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Power system resilience against cyber 
attack has become a critical issue
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Outline
• Power system modeling and state estimation
• False data injection attack (FDIA) framework
• Semidefinite programming relaxation
• Experiments
• Conclusion
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Power system modeled as a graph

• A power system 𝒢 = (𝒩, ℒ)
– Transmission lines, buses, and transformers

• Complex voltage: 𝒗 = 𝑣*, 𝑣+, … , 𝑣- . ∈ ℂ-

• Nodal current injection: 𝒊 = 𝒀𝒗
• Injected complex power: 𝒑 + 𝒒𝑗 = diag(𝒗𝒊∗)
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Nodal and line
measurements

• Voltage magnitude and nodal power injections:

where 𝑬= = 𝒆=𝒆=., 𝒀=,? =
*
+
(𝒀∗𝑬= + 𝑬=𝒀), 𝒀=,@ =

A
+
(𝑬=𝒀 − 𝒀∗𝑬=)
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𝑣= + = Tr(𝑬=𝒗𝒗∗), 𝑝= = Tr(𝒀=,?𝒗𝒗∗), 𝑞= = Tr(𝒀=,?𝒗𝒗∗)

• Branch active and reactive power flows:
𝑝G,H = Tr(𝒀G,?I𝒗𝒗

∗), 𝑝G,J = Tr(𝒀G,?K𝒗𝒗
∗)

𝑞G,H = Tr(𝒀G,@I𝒗𝒗
∗), 𝑞G,J = Tr(𝒀G,@K𝒗𝒗

∗)

• All quantities are quadratic functions of complex 
voltage, which is the state of the system
~

Bus k Bus k’
𝑝G,H

𝑣= 𝑝=



Power system state estimation
Problem statement:
• Given noisy measurements

estimate the unknown state 𝒗.
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𝑚N = 𝒗𝒗∗,𝑴N + 𝑤N + 𝑏N
measurement unknown state noise bad data

Why state estimation?
• Provides real-time power system conditions
• Constitutes the core of online security analysis
• Provides diagnostics for modeling and maintenance

(Zhang, Madani, Lavaei, 2017)
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𝑚N = 𝒗𝒗∗,𝑴N + 𝑤N + 𝑏N

FDIA is stealthy if the spurious data 
correspond to a valid state

• State estimation: Quadratic measurements 
subject to noise and bad data
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measurement unknown state noise adversarial data
Can be solved by Gauss-Newton or SDP Bad data detection

Residuals:
𝑚N − 𝒗R𝒗R∗,𝑴N• Stealth attack:

𝑏N = 𝑚N − 𝒗S𝒗S∗,𝑴N



FDIA causes spurious state estimation
by tampering sensor data

• DC-based: (Liu et al.,
2010) (Kosut et al., 2010)
(Sandberg et al., 2010)
(Dan and Sandberg, 2010)
(Yuan et al., 2011) (Sou
et al., 2013) (Hendrickx et
al., 2014)

• AC-based
(Rahman and Mohsenian-
Rad, 2013)
(Hug and Giampapa, 2012)
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Stealth vs. sparsity
• Negative impact:

Electricity market (Xie
et al., 2010), Load
redistribution (Yuan et
al., 2011)



State estimation can be falsified..
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..with sparse sensor data attack
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Would it be possible for an adversary to
attack the state estimator by tampering

few sensor data in stealth?



General FDIA framework with 
cardinality / stealth constraints

• Objective function ℎ(𝒗S)
– Target state attack: ℎ 𝒗S = 𝒗S − 𝒗JU +

+

– Voltage collapse attack: ℎ 𝒗S = 𝒗S +
+

– State deviation attack: ℎ 𝒗S = − 𝒗S − 𝒗JNVW +
+
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min
𝒗S∈ℂZ[,𝒃∈ℝZ^

ℎ 𝒗S

s.t.  		𝑏N = 𝑚N − 𝒗S𝒗S∗,𝑴N
𝒃 ` ≤ 𝑘



Semidefinite programming (SDP)

min 	 𝑪,𝑾

s.t.  		𝑥f = 𝑾,𝑴N
𝑾 ≽ 𝟎
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Definition: a Hermitian matrix 𝑾 ∈ ℍ- is positive 
semidefinite (PSD), 𝑾 ≽ 𝟎 iff:
• All eigenvalues of 𝑾 are non-negative
• 𝒙∗𝑾𝒙 ≥ 𝟎 for all 𝒙 ∈ ℂ-

SDP standard form:

Wide applications in systems and control theory, 
robust optimization, nonconvex optimization   



Convexification procedure
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min 	 𝒗S𝒗S∗,𝑴JU + 2𝑅𝑒{𝒗JU∗ 𝒗S}
s.t. 		𝑏N = 𝑚N − 𝒗S𝒗S∗,𝑴N
	 𝒃 `≤ 𝑘

• Transformation: Replace 𝒗S𝒗S∗ with 𝑾
• The augmented matrix 𝐙 = 1 𝒗S∗

𝒗S 𝑾
is positive semidefinite and rank 1

min 	 𝑾,𝑴JU + 2𝑅𝑒{𝒗JU∗ 𝒗S}
s.t.  		𝑏N = 𝑚N − 𝑾,𝑴N

1 𝒗S
𝒗S 𝑾 ≽ 0,	rank=1
𝒃 ` ≤ 𝑘

• Relaxation: relax the rank 1 constraint
• Penalty: add penalty for the rank and 

cardinality constraint

min 	 𝑾,𝑴JU + 2𝑅𝑒{𝒗JU∗ 𝒗S}
+ 𝛼 𝒃 * + 𝑾,𝑴?W-vGJw
s.t.  		𝑏N = 𝑚N − 𝑾,𝑴N

1 𝒗S
𝒗S 𝑾 ≽ 0

If the rank-1 constraint is satisfied, then we can recover a 
near-global stealthy attack solution



Key result: rank penalty design and
performance bounds

• Relation to compressed sensing: the trace penalty is 
equivalent to choosing 𝑴?W-vGJw as the identity matrix

• Extends the low-rank optimization method to deal with the 
augmented matrix rank 1 𝒗S

𝒗S 𝑾 = 1, needed in a wide 
range of problems
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Theorem: For carefully designed 𝑴?W-vGJw and 𝛼, if the measurements include 

real and reactive branch power flows, and nodal voltage magnitudes, we have

• The attack 𝒃 is stealthy, and sparse for large 𝛼

• The performance difference compared to an oracle by solving the original 

nonconvex problem is bounded



Experiment on IEEE 30-bus
• Target attack:
ℎ 𝒗S = 𝒗S − 𝒗JU +

+

• Solve for the stealth 
attack 𝒃 using SDP 
relaxation

• Estimate the 
spurious state using 
Gauss-Newton in 
MATPOWER

• Check for BDD
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FDIA “tricks” the operator to believe 
a potential “voltage sag”
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Attack sparsity vs. regularization 

Upper bound
SDP-FDIA

The sparsity is controlled by the l1 
penalty weight 𝛼
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Upper bound by 
(Hug and Gimpapa 2012)



FDIA is triggered by tampering a 
small set of sensors
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system α Rank(𝒁) Card(𝒃) Upper
bound

Pass BDD

6-bus .4 1 18 40 Yes

14-bus .2 1 16 46 Yes

30-bus 1.16 1 21 54 Yes

39-bus 1.82 1 18 36 Yes

57-bus .5 1 30 92 Yes
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Our results analyze the potential threat of
cyber attack on power grid AC-based

state estimation. 

It should be used to inform new designs 
of Bad Data Detection.



Theoretical contributions
• Formulation of the nonconvex FDIA 

problem for AC grid
• Convex relaxation of the problem with 

cardinality constraint using Semidefinite 
programming
– design proper penalty matrix to induce rank 1 

solution
– Prove performance bounds of the near-

optimal solution compared to the original 
problem
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