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Power Grid AC-based State Estimation:
Vulnerability Analysis Against Cyber Attacks

Ming Jin1, Javad Lavaei2, and Karl Henrik Johansson3

Abstract—To ensure grid efficiency and reliability, power
system operators continuously monitor the operational char-
acteristics of the grid through a critical process called state
estimation (SE), which performs the task by filtering and fusing
various measurements collected from grid sensors. This study
analyzes the vulnerability of the key operation module, namely
AC-based SE, against potential cyber attacks on data integrity,
also known as false data injection attack (FDIA). A general
form of FDIA can be formulated as an optimization problem,
whose objective is to find a stealthy and sparse data injection
vector on the sensor measurements with the aim of making the
state estimate spurious and misleading. Due to the nonlinear
AC measurement model and the cardinality constraint, the
problem includes both continuous and discrete nonlinearities.
To solve the FDIA problem efficiently, we propose a novel
convexification framework based on semidefinite programming
(SDP). By analyzing a globally optimal SDP solution, we delineate
the “attackable region” for any given set of measurement types
and grid topology, where the spurious state can be falsified by
FDIA. Furthermore, we prove that the attack is stealthy and
sparse, and derive performance bounds. Simulation results on
various IEEE test cases indicate the efficacy of the proposed
convexification approach. From the grid protection point of view,
the results of this study can be used to design a security metric
for the current practice against cyber attacks, redesign the bad
data detection scheme, and inform proposals of grid hardening.
From a theoretical point of view, the proposed framework can
be used for other nonconvex problems in power systems and
beyond.

Index Terms—State estimation, nonconvex optimization, con-
vexification, semidefinite programming, false data injection at-
tack, cyber attack, power system, resilience, security

I. INTRODUCTION

THE convergence of automation and information technol-
ogy has enhanced reliability, efficiency, and agility of the

modern grid [1]–[3]. Managed by supervisory control and data
acquisition (SCADA) systems, a wealth of sensor data from
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transmission and distribution infrastructures are collected and
filtered in order to facilitate a key procedure known as power
system state estimation (SE), which is conducted on a regular
basis (e.g., every few minutes), as shown in Fig. 1 [4]–[6]. The
outcome presents system operators with essential information
about the real-time operating status to improve situational
awareness, make economic decisions, and take contingency
actions in response to potential threat that could engander the
grid reliability [7].

In smart grid where information is sent via remote terminal
units (RTUs), maintaining the security of the communication
network is imperative to guard against system intrusion and
ensure operational integrity [5], [9], [10]. However, traditional
approaches such as security software, firewalls, and “air gaps”,
i.e., no connection between systems, are recognized as inade-
quate in the face of growing likelihood of breaches and cyber
threat, such as the 2016 cyber attack on Ukraine’s electricity
infrastructure [11], [12]. In a recent report from the National
Academies of Sciences, Engineering, and Medicine, titled
“Enhancing the resilience of the nation’s electricity system”,
the committee concluded that the United States’ electric grid
is vulnerable to a range of threats, among which terrorism and
cyber attacks are most severe and could potentially cause long-
term and widespread blackouts [7]. A process called “envision-
ing process” is recommended to improve the cyber security
and resilience, which stresses the importance of “anticipating
myriad ways in which the system might be disrupted and
the many social, economic, and other consequences of such
disruptions”.

The objective of this study is to analyze power grid vul-
nerability against cyber attack – more specifically, one critical
class of threat known as false data injection attack (FDIA),
which attempts to stealthily modify data to introduce error into
grid SE (Fig. 1) [12], [13]. To stage an FDIA, the attacker
needs to compromise power measurements by hacking the
communication with SCADA. Previous works [13]–[19] have
demonstrated that a stealth FDIA is possible to evade bad data
detection (BDD) by the control center, and can cause potential
damages of load shedding [18], economic loss [12], [20],
and even blackouts [21]. While these works have primarily
studied a simplified power flow model, i.e., DC model [13]–
[19], [22], [23], an FDIA based on a more accurate AC model
is within the realm of possibility [4]. In a system where
measurements are nonlinear functions of the state parameters,
it is usually not easy to construct a state that evades BDD.
Indeed, DC-based FDIA can be easily detected by AC-based
BDD [9], [24]. On the other hand, the nonlinearity of equality
power-flow constraints also makes the co-existence of multiple
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Fig. 1: Illustration of power system operation and its vulnerability to cyber attack (adapted from [8]). With unfettered access
to the communication network and grid information system through cyber intrusion, an adversary would be able to stage an
attack on the system without any physical sabotage, by simply injecting false data to the state estimator to impact the decision
making for the system.

states and spurious solutions possible, which is a fundamental
reason why an AC-based FDIA with sparse attacks is feasible
and perhaps more detrimental than an DC-based FDIA. Once
constructed, this new class of attacks could be hard to detect by
existing methods. Thus, it is vital to understand its mechanism
and devise protection/detection methods to thwart such attacks.

A. Related Work

Potential adversarial FDIA strategies have been addressed
in previous works on power system vulnerability analysis
[13], [15], [18], [24], [25]. The negative impacts and possible
defense mechanisms have also been studied [14], [15], [18],
[21]. From a practitioner’s point of view, there are mainly
two categories, based on either DC or AC models [12], [20].
For DC-FDIA, an unobservability condition was derived and
the attack was numerically shown to be sparse [13], [15],
[18]. Distributed DC-FDIA with partial knowledge about the
topology was considered in [9], [19]. The vulnerability was
quantified by the minimum number of sensors needed to
compromise in order to stage stealth FDIA [14], [15], [17].
This can be formulated as a minimum cardinality problem,
where different algorithms have been proposed for efficient
computation [22], [23]. As for the attack impact, FDIA has
been studied on the electric market [16] and load redistribution
[18] to show significant financial losses.

Only a few works have been published on AC-based FDIA,
due to the recognized complexity of nonlinear systems [5],

[24]. The paper [25] introduced a graph-based algorithm to
identify a set of compromised sensors that suffices to construct
an unobservable attack; however, this only offers an upper
bound on the cardinality, rather than resource-constrained
sparsity. The work [24] studied AC-based FDIA based on
linearization around the target state under the assumption that
SE is obtained by a specific algorithm, which could be too
stringent in practice.

Differentiated from prior literature, this study is the first of
its kind to solve a general FDIA for the AC-based SE, with
theoretical guarantees of sparsity and unobservability.

B. Contributions
Motivated by the theoretical challenges of continuous non-

convexity and discrete nonlinearity posed by AC-based FDIA,
we propose a novel convexification framework using semidef-
inite programming (SDP), and prove conditions on stealth
attack and performance bounds. This broadens the perspectives
on power system security and vulnerability analysis. By inves-
tigating the least-effort strategy from the attacker’s perspective,
this study provides a realistic metric for the grid security based
on the number of individual sensors required to thwart an
FDIA. The results also motivate protection mechanisms for
AC-based SE, such as the redesign of BDD [26]. The main
contributions of this work are as follows:
• Formulation of a novel convexification framework based

on SDP to solve the AC-based FDIA problem for a near-
globally optimal strategy;
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• Analysis of the outcome of the SDP framework from the
perspectives of the attackable region, attack stealthiness,
and performance bounds;

• Simulation study on an array of power systems to illus-
trate that the planned attack is sparse and stealthy.

We also note that the presented method has both practical and
theoretical implications on solving real-world nonlinear and
nonconvex problems beyond AC-based FDIA.

C. Organization

The rest of the paper is organized as follows. We will
first introduce the notations used throughout the paper in
the following section. Sec. II provides an overview of the
vulnerability issue of AC-based SE. More specifically, we will
introduce the power system modeling, AC-based SE methods,
as well as a general framework of FDIA for AC-based SE.
Since the presented framework is nonconvex, a convexification
framework based on SDP is proposed in Sec. III. We will
analyze the (global) optimal solution of this SDP in terms of
the “attackable region” (Sec. III-B) and performance bounds
(Sec. III-C). Experimental results on several IEEE bus systems
are discussed in Sec. IV. Conclusions are drawn in Sec. V.

D. Notations

Set notations. We use R and C as the sets of real and
complex numbers, and Sn and Hn to represent the spaces of
n× n real symmetric matrices and n× n complex Hermitian
matrices, respectively. A set of indices {1, 2, ..., k} is denoted
by [k]. The set cardinality Card(·) is the number of elements
in a set. The support of a vector x, denoted as supp (x), is the
set of indices of the nonzero entries of x. For a set S ⊂ Rn,
we use Sc = Rnm \S to denote its complement. The notation
int Γ is used to represent the interior of the set Γ.

Matrix notations. Vectors are shown by bold letters, and
matrices are shown by bold and capital letters. The symbols
0n, 1n, 0m×n, In×n denote the n × 1 zero vector, n × 1
one vector, m × n zero matrix, and n × n identity matrix,
respectively. Let [x]i denote the i-th element of the vector x.
For an m×n matrix W, let W[X ,Y] denote the submatrix of
W whose rows are chosen from X ∈ [m] and whose columns
are chosen from Y ∈ [n]. The notation W � 0 indicates that
W is Hermitian and positive semidefinite (PSD), and W � 0
indicates that W is Hermitian and positive definite.

Operator notations. The symbols (·)> and (·)∗ represent
the transpose and conjugate transpose operators. We use <(·),
=(·), trace (·), and det(·) to denote the real part, imaginary
part, trace, and determinant of a scalar/matrix. The dot product
is represented by x1 · x2 = x>1 x2, for x1,x2 ∈ Rn.
The imaginary unit is denoted as i. The notations ∠x and
|x| indicate the angle and magnitude of a complex scalar;
moreover, ∠x and |x| are defined based on the angles and
magnitudes of all entries of the vector x. For a convex function
g(x), we use ∂g(x) to denote its subgradient. The notations
‖x‖0, ‖x‖1, ‖x‖2 and ‖x‖∞ show the cardinality, 1-norm,
2-form and ∞-norm of x.

II. VULNERABILITY OF AC-BASED STATE ESTIMATION

A. Power system modeling

We model the electric grid as a graph G := {N ,L}, where
N := [nb] and L := [nl] represent its set of buses and
branches. Denote the admittance of each branch l ∈ L that
connects bus s and bus t as yst. The mathematical framework
of this work applies to more detailed models with shunt
elements and transformers; but to streamline the presentation,
these are not considered in the theoretical analysis of this
paper. The grid topology is encoded in the bus admittance
matrix Y ∈ Cnb×nb , as well as the from and to branch
admittance matrices Yf ∈ Cnl×nb and Yt ∈ Cnl×nb ,
respectively (see [27], Ch. 3).

The power system state is described by the bus voltage
vector v =

[
v1, ..., vnb

]> ∈ Cnb , where vk ∈ C is the complex
voltage at bus k ∈ N with magnitude |vk| and phase ∠vk.
Given the complex nodal vector, the nodal current injection
can be written as i = Yv, and the branch currents at the
from and to ends of all branches are given by if = Yfv and
it = Ytv, respectively. Define {e1, ..., enb

} and {d1, ...,dnl
}

as the sets of canonical vectors in Rnb and Rnl , respectively.
We can derive various types of power and voltage measure-
ments as follows:
• Voltage magnitude. The voltage magnitude at bus k is

given by |vk|2 = trace (Ekvv∗), where Ek := eke
>
k .

• Nodal power injection. The power injection at bus node
k consists of real and reactive powers, pk + iqk, where:

pk = < (i∗kvk) = trace
(
1
2 (Y∗Ek + EkY) vv∗

)
qk = = (i∗kvk) = trace

(
1
2i (Y∗Ek −EkY) vv∗

)
.

• Branch power flows. Given a line l ∈ L from node
s to node t, the real and reactive power flows in both
directions are given by:

p
(l)
f = < ([if ]∗l vs) = trace

(
1
2

(
Y∗fdle

>
s + esd

>
l Yf

)
vv∗

)
p
(l)
t = < ([if ]∗l vt) = trace

(
1
2

(
Y∗fdle

>
t + etd

>
l Yf

)
vv∗

)
q
(l)
f = = ([if ]∗l vs) = trace

(
1
2i

(
Y∗fdle

>
s − esd

>
l Yf

)
vv∗

)
q
(l)
t = = ([if ]∗l vt) = trace

(
1
2i

(
Y∗fdle

>
t − etd

>
l Yf

)
vv∗

)
.

Thus, each common measurement in power systems that
belongs to one of the above measurement types can be written
as:

fi(v) = trace (Mivv∗), (1)

where Mi ∈ Hnb is the Hermitian measurement matrix for
the i-th noiseless measurement (it is straightforward to include
linear PMU measurements in our analysis as well).

B. AC-based state estimation

The SE problem aims at finding the unknown operating
point of a power network, namely v, based on a given set of
measurements. During the operation, a set of measurements
m ∈ Rnm are acquired:

m = f(v) + e + b, (2)
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where f : Cnb 7→ Rnm is the measurement function whose
scalar elements are designated in (1), e ∈ Rnm denotes
random noise, and b ∈ Rnm is the bad data error that accounts
for sensor failure or adversarial injection. In the case of no bad
data error, the common strategy for solving SE is to form the
nonlinear weighted least squares problem:

min
v̂∈V

nm∑
i=1

wi(mi − fi(v̂))2, (3)

where V is the region of potential operating points, wi is the
inverse variance of sensor i, and fi(v̂) is given in (1).

In the case that the sensor measurements are not corrupted
by bad data and noise, i.e., b = e = 0, we describe a
condition under which a state is “observable” based on the
measurement types (matrices) M = {M1, ...,Mnm

} [28].
First, we introduce some notations. Let O denote the set of
all buses except the slack bus. The complex vector v ∈ Cnb

can be represented by its real-valued counterpart:

v =
[
<
(
v[N ]>

)
=
(
v[O]>

)]> ∈ R2nb−1.

Accordingly, any n × n Hermitian matrix M can be charac-
terized by a (2n− 1)× (2n− 1) real skew-symmetric matrix:

M =

[
< (M[N ,N ]) −= (M[N ,O])
= (M[O,N ]) < (M[O,O])

]
∈ R(2n−1)×(2n−1).

Based on (1) and the above notations, the vector-valued func-
tion f(v) maps the state to a set of noiseless measurements:

f(v) =

 v∗M1v
...

v∗Mnm
v

 =

 v>M1v
...

v>Mnmv

 ∈ Rnm , (4)

whose Jacobian matrix is given by:

J(v) = 2
[
M1v · · · Mnmv

]
. (5)

Motivated by the inverse function theorem, which states that
the inverse of the function f(v) exists locally if J(v) has full
row rank, an “observability” definition is introduced below.

Definition 1 (Observability). A state v ∈ Cnb is observable
from a set of measurement types M if the Jacobian J(v) has
full row rank. For a given set of measurement types M, the
observable set V(M) is the set of all observable states.

In practice, the SE problem (3) can be solved efficiently
using first-order methods such as the Gauss-Newton algorithm
or a recent method based on SDP relaxation [6], [28]. Fur-
thermore, as implied by the observability property and the
Kantorovich theorem, if the state v is observable, then we can
find it using the Gauss-Newton method by starting from any
initial point sufficiently close to v.

As captured by the bad data vector b, the sensor mea-
surements might be corrupted by aberrant data. The common
practice is to employ a BDD based on statistical hypothesis
testing [5]. Under the null hypothesis that no bad injection
exists, namely bi = 0, the residual (mi − fi(v̂))

2 should
follow the chi-squared distribution, where v̂ is the estimated
state and the random error ei is assumed to be normally
distributed. A threshold value is set based on confidence

levels to detect large residuals, whose corresponding data are
discarded and a new iteration of SE starts. This procedure is
able to sift out randomly occurring bad data; however, it can
be ineffective to guard against systematically fabricated bad
data, a type of cyber attack known as FDIA.

C. FDIA framework

FDIA is a cyber attack on the data analytic process, where
a malicious agent intentionally injects false data b ∈ Rnm

into the nm grid sensors to make system operators believe in
an operating state, namely ṽ, other than the true state v [9],
[12]. As an illustrative example (Fig. 2), the operator would
be “tricked” if the attacker manages to tamper with certain
power flow measurements to generate a fake state estimate of
the system.

FDIA differs from randomly occurring bad data in its stealth
operation to evade BDD. Existing works have investigated
stealth conditions for FDIA on DC-based SE [13], [15]. The
following definition of “stealth” is provided to include cases
of both DC- and AC-based models.

Definition 2 (Stealth). An attack b is stealthy under state v
if, in the absence of the measurement noise e, there exists a
nonzero vector c such that f(v) + b = f(v + c).

The following lemma provides a sufficient condition for AC-
based attacks to remain stealthy.

Lemma 1 (Sufficient condition for stealth attack). An attack b
is stealthy if there exists a nonzero vector c such that Mic = 0
for every i ∈ [nm] that is not in the support of b.

Proof. Since fi(v) = trace (Mivv∗), we have

fi(v + c) = trace (Mi(v + c)(v + c)∗) = fi(v),

for every i ∈ [nm] that is not in the support of b.

Lemma 1 implies that an attack is unobservable if the state
deviation c lies in the null space of the measurement matrices
of those sensors the attacker does not tamper with. This is
applicable to the situation discussed in [25] for a single bus
attack. To better understand this, consider a vector c that has
zeros everywhere except at location j. Since the j-th column
of Mi, denoted as [Mi]:j , is zero unless Mi corresponds to the
measurement of a branch that connects to bus j, this delineates
a “superset” of sensors needed to hack to guarantee a stealth
attack.

An upper bound on the minimum number of compromised
sensors can be derived for a multi-bus attack; however, the
sufficient condition could be too stringent because the attacker
only needs to satisfy bi = trace (Micc∗) + trace (Micv∗) +
trace (Mivc∗) = 0 for all i 6∈ supp (b) to remain stealthy.
For instance, consider the system in Fig. 2. Since the bus
states are all under attack, the upper bound on the minimum
number of sensors to infiltrate is 40, or all the measurements,
according to [25] and Lemma 1. But due to the “clever”
design, FDIA is conducted successfully by tampering with
only 18 sensors, which is a sparser subset of the upper bound.
It is also worthwhile to note that one can think of a strategy
that offsets the phases of bus voltages at bus 2, 3, 5 and 6 by
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a constant. This will keep the real power flows the same as
before and only change the reactive flows. However, even with
this ad hoc strategy, the number of sensors to tamper with is
19. This indicates the efficiency of the demonstrated strategy.
However, to find such an attack vector, a general strategy
can be formulated as an optimization problem to maximize
sabotage with limited resources and to evade detection:

min
ṽ∈Cnb ,b∈Rnm

h(ṽ)

s. t. f(ṽ) = m + b

‖b‖0 ≤ c

(NC-FDIA)

where f(·) is the AC-model measurement function (1), ṽ
is the spurious state, h(·) is an optimization criterion to be
specified later, and c is a constant number. The constraints
amount to the unobservability condition (Definition 2) and the
sparsity requirement. The following assumption is made on
the adversary attack capability:

Assumption 1. The attacker can form a strategy after access-
ing the grid topology and the measurement vector m.

The above assumption depicts a powerful adversary and a
completely adversarial scenario. Using the full set of measure-
ments, the attacker can perform SE to estimate the true state v,
and tailor the attack to be stealthy. However, if this assumption
is violated, the attacker risks being detected by the BDD [9].
The analysis provided in this paper is based on Assumption 1
because it helps understand the behavior of the system under
the worst attack possible (using the full knowledge of the
system) and simplifies the mathematical treatment.

Several objectives are possible for the attacker to fulfill
various malicious goals, such as:
• Target state attack: h(ṽ) = ‖ṽ−vtg‖22, which intention-

ally misguides the operator towards vtg;
• Voltage collapse attack: h(ṽ) = ‖ṽ‖22, which deceives

the operator to believe in low voltages;

• State deviation attack: h(ṽ) = −‖ṽ− v‖22, which yields
the estimated state ṽ to be maximally different from the
true state v.

An FDIA attack can be formed by solving (NC-FDIA) with
one of the above objectives; however, the problem is challeng-
ing due to: 1) a possibly nonconvex objective function, e.g.,
concave for the state deviation attack, 2) nonlinear equalities,
and 3) cardinality constraints. The next section develops an
efficient strategy to deal with these issues.

III. SDP CONVEXIFICATION OF THE FDIA PROBLEM

Since the original attack problem (NC-FDIA) is nonconvex
and difficult to tackle, we propose a convexification method
based on SDP, which can be solved efficiently. Based on
this framework, an “attackable region” of system states is
characterized, where a strategy is guaranteed to exist and
can be found efficiently. To streamline the presentation, we
focus the analysis on the case of “target state attack”, where
h(ṽ) = ‖ṽ−vtg‖22 with vtg chosen by the adversary a priori.
The results hold for many other objective functions as well.

A. SDP convexification

By introducing an auxiliary variable W ∈ Hnb and the
associated function h̄(ṽ,W) = trace (W) − ṽ∗vtg − v∗tgṽ,
(NC-FDIA) can be reformulated as:

min
ṽ∈Cnb ,b∈Rnm ,

W∈Hnb

h̄(ṽ,W)

s. t. trace (MiW) = mi + bi, ∀i ∈ [nm]

‖b‖0 ≤ c
W = ṽṽ∗

(NC-FDIA-r)

~

1 2 3

6 5 4

(1,0°) (0.95,2°) (0.96,5°)

(0.95,4°) (0.98,10°) (1.02,25°)

P1 v1 P2 Q2 P3 Q3 P4 v4 P5 Q5 P6 Q6

.087 1 -.504 -.110 -.067 .048 1.668 1.02 -.134 .588 -.570 .180

p12 p21 p23 p32 p45 p54 p56 p65 p26 p62 p35 p53 p36 p63

.087 -.069 -.280 .293 1.668 -1.319 .659 -.604 -.155 .160 -.488 .526 .128 -.126

q12 q21 q23 q32 q45 q54 q56 q65 q26 q62 q35 q53 q36 q63

.394 -.423 .175 -.207 -.945 1.244 -.338 .347 .138 -.177 .309 -.318 -.054 .010

True system state

Original sensor measurements

~

1 2 3

6 5 4

(1,0°) (0.86,1.3°) (0.87,5°)

(0.87,3.8°) (0.90,11°) (1.02,25°)

P1 v1 P2 Q2 P3 Q3 P4 v4 P5 Q5 P6 Q6

.580 1 -.914 -.365 -.067 .048 1.870 1.02 -.319 .053 -.570 .180

p12 p21 p23 p32 p45 p54 p56 p65 p26 p62 p35 p53 p36 p63

.580 -.485 -.280 .293 1.870 -1.522 .659 -.604 -.155 .160 -.488 .526 .128 -.126

q12 q21 q23 q32 q45 q54 q56 q65 q26 q62 q35 q53 q36 q63

.757 -.705 .189 -.207 -.372 .674 -.319 .347 .151 -.177 .309 -.302 -.054 .010

Spurious system state

Spurious sensor measurements

Fig. 2: An example of a 6-bus system, where the nodal voltage magnitudes and power injections as well as branch power
flows are measured (p.u.). The attacker injects false data (red) to influence the bus state estimates (shown on the right side
of each bus). The per unit bases for power and voltage are 100MW and 240KV, respectively. The line admittance values are
identical to 1 + 1i. The FDIA injection is solved by SDP-FDIA, with parameters shown in Table I. Note that pij and qij show
the active and reactive power flows over the line (i, j).
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A cardinality-included SDP relaxation of the above nonconvex
problem can be obtained by replacing W = ṽṽ∗ with a
general PSD constraint:

min
ṽ∈Cnb ,b∈Rnm ,

W∈Hnb

h̄(ṽ,W)

s. t. trace (MiW) = mi + bi, ∀i ∈ [nm]

‖b‖0 ≤ c[
1 ṽ∗

ṽ W

]
� 0

(NC-FDIA-c)
To study the relationship between the nonconvex prob-
lem (NC-FDIA-r) and its cardinality-included relaxation
(NC-FDIA-c), we define an augmented matrix:

Ẑ =

[
1 v̂∗

v̂ Ŵ

]
, (6)

where (v̂,Ŵ) is a solution of (NC-FDIA-c). It is straightfor-
ward to verify that if rank(Ẑ) is equal to 1, then we must have
Ŵ = v̂v̂∗. Thus, (v̂,Ŵ) is feasible for (NC-FDIA-r) and con-
sequently optimal since the objective value of (NC-FDIA-c)
is a lower bound for (NC-FDIA-r). In fact, by exploring
the special features of the problem, we can derive a milder
condition to guarantee the equivalence. This will be elaborated
next.

Assumption 2a. Given a solution (v̂,Ŵ, b̂) of (NC-FDIA-c),
v̂ and vtg point along the same “general direction” in the
sense that:

v̂∗vtg + v∗tgv̂ > 0. (7)

Note that the objective function of (NC-FDIA-c) helps with
the satisfaction of Assumption 2a, since the objective aims at
making v̂ and vtg be as close as possible to each other.

Theorem 1. The relaxation (NC-FDIA-c) recovers a solution
of the nonconvex problem (NC-FDIA) and finds an optimal
attack if it has a solution (v̂,Ŵ, b̂) satisfying Assumption 2a
such that rank(Ŵ) = 1.

Proof. See Appendix A.

Theorem 1 ensures that if rank(Ŵ) = 1, then rank(Ẑ) = 1
(even though it could theoretically be 2), in which case
(NC-FDIA-c) is able to find an optimal attack. Nevertheless,
the optimal solution of (NC-FDIA-c) is not guaranteed to be
rank-1, and in addition the cardinality constraint ‖b‖0 ≤ c in
this optimization problem is intractable. We introduce a series
of techniques to deal with each issue.

To enforce (NC-FDIA-c) to possess a rank-1 solution,
we aim at penalizing the rank of its solution via a convex
term. The literature of compressed sensing suggests using the
nuclear norm penalty trace (W) [29]. However, this penalty
is not appropriate for power systems, since it penalizes the
voltage magnitude at each bus and may yield impractical

results. Instead, a more general penalty term in the form of
trace (M0W) will be used in this paper:

min
ṽ∈Cnb ,b∈Rnm ,

W∈Hnb

h̄(ṽ,W) + trace (M0W)

s. t. trace (MiW) = mi + bi, ∀i ∈ [nm]

‖b‖0 ≤ c[
1 ṽ∗

ṽ W

]
� 0,

(NC-FDIA-p)
where M0 is to be designed. Similar to Lasso [30], we can
replace the cardinality constraint in the above problem with
an l1-norm penalty added to the objective function to induce
sparsity, which leads to the convex program:

min
ṽ∈Cnb ,b∈Rnm ,

W∈Hnb

h̄(ṽ,W) + trace (M0W) + α‖b‖1

s. t. trace (MiW) = mi + bi, ∀i ∈ [nm][
1 ṽ∗

ṽ W

]
� 0

(SDP-FDIA)
where α is a constant regularization parameter. After this
convexification, (SDP-FDIA) is thus an SDP (after reformu-
lating the l1-norm term in a linear way), which can be solved
efficiently using standard numerical solvers (e.g., SeDuMi and
SDPT3) [31]. On the other hand, we recognize that by includ-
ing penalty terms for rank and sparsity, we inevitably introduce
bias to the optimization problem. Thus, the result obtained
by (SDP-FDIA) should be described as “near-optimal”, in
comparison to a global minimum of NC-FDIA. This is an
artifact that arises from the computational complexity of the
problem, and can be only remedied by a careful selection of
the penalty coefficients.

Assumption 2b. Given a solution (v̂,Ŵ, b̂) of (SDP-FDIA),
v̂ and vtg have the same general direction in the sense of (7).

Lemma 2 (Stealth attack). Let (v̂,Ŵ, b̂) be a solution of
(SDP-FDIA) satisfying Assumption 2b. The attack b̂ is stealthy
if rank(Ŵ) = 1.

Proof. See Appendix A.

B. Attackable region
In this section, we first introduce and characterize the set of

voltages that the attacker can achieve by solving (SDP-FDIA)
for the malicious data injection. Then, we analyze the sabotage
scale under the studied FDIA. Throughout this section, let
(v̂,Ŵ, b̂) denote an optimal solution of (SDP-FDIA). Given
any stealth attack b, we define an optimization problem based
on (SDP-FDIA) to minimize over (v,W) with a fixed b, and
denote its optimal objective value as g(b):

g(b) = min
ṽ∈Cnb ,
W∈Hnb

h̄(ṽ,W) + trace (M0W)

s. t. trace (MiW) = mi + bi, ∀i ∈ [nm][
1 ṽ∗

ṽ W

]
� 0

(FDIA-SE)
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In the following, we will use g(b) as a proxy for the sabotage
scale.1 Now, we define an “attackable” state below.

Definition 3 (Attackable state). A state vat is attackable if
(vat,W = vatv

∗
at) is the unique and optimal solution of

(FDIA-SE) for some stealth attack vector b ∈ Rm.

Definition 4 (Attackable region). The attackable region
A(M, ρ) for a given set of measurement typesM is the set of
states vat that is attackable for some M0 with bounded norm
‖M0‖2 ≤ ρ.

In other words, for any state vat ∈ A(M, ρ) in the
attackable region, there exists a stealth attack b such that
(vat,W = vatv

∗
at,b) is a feasible solution of (SDP-FDIA)

and that (vat,W = vatv
∗
at) is optimal if we fix the attack b.

The size of A(M, ρ) also depends on ρ; more specifically, we
have A(M, ρ1) ⊆ A(M, ρ2) for ρ1 ≤ ρ2. In what follows,
we will characterize the attackable region.

Theorem 2. If A(M, ρ) is non-empty for some ρ > 0, the
intersection of the attackable region and the observable set,
i.e., A(M, ρ) ∩ V(M), is an open set.

Proof. See Appendix B.

For some special cases, we can have a more explicit
characterization of the attackable region, as explained later.

Theorem 3. Consider the “target state attack” with
h̄(ṽ,W) = trace (W) − ṽ∗vtg − v∗tgṽ, where vtg ∈ V(M)
is chosen to be observable. Then, vtg ∈ A(M, ρ) for some
ρ > 0, i.e., vtg is attackable.

Proof. See Appendix B.

Note that the proof of Theorem 3 allows computing ρ
explicitly. Define a set of voltages R(Y) ⊂ Cnb such that
v ∈ R(Y) if and only if, for each line l ∈ L that connect
nodes s and t, we have:

−π ≤ ∠vs − ∠vt − ∠yst ≤ 0 (8)
0 ≤ ∠vs − ∠vt + ∠yst ≤ π (9)

where yst is the branch admittance between buses s and t.
Since real-world transmission systems feature low resistance-
to-reactance ratios, the angle of each line admittance yst is
close to −π/2 [4], and thus a realistic vector v would belong
to R(Y) under normal conditions where the voltage phase
difference along each line is relatively small. The following
result gives an explicit form for a region that is attackable, in
the case where the set of measurement types includes only the
branch power flows and nodal voltage magnitudes, but not the
nodal bus injections. Henceforth, we will refer to this case as
the “special case” (compared to the “general case” where nodal
bus injections can also be included in the measurements).

Theorem 4. Let V(M) ⊂ Cnb denote the set of observable
states for a given set of measurement types M including the
branch power flows and nodal voltage magnitudes, but not

1For an optimal solution of (SDP-FDIA), the term trace
(
M0Ŵ

)
can

be bounded within limited ranges; as a result, g(b) acts as a “proxy” for
h̄(v̂,Ŵ).

the nodal bus injections. Then, we have V(M) ∩ R(Y) ⊆
A(M, ρ) for some ρ > 0.

Proof. See Appendix D.

The attackable region is an important concept that char-
acterizes the outcome of solving (SDP-FDIA), meaning that
if a state is in the attackable region, then it is a candidate
attack strategy as well as the unique solution of (FDIA-SE)
for some stealth attack. However, this does not imply that no
stealth attack exists for a state ṽ that is not in the attackable
region; in fact, we can always construct a stealth data injection
b = f(ṽ) − v, where v is the true state. For example, if the
measurement setM is so small that a part of the grid remains
unobservable (see Definition 1), then (FDIA-SE) does not have
a unique solution for any stealth attack b. In that case, the
attack-targeted state ṽ does not belong to A(M, ρ). In light
of Theorem 2, if a state vat is attackable, then any state in
its small neighborhood is also attackable. Since we do not
know the outcome of (SDP-FDIA) a priori, it is helpful to
design a particular rank penalty matrix M0; indeed, as shown
in Theorem 3, this can guarantee that a desired observable
state is attackable. Further, Theorem 4 indicates that any
observable state is attackable over a set of branch power flow
measurements. In fact, we will give an explicit formula for
M0 in this case (see the proof of Theorem 4 in Appendix D)
such that the solution to (SDP-FDIA) is unique and in the
form of (v̂,W = v̂v̂∗, b̂).

C. Performance bounds for (SDP-FDIA)

The main objective of this section is to compare the solution
of (SDP-FDIA) to an “oracle attack” to be defined later, and
provide guarantees for stealthy solutions (Lemma 2). First, we
focus on the properties of the sabotage scale g(b) defined in
(FDIA-SE).

Lemma 3. g(b) is convex and sub-differentiable.

Proof. See Appendix C.

To proceed with the paper, we consider an “oracle attack”
that is able to solve (NC-FDIA-p).

Definition 5 (Oracle attack). The oracle attack b? ∈ Rnm is
a global minimum of the nonconvex program (NC-FDIA-p).
Define B ⊆ Rnm as the set of all vectors in Rnm with the
same support as b?.

Let ∆B = arg min∆t∈B ‖∆ −∆t‖22 be the projection of
a vector ∆ onto the set B. The deviation of the solution of
(SDP-FDIA) from the oracle, namely ∆̂ = b̂ − b?, belongs
to a cone.

Lemma 4. For every α ≥ 2‖∂g(b?)‖∞, the error
∆̂ = b̂ − b? belongs to the cone C(B,Bc; b?) =
{∆ ∈ Rnm |‖∆Bc‖1 ≤ 3‖∆B‖1}.

Proof. See Appendix D.

For a general set of measurements that might include an
arbitrary set of voltage magnitudes, nodal injections, and
branch power flows as discussed in Sec. II-A, the following
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theorem provides performance bounds and a condition for
stealthy attack using (SDP-FDIA).

Theorem 5. Consider (SDP-FDIA) for a “target state at-
tack” with h̄(ṽ,W) = trace (W) − ṽ∗vtg − v∗tgṽ, where
vtg ∈ V(M) is chosen to be observable. Let (v̂,Ŵ, b̂) denote
an optimal solution of (SDP-FDIA) for an arbitrary α greater
than or equal to 2‖∂g(b?)‖∞. The difference between the
sabotage scale of the solved attack and the oracle attack
satisfies the inequalities:

−2α‖∆̂B‖1≤g(b̂)−g(b?)≤α
(
‖∆̂B‖1−‖∆̂Bc‖1

)
,

where ∆̂ = b̂− b? is the difference with the oracle b?.

Proof. See Appendix D.

According to Theorem 5, there is a trade-off between attack
sparsity and outcome in the sense that a tighter bound can be
achieved with more entries outside the oracle sparse set B.
However, this also means that the attacker needs to tamper
with more sensors. Moreover, the matrix M0 in (SDP-FDIA)
can be constructed systematically using the Gram-Schmidt
process (as detailed in the proof of Theorem 3 in Appendix B).

IV. EXPERIMENTS

This section numerically studies the vulnerability of power
system AC-based SE under FDIA. More specifically, the
objective is to validate whether the solution of (SDP-FDIA)
is sparse and stealthy.

We first study the 30-bus system provided in MATPOWER
[27] (Fig. 3). The states of this system are randomly initialized
with magnitudes close to 1 and small phases. We consider a
comprehensive measurement portfolio, which includes nodal
voltage magnitudes, power injections, and branch real/reactive
power flows. To streamline the presentation, we will focus
on the target state attack, i.e., h(ṽ) = ‖ṽ − vtg‖22, where
the entries of the target vtg have been deliberately chosen
to have low magnitudes (around 0.9), and phases identical to
their counterparts in the true state. This would often trigger
misguided contingency response, in an attempt to recover from
the voltage sag [11]. Throughout the experiments, we assume
that the sensor noise has a standard deviation of 1% of the
measurement value.

An FDIA injection is obtained in Fig. 4 by solving
(SDP-FDIA) with parameters listed in Table I. There are
222 measurements in total, which are organized in Fig. 4a
by voltage magnitudes (indices 1–5), nodal real and reactive
power injections (indices 5–58), branch real power flows
(indices 58–140), and branch reactive power flows (indices
140–222). The FDIA injections for nodal measurements and
branch measurements are also shown in Fig. 4. It can be
observed that the injection values are relatively sparse, es-
pecially for real power flows over branches (indices 1–82 in
Fig. 4c). This is due to the fact that they depend mainly on the
phase differences between buses, but the target voltages have
identical phases as the true state. The geographic locations
of the attacked sensors include the locations of buses under
attack (buses 12, 14 and 15) and the locations of the adjacent

Fig. 3: The IEEE 30-bus test case [27].

TABLE I: Simulation experiments, lists of the regularization
parameters α and ε, the rank of Ẑ, and the cardinality of b̂,
as well as the upper bound given by [25].

system α ε rank(Ẑ) Card(b̂)
upper
bound

buses
attacked*

pass
BDD

6-bus† .4 1/6 1 18 40 [2,3,5,6] Yes

14-bus .2 1/14 1 16 46 [2,3,4] Yes

30-bus 1.16 1/30 1 21 54 [12,14,15] Yes

39-bus 1.82 1/39 1 18 36 [26,28,29] Yes

57-bus 0.5 1/57 1 30 92 [6,7,8] Yes

* The attacked bus numbers are identical to the MATPOWER description.
† The 6-bus system is described in Fig. 2.

power lines, as confined within the superset used to calculate
the upper bound [25]. In addition, the spurious measurements
against the original values are depicted in Fig. 5. Given the
presence of innate sensor noise, it is difficult to identify the
attack on the raw measurement values by observation. In other
words, the attack is “hidden” among the sensor noises.

Assume that the FDIA visualized in Fig. 4 is successfully
implemented by the adversary on the set of measurements,
and then the system operator solves the SE problem using
the Gauss-Newton algorithm implemented in MATPOWER
(note that the attack is SE-algorithm-agnostic). The obtained
spurious states are plotted against the true states for the voltage
magnitudes and phases in Fig. 6. Even though the system
operates in a normal state with magnitudes in the prescribed
interval [0.98, 1.02], FDIA “tricks” the operator to believe in
a potential voltage sag where some of the voltage magnitudes
are outside of the above interval (green area in Fig. 6).
Consequently, the operator may take harmful contingency
actions. It is worthwhile to note that since the phases of the
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(a) Full set of original measurements.

(b) FDIA on nodal power and voltage measurements. (c) FDIA on branch power flow measurements.

Fig. 4: There are 222 measurements in total, which are organized in Figure (a) by voltage magnitudes (indices 1–5), nodal real
and reactive power injections (indices 5–58), branch real power flows (indices 58–140), and branch reactive power flows (indices
140–222). The FDIA injections for nodal measurements are shown in Figure (b), where indices 1–5 and 5–58 correspond to
voltage magnitudes and bus injections, respectively. The FDIA injections for branch measurements are provided in Figure (c),
where indices 1–82 and 82–164 correspond to real power flows and reactive power flows, respctively.

-10 -5 0 5 10
Original value (p.u.)

-10

-5

0

5

10

M
od

ifi
ed

 v
al

ue
 (p

.u
.)

FDIA on measurement value

Fig. 5: This plot shows the spurious values against the original
values for all the measurements. The identity relation y = x
is illustrated by the dotted line. It can be observed that, given
the presence of innate sensor noise, the spurious values are
almost identical to the original measurements.

designed target states vtg are identical to those of the true
states by design, the spurious states estimated by the operator
change insignificantly in phases, as shown in the right plot of
Fig. 6.

To examine the effect of the regularization parameter α on
the solution sparsity, we have run ten independent experiments
with random sensor noise values and plotted the cardinality of
b̂ with respect to α, as shown in Fig. 7. While the absence
of ‖ · ‖1 penalty (i.e., α = 0) results in a dense solution,
as α increases, the attack x̂a becomes significantly sparser
compared to the upper bound provided by [25]. However, as
α continuously increase, since the attack becomes sparser, its
effect on SE reduces. This fact is reflected in the performance
bounds in Theorem 5.

As for the choice of M0, we set M0 = −I+ εvtgv
∗
tg +L0,

for a matrix L0 that satisfies the following properties: 1)
L0 � 0, 2) 0 is a simple eigenvalue of L0, 3) the vector
vtg belongs to the null space of L0 (outlined in the proof
of Theorem 3). The matrix L0 is obtained via the standard
Gram-Schmidt procedure by starting with the target vtg . For
the choice of ε, the proof of Theorem 3 (Appendix B) provides
a guideline to use the equation ε = 1

v∗
tgv̂ ; while v̂ cannot be

known a priori, it is desirable to be close to v∗tg . Therefore, for
the 30-bus system, a value of ε that leads to a rank-1 solution is
close to 1/30≈0.033. In addition, the algorithm has been tested
on several other power systems, with parameters listed in
Table I. According to the results, the constructed FDIA attack
can always evade BDD detection with ε close to 1/nb. Indeed,
the measurement residuals are all on the order of 0.001, which
are much lower than the BDD detection threshold. As for the
sparsity, we have found that the cardinality Card(b̂) is lower
than the upper bound by [25] at the obtained scale of attack.

As the analysis shows, by having access to the sensor
measurements, the adversary can solve (SDP-FDIA) to obtain
a sparse attack vector. To thwart FDIA, a set of security sensors
may need to be placed at locations under potential attack as
indicated by b̂ of (SDP-FDIA). For any power system, the
cardinality of a potential FDIA stealth attack can be used to
indicate the vulnerability of the system against potential cyber
threat [14].

V. CONCLUSION

This study analyzes the vulnerability of power system AC-
based state estimation against a critical class of cyber attacks
known as false data injection attack. Since constructing an
FDIA against AC-based state estimation requires solving a
highly nonconvex problem, it is often believed that such
attacks could be easily detected. However, this study shows
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Fig. 6: These plots depict spurious state estimation against true state for voltage magnitude (left) and voltage phases (right).
In both plots, the dotted line indicates the y = x relationship. For the magnitude plot, the green region specifies the normal
operating interval [098, 1.02]. Observe that some spurious voltage magnitudes fall out of this prescribed operating region, while
all of the spurious states have almost the same phases as their counterparts in the true states, due to the specifications by the
FDIA target voltage vector.
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Fig. 7: This plot shows the cardinality of the solution b̂ with
respect to α. The upper bound is derived according to [25].
Ten independent experiments were performed to obtain the
mean (red line) and min/max (shaded region).

that a near-globally optimal stealth attack can be found effi-
ciently for a general scenario through a novel convexification
framework based on SDP, where the measurement set could
include nodal voltage magnitudes, real and reactive power
injections at buses, and power flows over branches. This
study further analyzes the “attackable region” and derives
performance bounds for a given set of measurement types
and grid topology, where an attacker can plan an attack in
polynomial time with limited resources.

For protection purposes, the results can be used to un-
derstand the mechanism of FDIA on AC-based SE in order
to design new BDD procedures. In addition, the outcome of
anticipating such an attack can be used to evaluate the security
of a given system. Above all, the proposed convexification
method and its associated theoretical analysis can be applied
to other nonconvex problems in power systems and beyond
where the solution requires sparsity and rank conditions. This
paper provides a detailed analysis on the design of a rank
penalty function as well as bounds on the sparsity of the
optimal solution.
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APPENDIX A
PROOF OF THEOREM 1 AND LEMMA 2

A. Proof of Theorem 1

First, we prove that the equation rank(Ŵ) = 1 implies that

Ŵ = a2v̂v̂∗, for some a such that |a| ≥ 1. Since
[

1 v̂∗

v̂ Ŵ

]
�

0, by Schur complement, we have Ŵ � 0, and Ŵ−v̂v̂∗ � 0.
Due to rank(Ŵ) = 1, we can express Ŵ = ww∗. Since
ww∗ − v̂v̂∗ � 0, one can write w = av̂, where |a| ≥ 1
(otherwise, there exists a vector ν ∈ Cnb such that ν∗w = 0,
but ν∗v̂ 6= 0 and ν∗ (ww∗ − v̂v̂∗)ν = −|ν∗v̂|2 < 0, which
violates the PSD condition).

Now, we show by contradiction that the equation Ŵ = v̂v̂∗

holds at optimality. Assume that (v̂,Ŵ = â2v̂v̂∗, b̂) is an
optimal solution of (NC-FDIA-c) and that â > 1 (the case

â < −1 is similar). It is obvious that (âv̂,Ŵ = â2v̂v̂∗, b̂) is
also feasible. This gives rise to the relation:

h̄(v̂, â2v̂v̂∗) = trace
(
â2v̂v̂∗

)
− (ṽ∗vtg + v∗tgṽ)

> trace
(
â2v̂v̂∗

)
− â(ṽ∗vtg + v∗tgṽ)

= h̄(âv̂, â2v̂v̂∗),

where the inequality follows from Assumption 2a. This con-
tradicts the optimality of (v̂,Ŵ = â2v̂v̂∗, b̂). Therefore, we
must have â = 1, implying that Ŵ = v̂v̂∗.

Recall that (NC-FDIA-c) provides a lower bound for
(NC-FDIA-r), which is a reformulation of (NC-FDIA). There-
fore, since (v̂,Ŵ = v̂v̂∗, b̂) is feasible for (NC-FDIA-r), it
is optimal for (NC-FDIA).

B. Proof of Lemma 2

Let (v̂,Ŵ, b̂) denote an optimal solution of (SDP-FDIA).
If rank(Ŵ) = 1, then using a similar reasoning as in the
proof for Theorem 1, we have Ŵ = a2v̂v̂∗ for every |a| ≥ 1
due to the PSD constraint. Now, we show by contradiction
that the relation Ŵ = v̂v̂∗ holds at optimality. Let (v̂,Ŵ =
â2v̂v̂∗, b̂) be an optimal solution of (SDP-FDIA), and â > 1
(the case â < −1 is similar). It is obvious that (âv̂,Ŵ =
â2v̂v̂∗, b̂) is also feasible. For a fixed b̂, this gives rise to the
relation:

h̄(v̂, â2v̂v̂∗) + â2trace(M0v̂v̂∗)

= trace
(
â2v̂v̂∗

)
− (ṽ∗vtg + v∗tgṽ) + â2trace(M0v̂v̂∗)

> trace
(
â2v̂v̂∗

)
− â(ṽ∗vtg + v∗tgṽ) + â2trace(M0v̂v̂∗)

= h̄(âv̂, â2v̂v̂∗) + â2trace(M0v̂v̂∗)

where the inequality follows from Assumption 2b. This con-
tradicts the optimality of (v̂,Ŵ = â2v̂v̂∗, b̂). Therefore, we
must have â = 1, implying that Ŵ = v̂v̂∗. Moreover, since

fi(v̂) = trace (Miv̂v̂∗) = trace
(
MiŴ

)
= mi + b̂i = fi(v) + b̂i, ∀i ∈ [nm],

the stealth condition is satisfied, implying that b̂ is stealthy.

APPENDIX B
PROOF OF THEOREMS 2 AND 3

In the case of h̄(ṽ,W) = trace (W) − ṽ∗vtg − v∗tgṽ, the
dual of (FDIA-SE) can be written as

min
ξ∈Rnm ,q0∈R

ξ · (m + b)

s. t.
[
q0 −v∗tg
−vtg I + M0 +

∑
i ξiMi

]
� 0,

where ξ is the vector of dual variables. The complementary
slackness condition is given by:[

q0 −v∗tg
−vtg I + M0 +

∑
i ξiMi

] [
1 ṽ∗

ṽ W

]
=

[
q0 − ṽ∗tgṽ q0ṽ

∗ − ṽ∗tgW
−ṽtg + Q0ṽ −ṽtgṽ

∗ + Q0W

]
= 0. (10)

http://www.ieor.berkeley.edu/~lavaei/SE_J_2016.pdf
http://www.ieor.berkeley.edu/~lavaei/SE_J_2016.pdf
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Let (v̂,Ŵ) be an optimal solution of (FDIA-SE) and (q̂0, ξ̂)
be a dual optimal solution. It follows from the above equation
that q̂0 = ṽ∗tg ˆ̃v. By defining

Q0 = I + M0 +
∑
i

ξiMi, (11)

L0 = − 1

q̂0
vtgv

∗
tg + I + M0, (12)

H(ξ) = L0 +
∑
i

ξiMi, (13)

and using the Schur’s complement, the dual problem can be
reformulated as

min
ξ∈Rnm

ξ · (m + b)

s. t. H(ξ) = L0 +
∑
i

ξiMi � 0.
(FDIA-SE-d)

The following lemma proves strong duality between
(FDIA-SE) and its dual formulation.

Lemma 5. Suppose that there exists a vector v ∈ V(M) that
is feasible for (FDIA-SE). Then, strong duality holds between
(FDIA-SE) and its dual formulation (FDIA-SE-d).

Proof. To prove the lemma, it suffices to find a strictly feasible
point for the dual problem. Since there exists a vector v ∈
V(M) that is feasible for (FDIA-SE), we have v>J(v) 6= 0
due to the full row-rank property of J(v). Therefore, there
exists an index i ∈ [nm] such that v∗Miv 6= 0. Let
{d1, ...,dnm

} denote the standard basis vectors in Rnm . Then,
we can select ξ̂ = ξ + δ × di for any feasible dual vector ξ,
where δ ∈ R is a nonzero number with an arbitrarily small
absolute value such that δ × v∗Miv > 0. Therefore, one can
write:

H(ξ̂) = L0 +
∑
i

ξ̂iMi = H(ξ) + cMi � 0 (14)

if c is sufficiently small. Hence, ξ̂ is a strictly feasible dual
point and, by Slater’s condition, strong duality holds.

Definition 6. Define Ω(L0,v) as a set of dual variables such
that

J(v)ξ = −2L0v, (15)

for every ξ ∈ Ω(L0,v), where J(v) ∈ R(2nb−1)×nm is the
Jacobian matrix in (5).

Since H(ξ) = L0 +
∑
i ξiMi, we have

H(ξ)v = L0v +
∑
i

ξiMiv = L0v + 1
2J(v)ξ = 0,

for all ξ ∈ Ω(L0,v), which indicates that v lies in the null
space of H(ξ) ∈ Snb for every ξ ∈ Ω(L0,v).

Lemma 6. For every v ∈ V(M) and nm ≥ 2nb − 1, there
is a vector ξ ∈ Rnm such that (15) is satisfied. Therefore,
Ω(L0,v) is nonempty for every observable state vector v.

Proof. Since v ∈ V(M) is observable, J(v) has full row
rank. This implies that, for every L0, as long as the number
of columns of J(v), namely nm, is greater than or equal to the
number of rows, namely 2nb−1, there is a vector ξ satisfying
(15).

A. Proof of Theorem 2
Define κ(H(ξ)) as the sum of the two smallest eigenvalues

of the Hermitian matrix H(ξ) ∈ Snb . It can be shown that the
intersection of the attackable region and observable set, i.e.,
A(M, ρ) ∩ V(M), can be represented as

{v ∈ V(M)|κ(H(ξ)) > 0, ξ ∈ Ω(L0,v)}.

The proof is similar to the argument made in Theorem 3 of
[28]. Now, consider a vector v in {v ∈ V(M)|κ(H(ξ)) >
0, ξ ∈ Ω(L0,v)}, and let δ denote the second smallest
eigenvalue of H(M, ξ). Due to the continuity of the mapping
from a state v to a set Ω(L0,v), there exists a neighborhood
T ∈ Cnb such that there exists a ξt ∈ Ω(L0,vt) with the
following property:

‖H(ξ)−H(ξt)‖F <
√
δ (16)

for every vt ∈ V(M) ∩ T (note that ‖.‖F represents the
Frobenius norm). Using an eigenvalue perturbation argument
(Lemma 5 in [32]), it can be concluded that H(ξt) � 0 and
rank(H(ξt)) = nb − 1, which imply that κ(H(ξt)) > 0 and
vt ∈ {v ∈ V(M)|κ(H(ξ)) > 0, ξ ∈ Ω(L0,v)}. Hence,
A(M, ρ) ∩ V(M) is an open set.

B. Proof of Theorem 3
Let M0 be chosen as M0 = −I + εvtgv

∗
tg +L0, for some

ε > 0 and a matrix L0 satisfying the following properties: 1)
L0 � 0, 2) 0 is a simple eigenvalue of L0, 3) the vector vtg
belongs to the null space of L0. Let ρ = ‖M0‖2 defined above.
Note that ξ = 0 is a feasible dual point since H(0) = L0 � 0.
Moreover, because of the equation H(0)vtg = L0vtg = 0,
we have 0 ∈ Ω(L0,vtg). Since 0 is a simple eigenvalue of
L0, it holds that κ(H(0)) = κ(L0) > 0. Therefore, it can
be concluded that vtg ∈ {v ∈ V(M)|κ(H(ξ)) > 0, ξ ∈
Ω(L0,v)}. By the proof of Theorem 2, it follows that vtg is
attackable.

APPENDIX C
PROOF OF LEMMA 3

For any two attacks b1 and b2, let the optimal states be
denoted as (v̂(1),Ŵ(1)) and (v̂(2),Ŵ(2)). For every number
λ ∈ [0, 1], the point (λv̂ + (1− λ)v̂(2), λŴ + (1− λ)Ŵ(2))
is a feasible solution for the attack λb1 + (1− λ)b2:

g(λb1 + (1− λ)b2) ≤ λg(b1) + (1− λ)g(b2),

which proves the convexity. In what follows, in addition to
proving the continuity of g(b), we will derive a bound on
the subgradient of g(b), which is used in Theorem 5. The
method is an extension of [31] to the primal formulation. In
particular, our analysis is a type of parametric programming,
which characterizes the change of the solution with respect
to small perturbations of the parameters (see [31], Ch. 4).
Consider a disturbance γ to the vector b ∈ Rnm in (FDIA-SE)
along the direction b. The primal problem changes as

min
ṽ,W

h̄(ṽ,W) + trace (M0W)

s. t. trace (MiW) = mi + bi + γbi[
1 ṽ∗

ṽ W

]
� 0

(Pγ)
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and its dual formulation is given by:

min
ξ,q0

ξ · (m + b + γb)

s. t.
[
q0 −v∗tg
−vtg I + M0 +

∑
i ξiMi

]
� 0

(Dγ)

Let Γ be the set of all vectors γ for which (Dγ) has a bounded
solution and is strictly feasible. Assume that 0 ∈ Γ. It is
straightforward to verify that Γ is a closed (and possibly
unbounded) interval. Due to duality, (Pγ) is feasible and has a
bounded solution for every γ ∈ Γ, and the duality gap is zero.

Let Fγ denote the feasible set of (Dγ), b(γ) = m + b +
γb, and ξ(γ) ∈ {ξγ : ξγ = arg min{ξγ · b(γ), ξγ ∈ Fγ}.
Moreover, let φ(γ; b,b) = ξ(γ) · b(γ) be the optimal value
function. Obviously, we have φ(0; b,b) = g(b) by the Slater’s
condition, and φ(γ; b,b) is concave in γ. We will use the
shorthand notation φ(γ) henceforth.

Next, we derive the subdifferential of φ(γ), which is equiv-
alent to ∂g(b) when γ = 0 and b is one of the canonical
basis in Rnm . For any γ ∈ int Γ, choose dγ small enough
such that the point ξ(γ+dγ) lies in a compact set. Let ξ+(γ)
and ξ−(γ) denote the limit as dγ → +0 and −0, respectively.

Lemma 7. The equations

lim
dγ→+0

b(γ) · (ξ(γ + dγ)− ξ+(γ))

dγ
= 0

lim
dγ→−0

b(γ) · (ξ(γ + dγ)− ξ−(γ))

dγ
= 0

hold for every γ ∈ int Γ.

Proof. It is straightforward to verfiy that ξ+(γ) is an optimal
solution of (Dγ). Assume that

lim
dγ→+0

b(γ) · (ξ(γ + dγ)− ξ+(γ))

dγ
≥ ε > 0.

There exists a sequence {dγk} → +0 such that

b(γ + dγk) · ξ(γ + dγk)

≥ b(γ+dγk)·ξ+(γ)+εdγk+dγkb·(ξ(γ+dγk)−ξ+(γ))o(dγk)

> b(γ + dγk) · ξ+(γ)

if dγk is sufficiently small. This contradicts the optimality of
ξ(γ + dγk) for (Dγ+dγk ). Similarly, assume that

lim
dγ→+0

b(γ) · (ξ(γ + dγ)− ξ+(γ))

dγ
≤ ε < 0

Then, there exists {dγk} → +0 such that

b(γ) · ξ(γ + dγk) ≤ b(γ) · ξ+(γ) + εdγk + o(dγk)

< b(γ) · ξ+(γ),

which contradicts that ξ+(γ) is optimal for (Dγ). A similar
argument can be made in the case where dγ → −0.

We now derive the directional derivative of φ(γ).

Lemma 8. The equations

lim
dγ→+0

φ(γ + dγ)− φ(γ)

dγ
= ξ+(γ) · b

lim
dγ→−0

φ(γ + dγ)− φ(γ)

dγ
= ξ−(γ) · b

holds for every γ ∈ int Γ.

Proof. Since b(γ) · ξ(γ) = b(γ) · ξ+(γ) = b(γ) · ξ−(γ), one
can write:

lim
dγ→+0

φ(γ + dγ)− φ(γ)

dγ

= lim
dγ→+0

ξ(γ + dγ) · b(γ + dγ)− ξ(γ) · b(γ)

dγ

= lim
dγ→+0

ξ(γ + dγ) · b +
b(γ) · (ξ(γ + dγ)− ξ(γ))

dγ

= ξ+(γ) · b

according to Lemma 7. The proof for the case dγ → −0 is
similar.

Notice that φ(γ) is continuously differentiable at γ if and
only if b · ξ+(γ) = b · ξ−(γ), which occurs either when (Dγ)
has a unique solution or any feasible direction of the optimal
face is orthogonal to b. To wrap up this section, we state the
following lemma to bound the subdifferential ∂g(b).

Lemma 9. Let [ξ+(0)]i and [ξ−(0)]i denote the i-th entry
of ξ(dγ) as dγ → +0 and −0 along the direction of the i-
th canonical basis in Rnm . For every attack b, assume that
0 ∈ Γ. The subdifferential of g(b) is bounded element-wise as

[ξ+(0)]i ≤ [∂g(b)]i ≤ [ξ−(0)]i, ∀i ∈ [nm]

Proof. The proof follows from the strong duality between (Pγ)
and (Dγ) at γ = 0, the concavity of φ(γ), and Theorem 24.1
in [33] on the monotonicity of subdifferential.

To summarize, we have shown that g(b) is continuous
and convex (Lemma 3) with subdifferential depending on the
dual solution (Lemma 9). These results are useful for proving
Theorem 5.

APPENDIX D
PROOFS OF THEOREMS 4 AND 5

A. Proof of Theorem 4

For every v̂ ∈ V(M) ∩ R(Y), we show that by choosing
b = f(v̂)−m where fi(v̂) is given in (1), the unique optimal
solution of (FDIA-SE) is given by (v̂,Ŵ = v̂v̂∗), hence v̂ ∈
A(M, ρ) is attackable for some ρ defined below. Let M0 in
(SDP-FDIA) be given by the formula:

M0 = −I + εvtgv
∗
tg +

∑
l∈L

M̃
(l)
pf +

∑
l∈L

M̃
(l)
pt , (17)

where ε > 0 is a constant parameter, and M̃
(l)
pf and M̃

(l)
pt are

arbitrary matrices in Hnb . For every (s, t) ∈ [nb]×[nb], assume
that the (s, t) entries of M̃

(l)
pf and M̃

(l)
pt are equal to zero if

(s, t) 6∈ L and otherwise satisfy the following inequalities:

−π ≤ ∠yst − ∠M̃ (l)
pf,st ≤ 0 (18)

π ≤ ∠yst + ∠M̃ (l)
pt,st ≤ 2π. (19)

Choose ρ = M0 defined in (17) accordingly.
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Let ξ ∈ Rnm and Q =

[
q0 q∗

q Q0

]
∈ Hnb+1 be the dual

variables. By the KKT conditions for optimality, we have: a)
the stationarity conditions: q = −vtg and Q0 = I + M0 +∑
i ξiMi, b) the dual feasibility condition: Q � 0, and c)

the complementary slackness condition: Q

[
1 v∗

v W

]
= 0. Let

H(ξ) = − 1
q0

vtgv
∗
tg + Q0 and q0 = v∗tgv. Based on a) and

c), we have H(ξ)W = 0. Due to b) and Schur complement,
it is required that H(ξ) � 0.

By Slater’s condition, strong duality holds if one can
construct a strictly feasible dual solution ξ̂, which is optimal
if KKT conditions are satisfied. The rank-1 condition for W
follows if we can further show that rank(H(ξ̂)) = nb − 1
(since together with H(ξ̂)W = 0, it implies that W lies in
the null space of H(ξ̂), which is at most rank 1).

For the three types of measurements considered in this
paper, the measurement matrices are: 1) Mi = Ei for every
i ∈ N (associated with voltage magnitudes), 2) Mi+nb

= Y
(l)
pf

for every i ∈ L (associated with real power flow from
the bus), and 3) Mi+nb+nl

= Y
(l)
pt for every i ∈ L

(associated with real power flow to the bus). By denoting
ξ̂ =

∑
l∈L ξ̂

(l)

pf +
∑
l∈L ξ̂

(l)

pt , we can write

H(ξ̂) =
∑
l∈L

H
(l)
pf (ξ̂

(l)

pf ) +
∑
l∈L

H
(l)
pt (ξ̂

(l)

pt ),

where

H
(l)
pf (ξ̂

(l)

pf ) = M̃
(l)
pf + ξ̂

(l)
pf,sEs + ξ̂

(l)
pf,tEt + ξ̂

(l)
pf,l+nb

Y
(l)
pf

H
(l)
pt (ξ̂

(l)

pt ) = M̃
(l)
pt + ξ̂

(l)
pt,sEs + ξ̂

(l)
pt,tEt + ξ̂

(l)
pt,l+nl+nb

Y
(l)
pt

and
∑
l∈L M̃

(l)
pf +

∑
l∈L M̃

(l)
pt = I + M0 − 1

q0
vtgv

∗
tg . Define

ξ̂
(l)

pf in such a way that

ξ̂
(l)
pf,l+nb

=−
2=
(
v̂sv̂
∗
t M̃

(l)∗
pf,st

)
= (v̂sv̂∗t y

∗
st)

, ξ̂
(l)
pf,t=

|v̂s|2=
(
M̃

(l)∗
pf,styst

)
= (v̂sv̂∗t y

∗
st)

ξ̂
(l)
pf,s=

|v̂t|2

|v̂s|2
ξ̂
(l)
pf,t + <(yst)ξ̂

(l)
pf,l+nb

(20)

and ξ̂
(l)

pt such that

ξ̂
(l)
pt,l+nb+nl

=−
2=
(
v̂sv̂
∗
t M̃

(l)∗
pt,st

)
= (v̂sv̂∗t yst)

, ξ̂
(l)
pt,t=−

|vs|2=
(
M̃

(l)
pt,styst

)
= (v̂sv̂∗t yst)

ξ̂
(l)
pt,s=

|v̂t|2

|v̂s|2
ξ̂
(l)
pt,t + <(yst)ξ̂

(l)
pt,l+nb+nl

(21)

where v̂ is an optimal solution of the primal problem
(FDIA-SE). It can be verified that H

(l)
pf v̂ = 0, H

(l)
pt v̂ = 0,

H
(l)
pf � 0 and H

(l)
pt � 0, as long as:

−π ≤ ∠v̂s − ∠v̂t − ∠yst ≤ 0 (22)
0 ≤ ∠v̂s − ∠v̂t + ∠yst ≤ π (23)

−π ≤ ∠yst − ∠M̃ (l)
pf,st ≤ 0 (24)

π ≤ ∠yst + ∠M̃ (l)
pt,st ≤ 2π. (25)

The inequalities (22) and (23) are satisfied since v̂ ∈ R(Y).
The inequalities (24) and (25) require that M̃ (l)

pf,st and M̃ (l)
pt,st

to lie in the second or third quadrants of the complex plane,
which is satisfied by the design in (18) and (19).

Our next goal is to show that rank(H(ξ̂)) = nb − 1, or
equivalently, dim(null(H(ξ̂))) = 1. For every x ∈ null(H(ξ̂)),
since H

(l)
pf � 0 and H

(l)
pt � 0, we have H

(l)
pfx = H

(l)
pt x = 0.

By the construction of (20) and (21), for every line l with the
endpoints s and t, it holds that xs

v̂s
= xt

v̂t
. This reasoning can

be applied to another line l′ : (t, a) to obtain xt

v̂t
= xa

v̂a
. By

repeating the argument over a connected spanning graph of
the network, one can obtain:

xs
v̂s

=
xt
v̂t

=
xa
v̂a

= · · · = c (26)

which indicates that x = γv̂. As a result, dim(null(H(ξ̂))) =
1 and rank(H(ξ̂)) = nb − 1. By the complementary slack-
ness condition, it can be concluded that rank(Ŵ) = 1. By
Lemma 2, we have Ŵ = v̂v̂∗. We also know that b is stealthy
since trace (v̂∗Miv̂) = mi + bi, ∀i ∈ [nm] by choice.

B. Proof of Theorem 5

In what follows, we will derive performance bounds for x̂
compared to b?. By the definition of g(b) in (FDIA-SE), we
can rewrite (SDP-FDIA) only in terms of b as

max
b

g(b) + α‖b‖1 (P4)

Define r(∆) = g(b? + ∆)− g(b?) +α(‖b? + ∆‖1−‖b?‖1)
and ∆̂ = b̂− b?. The separability of the l1-norm yields that

‖b? + ∆̂‖1 ≥ ‖b?B + ∆̂Bc‖1 − ‖b?Bc + ∆̂B‖1
= ‖b?B‖1 + ‖∆̂Bc‖1 − ‖∆̂B‖1
= ‖b?‖1 + ‖∆̂Bc‖1 − ‖∆̂B‖1.

Together with r(∆̂) ≤ 0 that results from the optimality of b̂,
we have proved the upper bound. For the lower bound, one
can write:

g(b̂)− g(b?) ≥ 〈∂g(b?), ∆̂〉 ≥ −|〈∂g(b?), ∆̂〉| (27)

≥ −‖∂g(b?)‖∞‖∆̂‖1 (28)

≥ −α
2

(
‖∆̂B‖1 + ‖∆̂Bc‖1

)
(29)

≥ −2α‖∆̂B‖1 (30)

where (27) is due to the convexity of g(b) (Lemma 3), (28)
is by Hölder’s inequality, (29) is due to the assumption of α,
and (30) is due to Lemma 4 (see [34], Lemma 1).
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