Robustness Analysis of Power Grid under False Data Attacks Against AC State Estimation

> Presenter: Ming Jin INFORMS 2017

Ming Jin, Prof Javad Lavaei, and Prof Karl Johansson

Power system resilience against cyber attack has become a critical issue

NERC proposal targets cybersecurity risks in electric system supply chains

BRIEF

Outline

- Power system modeling and state estimation
- False data injection attack (FDIA) framework
- Semidefinite programming relaxation
- Experiments
- Conclusion

Power system modeled as a graph

- A power system $\mathcal{G} = (\mathcal{N}, \mathcal{L})$
 - Transmission lines, buses, and transformers
- Complex voltage: $\boldsymbol{v} = [v_1, v_2, \dots, v_n]^T \in \mathbb{C}^n$
- Nodal current injection: i = Yv
- Injected complex power: $p + qj = diag(vi^*)$

Nodal and line measurements

• Voltage magnitude and nodal power injections:

 $|\boldsymbol{v}_{k}|^{2} = \operatorname{Tr}(\boldsymbol{E}_{k}\boldsymbol{v}\boldsymbol{v}^{*}), \, \boldsymbol{p}_{k} = \operatorname{Tr}(\boldsymbol{Y}_{k,p}\boldsymbol{v}\boldsymbol{v}^{*}), \, \boldsymbol{q}_{k} = \operatorname{Tr}(\boldsymbol{Y}_{k,p}\boldsymbol{v}\boldsymbol{v}^{*})$ where $\boldsymbol{E}_{k} = \boldsymbol{e}_{k}\boldsymbol{e}_{k}^{T}, \, \boldsymbol{Y}_{k,p} = \frac{1}{2}(\boldsymbol{Y}^{*}\boldsymbol{E}_{k} + \boldsymbol{E}_{k}\boldsymbol{Y}), \, \boldsymbol{Y}_{k,q} = \frac{j}{2}(\boldsymbol{E}_{k}\boldsymbol{Y} - \boldsymbol{Y}^{*}\boldsymbol{E}_{k})$

• Branch active and reactive power flows:

$$p_{l,f} = \operatorname{Tr}(\boldsymbol{Y}_{l,p_f} \boldsymbol{v} \boldsymbol{v}^*), p_{l,t} = \operatorname{Tr}(\boldsymbol{Y}_{l,p_t} \boldsymbol{v} \boldsymbol{v}^*)$$
$$q_{l,f} = \operatorname{Tr}(\boldsymbol{Y}_{l,q_f} \boldsymbol{v} \boldsymbol{v}^*), q_{l,t} = \operatorname{Tr}(\boldsymbol{Y}_{l,q_t} \boldsymbol{v} \boldsymbol{v}^*)$$

• All quantities are quadratic functions of complex voltage, which is the state of the system

Power system state estimation

Problem statement:

Given noisy measurements

Why state estimation?

- Provides real-time power system conditions
- Constitutes the core of online security analysis
- Provides diagnostics for modeling and maintenance

FDIA is stealthy if the spurious data correspond to a valid state

• State estimation: Quadratic measurements subject to noise and bad data

FDIA causes spurious state estimation by tampering sensor data

- DC-based: (Liu et al., 2010) (Kosut et al., 2010) (Sandberg et al., 2010) (Dan and Sandberg, 2010) (Yuan et al., 2011) (Sou et al., 2013) (Hendrickx et al., 2014)
- Negative impact: Electricity market (Xie et al., 2010), Load redistribution (Yuan et al., 2011)

(Rahman and Mohsenian-

(Hug and Giampapa, 2012)

AC-based

Rad, 2013)

State estimation can be falsified..

True system state $(1,0^{\circ})$ $(0.95, 2^{\circ})$ $(0.96, 5^{\circ})$ 3 2 5 4 6 (0.95,4°) (1.02,25°) (0.98,10°) Original sensor measurements **P**₁ $\mathbf{P_2}$ Q_2 \mathbf{P}_3 Q_3 \mathbf{P}_4 P_5 Q_5 $\mathbf{P}_{\mathbf{6}}$ Q_6 $\mathbf{v_1}$ $\mathbf{V_4}$ 1.668 -.570 .087 -.504 -.110 -.067 .048 1.02 -.134 .588 .180 1 p_{21} p₂₃ p_{32} **p**₄₅ \mathbf{p}_{54} **p**56 \mathbf{p}_{65} **p**₂₆ **p**₆₂ **p**₃₅ **p**₅₃ **p**₃₆ р₆₃ -.069 -.280 .293 1.668 -1.319 .659 -.604 -.155 .160 -.488 .526 .128 -.126

q_{12}	q ₂₁	q ₂₃	q ₃₂	${\bf q}_{45}$	q ₅₄	\mathbf{q}_{56}	\mathbf{q}_{65}	\mathbf{q}_{26}	q ₆₂	q ₃₅	q ₅₃	q ₃₆	q ₆₃
.394	423	.175	207	945	1.244	338	.347	.138	177	.309	318	054	.010

p₁₂

.087

..with sparse sensor data attack

Would it be possible for an adversary to attack the state estimator by tampering few sensor data in stealth?

General FDIA framework with cardinality / stealth constraints

$$\min_{\widetilde{\boldsymbol{v}} \in \mathbb{C}^{n_b}, \boldsymbol{b} \in \mathbb{R}^{n_m}} h(\widetilde{\boldsymbol{v}})$$
s.t. $b_r = m_r - \langle \widetilde{\boldsymbol{v}} \widetilde{\boldsymbol{v}}^*, \boldsymbol{M}_r \rangle$
 $\|\boldsymbol{b}\|_0 \leq k$

- Objective function $h(\widetilde{v})$
 - Target state attack: $h(\tilde{\boldsymbol{v}}) = \|\tilde{\boldsymbol{v}} \boldsymbol{v}_{tg}\|_2^2$
 - Voltage collapse attack: $h(\tilde{v}) = \|\tilde{v}\|_2^2$
 - State deviation attack: $h(\tilde{v}) = -\|\tilde{v} v_{true}\|_2^2$

Semidefinite programming (SDP) SDP standard form: $\min \langle C, W \rangle$ s.t. $x_i = \langle W, M_r \rangle$ $W \ge 0$

Definition: a Hermitian matrix $W \in \mathbb{H}^n$ is positive semidefinite (PSD), $W \ge 0$ iff:

- All eigenvalues of *W* are non-negative
- $x^*Wx \ge 0$ for all $x \in \mathbb{C}^n$

Wide applications in systems and control theory, robust optimization, nonconvex optimization

Convexification procedure

min
$$\langle \widetilde{\boldsymbol{v}}\widetilde{\boldsymbol{v}}^*, \boldsymbol{M}_{tg} \rangle + 2Re\{\boldsymbol{v}_{tg}^*\widetilde{\boldsymbol{v}}\}\$$

s.t. $b_r = m_r - \langle \widetilde{\boldsymbol{v}}\widetilde{\boldsymbol{v}}^*, \boldsymbol{M}_r \rangle$
 $\|\boldsymbol{b}\|_0 \leq k$

- Transformation: Replace $\widetilde{v}\widetilde{v}^*$ with W
- The augmented matrix $\mathbf{Z} = \begin{bmatrix} 1 & \widetilde{\boldsymbol{v}}^* \\ \widetilde{\boldsymbol{v}} & \boldsymbol{W} \end{bmatrix}$ is positive semidefinite and rank 1

- Relaxation: relax the rank 1 constraint
- **Penalty:** add penalty for the rank and cardinality constraint

$$\min \langle \boldsymbol{W}, \boldsymbol{M}_{tg} \rangle + 2Re\{\boldsymbol{v}_{tg}^{*} \widetilde{\boldsymbol{v}}\} \\ \text{s.t.} \quad b_{r} = m_{r} - \langle \boldsymbol{W}, \boldsymbol{M}_{r} \rangle \\ \begin{bmatrix} 1 & \widetilde{\boldsymbol{v}} \\ \widetilde{\boldsymbol{v}} & \boldsymbol{W} \end{bmatrix} \geqslant 0, rank = 1 \\ \|\boldsymbol{b}\|_{0} \leq k \\ \\ \min \langle \boldsymbol{W}, \boldsymbol{M}_{tg} \rangle + 2Re\{\boldsymbol{v}_{tg}^{*} \widetilde{\boldsymbol{v}}\} \\ + \alpha \|\boldsymbol{b}\|_{1} + \langle \boldsymbol{W}, \boldsymbol{M}_{penalty} \rangle \\ \text{s.t.} \quad b_{r} = m_{r} - \langle \boldsymbol{W}, \boldsymbol{M}_{r} \rangle \\ \begin{bmatrix} 1 & \widetilde{\boldsymbol{v}} \\ \widetilde{\boldsymbol{v}} & \boldsymbol{W} \end{bmatrix} \geqslant 0 \\ \\ \begin{bmatrix} 1 & \widetilde{\boldsymbol{v}} \\ \widetilde{\boldsymbol{v}} & \boldsymbol{W} \end{bmatrix} \geqslant 0 \\ \end{bmatrix}$$

If the rank-1 constraint is satisfied, then we can recover a near-global stealthy attack solution

Key result: rank penalty design and performance bounds

Theorem: For carefully designed $M_{penalty}$ and α , if the measurements include real and reactive branch power flows, and nodal voltage magnitudes, we have

- The attack **b** is stealthy, and sparse for large α
- The performance difference compared to an oracle by solving the original nonconvex problem is bounded
- Relation to compressed sensing: the trace penalty is equivalent to choosing $M_{penalty}$ as the identity matrix
- Extends the low-rank optimization method to deal with the augmented matrix $\operatorname{rank} \begin{pmatrix} \begin{bmatrix} 1 & \widetilde{v} \\ \widetilde{v} & W \end{bmatrix} \end{pmatrix} = 1$, needed in a wide range of problems

Experiment on IEEE 30-bus

• Target attack:

$$h(\widetilde{\boldsymbol{v}}) = \left\|\widetilde{\boldsymbol{v}} - \boldsymbol{v}_{tg}\right\|_2^2$$

- Solve for the stealth attack *b* using SDP relaxation
- Estimate the spurious state using Gauss-Newton in MATPOWER
- Check for BDD

FDIA "tricks" the operator to believe a potential "voltage sag"

FDIA is triggered by tampering a small set of sensors

system	α	Rank(Z)	Card(<i>b</i>)	Upper bound	Pass BDD
6-bus	.4	1	18	40	Yes
14-bus	.2	1	16	46	Yes
30-bus	1.16	1	21	54	Yes
39-bus	1.82	1	18	36	Yes
57-bus	.5	1	30	92	Yes

Our results analyze the *potential threat of cyber attack* on power grid *AC-based* state estimation.

It should be used to inform new designs of Bad Data Detection. **VUNCABILITY**

Theoretical contributions

- Formulation of the nonconvex FDIA problem for AC grid
- Convex relaxation of the problem with cardinality constraint using Semidefinite programming
 - design proper penalty matrix to induce rank 1 solution
 - Prove performance bounds of the nearoptimal solution compared to the original problem