into
543 training images and 203 test images. We resized each image to 32× 32.

2https://cvxopt.org/
3https://github.com/nimarb/pytorch_influence_functions
4https://github.com/frederick0329/TracIn
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UCI Adult Census [42]. The Adult dataset contains 48,842 records from the 1994 Census database.
Each record has 14 attributes, including gender and race information. The task is to predict whether
one’s income exceeds $50K/yr based on census data.

COMPAS [43]. We use a subset of the COMPAS dataset that contains 6172 data records used by
the COMPAS algorithm in scoring defendants, along with their outcomes within two years of the
decision, for criminal defendants in Broward County, Florida. Each data record has features including
the number of priors, age, race, etc.

D.5 Implementation Details

For the experiment of backdoor detection, data poisoning detection, noisy detection, and mislabel
detection on the CIFAR-10 dataset, the CNN model we use has two convolutional layers. A max-
pooling layer follows each with the ReLU as the activation function. For the experiment of Backdoor
detection and noisy feature detection on the MNIST dataset, we use LeNet adapted from [52],
which has two convolutional layers, two max-pooling layers, and one fully-connected layer. For the
experiment of data summarization, a large CNN model is adopted to train on the PubFig83 dataset,
which has six convolutional layers, and each of them is followed by a batch normalization layer and a
ReLU activation function. For the experiment on poisoning detection over the Dog vs. Cat dataset as
well as the data summarization over the COVID-CT dataset, we use a small CNN model adapted from
PyTorch tutorial5, which contains two convolutional layers, two max-pooling layers, and followed by
three fully-connected layers. We use Adam optimizer with learning rate 10−3, mini-batch size 32 to
train all of the models mentioned above for 30 epochs, except that we train LeNet for five epochs on
MNIST. For the experiment of data biasing on the Adult dataset, we implement logistic regression in
scikit-learn [53] and use the LibLinear solver. For the experiment of mislabeling detection on SPAM
and data debiasing on COMPAS, we adopt SVM implementation from scikit-learn library [53] with
RBF kernel.

A DeepSets model is a set function f(S) = ρ
(∑

x∈S φ(x)
)

where both ρ and φ are neural networks.
In our experiment, both φ and ρ networks have three fully-connected layers. For the COMPAS
dataset, we set the number of neurons in every hidden layer and the dimension of set features (i.e., the
output of φ network) to be 64. For all other datasets, we set the number of neurons and set dimension
to be 128 . We use the Adam optimizer with learning rate 10−4, mini-batch size of 32, β1 = 0.9, and
β2 = 0.999 to train all of the DeepSets utility models, for up to 20 epochs.

D.6 Additional Results

In this section, we present experiment details and results on more datasets corresponding to the
applications introduced in the main body (see Section 5).

D.6.1 Backdoor Attack

We consider the two most popular types of backdoor attacks, namely the BadNets [45] and the Trojan
square trigger [46]. Those two attacks’ major difference is the trigger itself, where BadNets adopts a
white block trigger at the right corner, and Trojan attack adopts a square trigger.

Here, we show the results of DATASIFTER and baseline techniques over detecting BadNets triggers
on MNIST dataset. The poisoning rate is 0.25, and the target label is ‘0’. The performance of different
DQM techniques is illustrated in Figure 7 I.(a) and I.(b). We can see that DATASIFTER outperforms
all other methods in the detection rate and significantly reduces the attack accuracy after filtered out
bad data points.

D.6.2 Data Poisoning Attack

We discuss two popular types of clean-label data poisoning attacks. Feature collision attack [47]
crafts poison images that collide with a target image in feature space, thus making it difficult for a
model to discriminate between the two. Influence function-based poisoning attack [10] identifies
the most influential training data points for the target image and generates the adversarial training
perturbation that causes the most increase in the loss on the target image. The Attack Success Rate is

5https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
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Figure 7: The experimental results and comparisons of the DATASIFTER under the case of filtering
out harmful data (application I-IV). The light blue region in each (a) graph represents the area that a
method is no better than a random selection. For I.(b) and II.(b), we depict the Attack Success Rate
(ASR), where a lower ASR indicates a more effective detection. For III.(b) and IV.(b), we show the
model test accuracy, where a higher accuracy means a better selection.

measured by the model’s confidence on the prediction of poisoned data (with respect to the target
label).

Figure 7 II.(a) (b) show the results for influence function-based attack on Dog vs. Cat dataset, where
50 data points of class ‘cat’ are perturbed to increase the model loss on a ‘dog’ sample in the test
set. As we can see, DATASIFTER is a more effective approach to detect poisoned data points than all
other baselines.

D.6.3 Noisy Feature

We follow the same evaluation method for noisy data detection as in Section 5 with another setting:
LeNet model trained on noise polluted MNIST. We randomly select 1000 data points and corrupt 25%
of them with white noise. As shown in Figure 7 III.(a) (b), we can see that although KNN-Shapley
can achieve slightly better performance in detecting noisy data points, DATASIFTER still retains a
higher performance for model accuracy. Besides, similar to the case for CIFAR10, we find that the
KNN-SV approach only starts finding the noisy data points until filtering out a certain amount of
clean data. This is mainly because all noisy data points are out-of-distribution (OOD), as shown in
Figure 8 (b). The mechanism of KNN-SV, however, tends to assign 0 values to OOD data points
while assign negative values to clean data points that are in-distribution but have different labels from
their neighbors. Figure 8 (c) gives a visualization of the distribution of KNN-Shapley values.

D.6.4 Mislabeled Data

We conduct another experiment on noisy label detection: a small CNN model trained on 500 data
points from the CIFAR-10 dataset. The noise flipping ratio is 25%. The performance of mislabel
detection is shown in Figure 7 IV.(a). As we can see, no DQM techniques are particularly effective in
detecting mislabeled data for this task. Only KNN-SV achieves a slightly better performance than
other approaches. We conjecture that the difficulty of mislabel detection on CIFAR-10 dataset is
due to the following reason: since an oracle for detecting mislabeled data points can also be used to
implement a classifier, the difficulty of mislabeling detection is at least as difficult as classification. A
classifier directly trained on the 500 clean data points in this experiment, however, can only attain
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(a) (b) (c)

Figure 8: (a) a normal image from CIFAR-10, (b) an example of noisy data image, (c) a sample of
KNN-Shapley values, where data points with index < 500 are noisy. A data point with a higher
KNN-Shapley value is considered more important.

around 28% test classification accuracy. Nevertheless, Figure 7 IV.(b) shows that DATASIFTER only
achieves slightly worse model accuracy than KNN-SV after filtering out selected bad data points.

D.6.5 Data Summarization

Figure 9: The experimental results and comparison of the
DATASIFTER under the case of selecting high-quality data (ap-
plication V and VI). We depict the validation accuracy for both
cases. A higher accuracy indicates a better performance.

As another setting for the
data summarization appli-
cation we consider, we use
the patient CT images from
COVID-CT dataset for a
binary classification task,
which aims to determine
whether an individual is
diagnosed with COVID-19 or
not. The CNN model trained
on the dataset achieves
around 72% classification
accuracy. Figure 9 V. shows
the results for selecting up to
400 data points with different
DQM techniques. As we can
see, DATASIFTER achieves
the best model accuracies on the selected data points along with KNN-SV.

D.6.6 Data Debiasing

We introduce another data debiasing experiment on the criminal recidivism prediction (COMPAS)
task, where races are considered as the sensitive attribute. The utility metric we adopted here is the
average accuracy across different race groups. The learning algorithm we use is SVM with RBF
kernel. Baselines including G-SV, KNN-SV, and Influence-based techniques are not applicable for
this application due to the utility metric and learning algorithm we use. Figure 9 VI. shows the results
for DATASIFTER and the remaining five baselines. We can see that DATASIFTER again achieves the
top-tire performance.

D.6.7 Large Datasets

We follow the same protocol as in Section 5.3 for comparing the scalability between DATASIFTER
and other baselines on a different setting: noisy data detection on a 20,000-size CIFAR-10 subset.
The corruption ratio is 25%. Again, for DATASIFTER, we use the learned utility model from Section
5.3 to select data points on the 20,000-size set. We remove the LOO, the Least core, and all the
Shapley value-based approaches except KNN-SV from comparison, as they did not terminate in 24
hours for 4000 utility sampling on the 20,000-size set. As we can see from Figure 10 (a) and (b),
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DATASIFTER significantly outperforms all other baseline techniques. The results demonstrate that
although the utility sampling step could be expensive, the scalability of DATASIFTER can be boosted
by the predictive power of the learned utility model.

Figure 10: The experimental results and comparison of the DATASIFTER and baseline algorithms for
detecting noisy data on larger datasets.

20


	1 Introduction
	2 Related Work
	3 Formalism and Algorithmic Framework
	4 Worst-Case Analysis
	5 Evaluation
	5.1 Baselines
	5.2 Results
	5.2.1 Filtering out Harmful Data
	5.2.2 Selecting High-quality Data

	5.3 Comparisons on Larger Datasets

	6 Limitations of the DataSifter
	7 Conclusion
	A Proof of Theorem 1
	B Proof of Theorem 2
	C Proof of Theorem 3
	D Experiment Details and Results on More Datasets
	D.1 Details of Figure 2
	D.2 Details of Figure 3
	D.3 Baseline Implementation
	D.4 Details of Datasets Used in Section 5
	D.5 Implementation Details
	D.6 Additional Results
	D.6.1 Backdoor Attack
	D.6.2 Data Poisoning Attack
	D.6.3 Noisy Feature
	D.6.4 Mislabeled Data
	D.6.5 Data Summarization
	D.6.6 Data Debiasing
	D.6.7 Large Datasets



