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Abstract— Deterministic bias and stochastic unbiased noise
refer to different sources of uncertainty in the gradient that
can affect the performance of the online learning algorithms.
Although existing studies have provided bounds for dynamic
regret under these uncertainties, these bounds provide general
insight into algorithms’ functionality. This paper addresses
the efficacy of online gradient-based algorithms (OGD) with
inexact gradients. Our analysis quantifies the degree to which
gradient estimates can tolerate these uncertainties and identifies
specific conditions to ensure the robustness of online gradient
descent-based algorithms. Our findings indicate that bias and
variance function independently of each other. Also, how
much inexactness (variance and bias) online gradient-based
algorithms can handle depends on factors including decision
dimension, gradient norm, function variations, alignment of
functions’ gradients, and the curvature of the functions. Our
results are verified numerically and experimentally, bridging a
significant knowledge gap. Finally, as a case study, we introduce
a general online optimization algorithm to explore the interplay
between bias and variance with dynamic regret.

I. INTRODUCTION

Optimization problems are central to various applications,
including control systems, state estimation of dynamic sys-
tems [1], training of deep neural nets [2], optimal power
flow problems [3], and resource allocation [4]. Many of these
problems are inherently time-sensitive and require adaptation
to changing data. This has led to the development of online
optimization approaches [5], [6], where solutions must be
found sequentially over time and adapted to time-varying in-
put data. The real-time nature of online optimization presents
unique challenges and opportunities, accommodating many
real-world applications [1], [7], [8].

Online optimization problems can be formulated as a
sequential game between a learner and an adversary over
discrete time periods. At each time step, a learner chooses
an action xt ∈ X , where X ⊂ Rd, in order to minimize
unknown cost function ft(.) : X → R. Then, the learner in-
curs cost ft(xt). Subsequently, the environment reveals some
information about the form of ft given as full information
(receiving ft or ∇ft (xt)) or bandit (just ft (xt)); and the
learner uses this information to determine the next action
[9].

Our work aims to examine the conditions that affect the
inexactness of gradient estimations in online gradient descent
(OGD), focusing on understanding the impact of variance
and bias on these algorithms. Through theoretical analysis
and empirical verification, we seek to answer the question:
”Does online gradient descent (and variants) still work with
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Fig. 1: Online classification on the ijcnn 1 dataset [10], [11]
using the logistic loss. In every round, we implement full-
batch gradient descent and adjust the gradient estimate by
adding varying degrees of variance and bias as a percentage
of the gradient norm. Considering the variance and bias, the
numeric values indicate the cumulative loss ratio, compared
to regular full-batch gradient descent over 400 rounds. The
labels are inverted to imitate a changing environment. The
results averaged over 25 seeds.

biased gradient and variance?” and explore the boundaries
within which inexactness becomes sub-linear, aiding the
development of more reliable and effective online learning
algorithms.

A particular emphasis is placed on examining the role of
bias and variance in gradient estimates, which can signifi-
cantly affect the performance and reliability of online gra-
dient descent algorithms. Figure 1 demonstrates a straight-
forward case where the learning process can tolerate certain
levels of variance and bias in the gradient estimate without
causing significant changes in the cumulative loss. However,
these tolerances become detrimental if the levels exceed
a certain threshold. The intriguing question that Figure 1
triggers is: to what extent can an online cost functions
gradient tolerate variance and bias? Understanding bias and
variance in OGD is crucial. Knowing these factors helps us
predict how well OGD might work in different situations
and under what limit. Also, deep insights into how bias and
variance affect OGD can guide the development of improved
algorithms. In light of these objectives, our work makes
several key contributions:

• Through theoretical analysis and empirical verification,
we identified significant factors, including decision di-
mension, gradient norm, functions variations, alignment
of functions’ gradients, and the curvature of the func-



tions (Hessian of functions) that affect the impact of
variance and bias on online learning algorithms.

• We presented specific and practical conditions under
which online gradient descent and its variants perform
reliably even with inexact gradient estimations.

• Our findings extend a guiding framework for under-
standing the bounds of variance and bias in online
learning algorithms, aiming to inform the design of
more reliable and effective algorithms in practice.

II. RELATED WORK

Existing research has extensively explored the dynamic
regret bounds associated with online gradient descent for
convex [12]–[16] and nonconvex functions [17]–[21]. Vari-
ous sources of errors or uncertainties, including deterministic
bias and stochastic noise in the gradient due to algorithmic
and hardware constraints, have been acknowledged [22],
[23].

Several works have provided dynamic regret bounds when
inexact gradients are available [22], [24], [25], often ex-
pressed as a sum of regularity measures and cumulative
inexactness. The regularity measures include functional vari-
ation VT :=

∑T
t=2 supx∈X |ft−1(x)− ft(x)| [26], gradi-

ent variation GT :=
∑T

t=2 supx∈X ∥∇ft−1(x)−∇ft(x)∥2
[27], the path length of the competitor sequence PT :=∑T

t=2

∥∥x∗
t − x∗

t−1

∥∥ introduced in the seminal work [28]
and the squared path length ST :=

∑T
t=2

∥∥x∗
t − x∗

t−1

∥∥2
introduces by [14]. The cumulative inexactness is denoted
ET =

∑T
t=1 ϵt encapsulating the accumulated inexactness

over the considered time frame.
Previous studies commonly assume the sub-linearity of

inexactness, yielding valuable insights into the behavior of
online gradient algorithms. However, they often overlook
the practical conditions under which inexactness is sub-
linear and how this impacts the real-world effectiveness of
dynamic regret bounds in guiding algorithmic performance.
Our work aims to address this gap. Notably, it is understood
that achieving sublinear dynamic regret — a critical goal
for meaningful upper bounds — is contingent upon both
the regularity measure and inexactness being sublinear. Our
investigation explores the practical scenarios under which
these sublinear conditions are met.

III. THE IMPACT OF STOCHASTIC AND DETERMINISTIC
NOISE ON DECISION UPDATE

Our work takes a different path from [29]. While they
looked at a single static setting, we explore a scenario where
different functions are encountered in each round, which is
typical in online learning settings. By drawing insights from
[29], [30], we extend the discussion toward understanding
sublinear dynamic regret and how online gradient-based al-
gorithms perform in a more complex, changing environment,
which helps fill an important knowledge gap. The instanta-
neous cost function at a specific point on the optimization
trajectory is denoted as ft (xt), and the instantaneous cost
function at the subsequent point on the path, that is, after
a decision update step, is represented by ft+1 (xt+1). Also,

xt+1 = xt + η∆xt, where η is the learning rate. In the
remaining parts of this work, we define the cumulative
loss for a single decision update ft+1 (xt+1) + ft (xt) as
a function of the variance and bias in the decision update.

We assume that all cost functions {f}Tt=1 are twice dif-
ferentiable and the step size η is sufficiently small, allowing
us to effectively approximate ft+1 (xt+1) around ft+1 (xt)
using a second-order Taylor series. We represent the bias
vector as b

−→
β , where

−→
β is a vector with norm

√
d, showing

the bias direction in the d-dimensional decision space. With
these premises, we formulate the decision update equation
to be:

∆xt := −∇xft(xt) + b
−→
β + σ

√
h(d)d̂, (1)

In this context, ∇xft(xt) represents the first derivative of
the loss function ft at the current decision xt, d̂ refers to
a unit vector in the d-dimensional parameter space, where
each element of this vector is zero-mean i.i.d. The total
variance of ∆xt is σ2h(d). Here, h(d) characterizes how
the variance changes as a function of the decision dimension.
We define ∆f

(
b, σ2

)
as the change in a cumulative loss of

two consecutive cost functions ft+1 (xt+1) + ft(xt) when
performing the aforementioned decision update as compared
to the change in cumulative loss when the decision update
step follows the true gradient, i.e.,

∆f
(
b, σ2

)
= (2)

[ft+1 (xt+1) + ft(xt)](b,σ2) − [ft+1 (xt+1) + ft(xt)](0,0),

where [ft+1 (xt+1)+ft(xt)](b,σ2) is the cumulative loss with
bias b and variance σ2 for single parameter update. The
formal description is in the following Lemma.

Lemma 3.1: Assuming a small learning rate η, the bias,
b, and variance, σ2, in gradient estimates can be linked
to changes in a cumulative loss upon one decision update
step as compared to the cumulative loss under a true online
gradient descent decision update step:

Ed̂

[
∆f

(
b, σ2

)]
=Ed̂

[
[ft+1 (xt+1) + ft(xt)](b,σ2) − [ft+1 (xt+1) + ft(xt)](0,0)

]
= b

〈
∇xft+1(xt),

−→
β
〉
η +

1

2
b2

〈−→
β ,∇2

xft+1(xt)
−→
β
〉
η2

− 1

2
b
〈
∇xft(xt),

(
∇2

xft+1(xt) +∇2
xft+1(xt)

T
)−→
β
〉
η2

+
1

2

σ2h(d)

d
Tr

[
∇2

xft+1(xt)
]
η2. (3)

Due to space limitations, we provide all the proofs in this
online document [31]. Unpacking the implications of Lemma
3.1, we can identify several critical elements that signifi-
cantly shape the performance of online learning algorithms:

Separation of bias and variance effects: The effects of
variance and bias on the expected change in cumulative loss,
represented as Ed̂

[
∆f

(
b, σ2

)]
, function independently of

each other. This allows for individual optimization of each
component - bias, and variance - to minimize the cumulative
loss.

Dual impact of bias: Bias influences the loss in two
distinct ways: linearly and quadratically. The first term in



Lemma’s expression presents a linear impact with respect
to bias, whereas the second term encapsulates the quadratic
impact.

The insights from Lemma 3.1 pave the way for optimizing
online learning algorithms. The decoupling of bias and
variance facilitates targeted algorithm tuning, allowing for
an individual examination of each effect in the subsequent
analysis.

Lemma 3.2: The impact of variance on ∆f is propor-
tional to the trace of the Hessian.

∆f(0, σ2) =
1

2

σ2h(d)

d
Tr

[
∇2

xft+1(xt)
]
η2.

Variance’s impact is directly proportional to the trace of the
Hessian of the subsequent loss function, ∇2

xft+1(xt). The
Hessian matrix represents the loss function’s curvature, and
the decision variable’s dimensionality significantly influences
the overall loss. This suggests that the structure of the loss
functions can significantly influence the overall loss. While
the impact of variance is easily discernible from Lemma 3.2,
we further inspect the previous formula for a specific bias
value denoted as b while keeping the variance, σ, equal to
zero.

Lemma 3.3: The impact of bias on ∆f is linearly
proportional to the gradient norm.

∆f(b, 0) =

1

2
b2Qη2 + b ∥∇xft+1(xt)∥Pη − 1

2
b ∥∇xft(xt)∥Rη2 (4)

where Q =
〈−→
β ,∇2

xft+1 (xl)
−→
β
〉

, P =
〈
∇xf̂t+1 (xt) ,

−→
β
〉

and

R =
〈
∇xf̂t (xt

)
,
(
∇2

xft+1 (xl) +∇2
xft+1 (xt)

T
)−→
β
〉
.

The terms Q,R, andP are independent of the gradient’s
norm. According to Lemma 3.3, the impact of bias on the
function is intricately tied to the norm and direction of
the gradient, the direction of the bias vector

−→
β , and the

eigenvectors of the loss Hessian. These dependencies lead to
specific implications, which we explore in the following:

Quadratic term and curvature: The term 1
2b

2Qη2 ex-
hibits a quadratic dependency on the bias and captures the
influence of the curvature of the upcoming loss function. The
alignment of the bias direction

−→
β with the curvature of the

loss function in that particular direction is embodied within
the quantity Q. Interestingly, this term remains unaffected
by the gradient norm, allowing it to become dominant when
it is potentially small.

Linear term and gradient norm of an upcoming
cost function: The term b ∥∇xft+1 (xt)∥Pη is linear in b
and directly proportional to the gradient norm. When the
gradient norm is small, this term will be reduced, potentially
diminishing the linear effect of bias on ∆f . Additionally,
since P includes an inner product with

−→
β , the effect of this

term depends on the alignment between the bias direction and
the direction of the gradient of an upcoming cost function.

Negative linear dependence on the bias with gradient
norm modulation of current cost function: The term

− 1
2b ∥∇xft (xt)∥Rη2 introduces a negative linear depen-

dence with respect to the bias b, and is modulated by
the norm of the gradient of the current cost function. The
factor R encapsulates the intricate interplay between the
directions of the bias, the current gradient, and the curvature
of upcoming loss functions.

After examining the individual effects of bias and variance
on ∆f , an essential question arises: At what level does vari-
ance cause online gradient descent to degrade? To pinpoint
the specific variance threshold leading to a deterioration in
the learning process, we present the following lemma:

Lemma 3.4: Consider the online gradient descent algo-
rithm. Define the dynamic regret at time t with variance σ2 as
DR(t)(0,σ2) = [ft (xt)− ft (x

∗
t )](0,σ2). The regret is growing

at a constant rate ( DR(t + 1)(0,σ2) − DR(t)(0,σ2) ≥ C1) if
the variance satisfied:

σ2 ≥ 2C1

λminη2
+

2 (ft(xt)− f∗
t )− (ft+1(xt)− f∗

t+1)

λminη2

+
2∇f⊤

t+1 (xt)∇ft (xt)

λminη
−

∇f⊤
t (xt)

(
∇2ft+1 (xt)

)
(∇ft (xt))

λmin
,

(5)
where C1 > 0 and λmax ≥ . . . ≥ λmin denotes the
eigenvalues of ∇2ft+1, the equality holds with variance
threshold value denoted as σ2

T . The condition in the lemma
implies that the dynamic regret with variance grows by at
least a constant amount at every step. The condition assumes
that DR(t+1)(0,0) ≤ DR(t)(0,0) holds, reflecting the inherent
characteristics of the environment rather than a failure in the
algorithm because of the variance. The right-hand side of the
inequality provides a safety threshold for the variance. The
online gradient descent becomes unstable when the variance
exceeds the threshold value.

Various factors contribute to this threshold, such as the cur-
vature of the upcoming loss function. Specifically, a smaller
λmin corresponding to a flatter curvature would increase
the right-hand side of the inequality, making the algorithm
more robust to variance. In regions with steep curvatures,
a small noise in the gradient can cause the algorithm to
take a large, possibly incorrect step, leading to significant
deviations. However, in flatter regions, the inherent nature
of the function means it is less sensitive to these errors. A
noisy gradient in a flat region will not drastically change the
algorithm’s step as it would in a steeper region. Interestingly,
that is aligned with the result from [32]–[34] as variance
help in escaping the local minimum ”sharp curvature” point
locally and gives better generalization. The flatter regions
act as a buffer. Even if the gradient has some noise due to
variance, the update step taken by the algorithm will not push
the solution too far.

The second term represents the difference between the
regrets of two consecutive functions ft and ft+1 evaluated
at the same point xt. If this term is large, it signifies that the
regret due to ft was substantially more than that due to ft+1

at the same point xt. Since variance adds uncertainty and
potentially increases regret, a substantial inherent reduction
(like a buffer) in regret without considering variance allows
the algorithm to tolerate more variance without the total
regret (inherent plus that due to variance) growing too much.



Thus, the larger it is, the more robustness you have against
variance.

The inner product ∇f⊤
t+1 (xt)∇ft (xt) provides informa-

tion on how aligned the gradients of the two functions are
at the point xt. If the value is positive, both gradients point
in the same general direction. The ”redundant information”
from ft+1 can be an error-checking mechanism. To use an
analogy, imagine two people giving you directions. If both
are mostly pointing you to the same path, even if one is a
little uncertain (analogous to the noise in gradient), you’d
still have a clear idea of where to go based on the consistent
information. This is the notion of redundancy. However, if
they point in opposite directions, any uncertainty from either
person makes the decision even harder.

The analysis unveils an interplay of factors determining the
variance tolerance of the online gradient descent algorithm.
Firstly, flatter regions serve as buffers against variance-
induced deviations, with smaller λmin values rendering the
algorithm more robust against variance. Secondly, the regret
difference between consecutive functions ft and ft+1 at xt

acts as an inherent reduction in regret, thus allowing a greater
tolerance for variance. Lastly, the alignment of gradients of
ft and ft+1 at xt serves as an error-checking mechanism,
enabling better decision-making even amidst gradient noise.

After analyzing the impact of variance, we now focus on
bias. The critical question is: At what level does bias cause
online gradient descent to degrade? While the complexities
of bias make it a more challenging subject to tackle fully in
this part, we will provide insights into its first-order Tayler
effects. A more detailed analysis, especially concerning the
second-order Tayler effects of bias, can be found in the online
document [31].

Lemma 3.5: Consider the online gradient descent algo-
rithm. Define the dynamic regret at time t with biased b in the
gradient as DR(t)(b,0) = [ft (xt)− ft (x

∗
t )](b,0). The regret is

growing at a constant rate ( DR(t+1)(b,0)−DR(t)(b,0) ≥ C2),
if and only if the bias satisfied:

b ≥ C2+(ft(xt)−f∗
t )−(ft+1(xt)−f∗

t+1)+∇f⊤
t+1(xt)∇ft(xt)η√

d ∥∇ft+1∥ η
.

(6)
The equality holds with bias threshold value denoted as

bT . To delve into the practical implications of this lemma,
let’s examine how the bias b in the gradient can affect the
algorithm’s performance. This deterioration is quantified as
an increase in dynamic regret by at least a constant C2.
Moreover, the bias threshold is inversely related to the square
root of the dimension d of the decision variable. This relation
implies that as the dimensionality of our problem increases
(i.e., the number of decision variables), the amount of bias
the algorithm can tolerate decreases. In practical terms, in
high-dimensional spaces (large d ), even a small bias can
lead to significant errors in optimization.

Two terms we have already discussed in the previous
lemma. The term showing the difference in regrets between
ft and ft+1 at xt tells us about natural differences. If this
term is large, our algorithm can handle these differences
without causing problems. Then, the other term about the

gradients, ∇f⊤
t+1 (xt)∇ft (xt). In the variance context, this

term helped us understand how similar the directions of the
two functions are. Here, in the context of bias, this similarity
tells us if one function’s bias might be balanced out by the
other, making the algorithm more stable.

IV. CASE STUDY: INEXACT ONLINE MULTIPLE
GRADIENT DESCENT (IOMGD) ALGORITHM

Exploring the bias and variance with dynamic regret is
an important aspect. In this section, we analyze the IOMGD
algorithm. A particular interest of this algorithm is its inher-
ent flexibility. Specifically, by setting the number of inner
iterations to K = 1 and h = 1, the algorithm reduces to the
traditional inexact online gradient descent. For clarification,
here is the algorithm description: For each round t up to
T , the learner submits a decision xt within the set X and
initializes z1t to be equal to xt. Then, for each step j up to K
(where K is the total number of multiple steps), the learner
receives an inexact gradient ∇̂ft

(
zjt

)
. Subsequently, the

learner updates an auxiliary variable ẑjt by applying projected
gradient descent on the current iterate zjt . The variable zj+1

t

can be seen as a weighted blend of the previous iterations zjt ,
and the auxiliary variable, ẑjt . At the end of these K steps,
the decision for the next round, xt+1, is set to be zK+1

t . This
process is repeated for each round until the final round T is
reached. The general procedure is summarized in Algorithm
1.

Algorithm 1 Inexact online multiple gradient descent
Input: The number of inner iterations K and the step size η

1: Let x1 be any point in X .
2: for t = 1, . . . , T do
3: Submit xt ∈ X
4: z1t = xt

5: for j = 1, . . . , K do
6: Receive an inexact gradient ∇̂ft(z

j
t ).

7: Update ẑjt = PX

(
zjt − η∇̂ft

(
zjt

))
.

8: Update zj+1
t = zjt + h

(
ẑjt − zjt

)
9: end for

10: xt+1 = zK+1
t

11: end for=0

In the following results, we assume the following assump-
tions are satisfied. The gradients of all the online functions
are bounded by G, i.e.,

sup
x∈X ,1≤t≤T

∥∇ft(x)∥ ≤ G.

The functions ft are L−smooth and µ−strongly convex
over the convex set X

ft(y) ≤ ft(x) + ⟨∇ft(x), y − x⟩+ L

2
∥y − x∥2,

ft(y) ≥ ft(x) + ⟨∇ft(x), y − x⟩+ µ

2
∥y − x∥2,∀x, y.



The strong convexity assumption implies that each func-
tion ft has a unique minimizer within the convex set, x∗

t .
And the smoothness assumption is standard in differential
optimization [35]. Lastly, The bound on the norm of the
gradients is typical in the analysis of online algorithms
for constrained optimization. Start by examining how to
establish regret bound when the gradient is inexact. The
proof is broken down into three main steps. The first step
is to determine a limit for the quantity ∥xt+1 − xt∥2 based
on gradient error and the distance between xt and x∗

t for
one step IOGD. The second step is bound the quantity
∥xt+1−xt∥2 by implementing the presented algorithm. And
finally, setting a limit for the cumulative sum of ∥xt+1−xt∥2.
Our main results on the regret bound of IMOGD in dynamic
settings are derived from the following:

Lemma 4.1: The sequence {xt} for all t ∈ N generated
by IOGD algorithm with a step size η ≤ 1

L for L−smooth
and µ−strongly convex f(·) satisfies the following bounds
for any sequence {x∗

t }

Ed̂∥z
j+1
t − x∗

t ∥2 ≤
(
1− hµ

L

)
∥zjt − x∗

t ∥2 +
h

L
ϵt,

∥xt+1 − x∗
t ∥2 ≤ βK∥xt − x∗

t ∥2 +
1

µ
ϵt,

T∑
t=1

∥xt − x∗
t ∥

2 ≤ 1

1− 2βK

(
∥x1 − x∗

1∥
2
+ 2ET + 2S∗

T

)
,

where β = 1 − hµ
L , ϵt = 2D

(
bt
√
d+ σt

)
, and ET =

1
µ

∑T
t=2 ϵt.

Using the cumulative sum, we determine the dynamic
regret upper bound. The following corollaries present two
different upper bounds on the dynamic regret of the IOMGD
algorithm. They are based on the path length P∗

T , and the
squared path length S∗

T as a regularity measures.
Corollary 4.1: (Bounding the dynamic regret by P∗

T

and ẼT ): Assume that ft(·) is L− smooth and µ− strongly
convex by setting η ≤ 1

L in Algorithm 1, we have

T∑
t=1

Ed̂ [ft (xt)]− ft (x
∗
t ) ≤

G

1−
√
βK

(∥x1 − x∗
1∥

−β
K
2 Ed̂ [∥xT − x∗

T ∥] + P∗
T + ẼT

)
,

where ẼT =
√
ET .

When the value of ẼT is equal to zero, we obtain the same
dynamic regret bound in [36]. Also, the previous dynamic
regret bound recovers the dynamic regret bound obtained in
[22], [37] with an improvement as the sum of the inexactness
appears under the square root.

Corollary 4.2: (Bounding the dynamic regret by S∗
T

and ET ): Assume that ft(·) is L− smooth and µ− strongly
convex by setting η ≤ 1

L in Algorithm 1, and for any θ > 0,
we have
T∑

t=1

Ed̂[ft(xt)]− ft(x
∗
t ) ≤

1

2θ

T∑
t=1

∥∇ft(x
∗
t )∥2

+ C1
(
∥x1 − x∗

1∥2 + 2S∗
T + 4E∗

T

)
,

where C1 = θ+L
2(1−2βK)

.
Compared to Corollary4.1, the proposed IOMGD improves
the dynamic regret by reducing it from O (P∗

T + ET ) to
O
(
min

(
P∗
T + ẼT ,S∗

T + E∗
T

))
. Note that the gradient at x∗

t

is zero when x∗
t is in the relative interior of the feasibility

set X ; as a result, the dynamic regret in the above theorem
can be simplified to O (S∗

T + E∗
T ). In a slowly changing

environment, where the distance between successive optimal
solutions is small, the squared path length S∗

T can be
significantly smaller than the path length P∗

T . In this case,
Corollary 4.2 can provide an improved regret bound than the
result in Corollary 4.1.

The regret bounds of the IOMGD algorithm, as presented
in Lemma 4.1, Corollary 4.1, and Corollary 4.2, provide up-
per bounds on dynamic regret. These bounds are influenced
by parameters related to the gradient bound, strong convexity,
and a smoothness parameter L (curvature of the function).
Notably, they also include path lengths, squared path lengths,
and inexactness terms – the latter being the cumulative
sum of bias and variance at each iteration. However, as
highlighted in the earlier discussions on the roles of bias
and variance in Lemma 3.4 and 3.5, dynamic regret can
exhibit complex interdependencies. For bounded dynamic
regret, both bias and variance must be sub-linear. This sub-
linearity, as derived in Lemma 3.4 and 3.5, hinges on factors
such as the decision dimension, gradient norm, both the
lower and upper bounds of the function’s hessian and the
alignment of consecutive gradients that is not evident from
the dynamic regret upper bound alone.

V. EXPERIMENTS

Investigating variance sensitivity in Online Gradient
Descent: The primary objective of this experiment is to
investigate the robustness of the OGD algorithm against
variance and bias. This setting allows a focused exploration
of the algorithm’s performance under variance and bias. We
utilize a quadratic loss function f defined as:

f(x) =
1

2
x⊤Ax− b⊤x,

where the decision dimension d = 10. To methodically
understand the impact of variance, we derive a variance
threshold value σ2

T at each epoch, based on Equation 5.
We then corrupt the gradients with various fractions of this
threshold value to introduce a controlled perturbation level.
The results, illustrated in Figure 2, demonstrate that once the
algorithm’s operations surpassed the defined σ2

T , a marked
divergence in the algorithm’s performance was observed.
This highlights the significance of the variance conditions
delineated in Equation 5.

Subsequently, we evaluated the algorithm’s sensitivity to
bias by computing a bias threshold, bT , at each epoch, as
described in Equation 6. Figure 3 clarifies our findings,
indicating that exceeding the bias threshold leads to the
algorithm’s divergence. Notably, divergence can occur even
before the threshold value is reached; however, surpassing
the threshold value guarantees the divergence.



Fig. 2: Sensitivity of the OGD algorithm to variance: The
plot illustrates the performance degradation of the OGD
algorithm as the variance exceeds the derived threshold value
(σ2

T ).

Fig. 3: Sensitivity of the OGD algorithm to bias: This plot
shows the impact on the OGD algorithm performance when
the bias exceeds the computed threshold value (bT ).

Synthetic Experiment: The primary objective of this
experiment is to validate the theoretical findings proposed
in Lemma 3.5, specifically in a synthetic environment with
controlled conditions. The experiment setup is adapted from
[38], facilitating a structured examination of bias sensitivity
in online learning scenarios.

The loss function chosen for this experiment is a time-
dependent quadratic function with a varying center point,
mathematically represented as ft(x) = 1

4 (x− yt)
2 with

yt = 100 sin
(
π t

10T

)
. Here, the time t spans a horizon

T = 2000, causing a sinusoidal variation in the center of
the quadratic function, which induces a dynamic shift in the
function’s optimum.

A bias is introduced to the function’s gradient to model
the gradient’s inexactness. The bias threshold component bT
is derived based on the defined upper limit given in Equation
6. Different fractions of the bias threshold

¯
T are considered

to mimic the gradient’s inexactness.

The performance analysis is carried out by observing the
cumulative loss as different bias levels are introduced. Figure
3 illustrates the resultant unbounded cumulative loss when
the threshold value is exceeded.

Fig. 4: Illustration of unbounded cumulative loss with ex-
ceeding bias threshold values in a synthetic environment,
validating the bias sensitivity as shown in Lemma 3.5.

Foreground and Background Separation: In this part,
we evaluate the efficacy of Algorithm 1 in foreground and
background separation—a pivotal task in computer vision
aimed at isolating objects of interest (foreground) from the
background within an image or video. The complexity of
this task escalates when foreground and background elements
share similar color and texture characteristics or overlap.
Utilizing online learning, particularly the IOMGD algorithm,
enhances the accuracy and robustness of foreground and
background separation, ultimately leading to improved sep-
aration outcomes.

The process involves decomposing a matrix Yt into a low-
rank component Lt and a sparse component St at every time
instance t. The loss function employed for this purpose is
formulated as:

ft(Lt, St) = ∥Yt − Lt − St∥2F + µL∥Lt∥2F + µS∥St∥2F .

The full gradient version of the presented algorithm is
computationally expensive and sometimes infeasible since it
requires the knowledge of the full matrix Yt at each t. To
simulate this scenario and demonstrate the performance of
the proposed algorithm, a normal white noise X ∼ N (0, σ2)
is added to the gradient of the loss function ft(Lt, St), which
satisfies the conditions outlined in 5.

Figure 5 shows the performance evaluation of IOMGD
algorithm, where K = 3 exhibited a reduction in cumulative
loss compared to a single gradient descent step.

Figure 6 provides a visual representation of low-rank
component separation using both exact and inexact multiple
gradients with K = 3. The top image portrays an original
video instance Yt, while the middle and bottom images show
Lt derived through exact and inexact gradients, respectively.



Fig. 5: Illustration of cumulative loss for the IOMGD al-
gorithm over various iterations. The figure demonstrates the
algorithm’s ability to manage loss accumulation across itera-
tions, showcasing its efficacy and stability in the foreground
and background separation task.

VI. CONCLUSION

This paper tackled a key question of the efficacy of online
gradient-based algorithms with inexact gradients. We bridged
an existing knowledge gap, establishing clear conditions for
these algorithms to work well. Using mathematical analysis
and empirical verification, we analyzed the impact of uncer-
tainties for single parameter updates. We found that bias and
variance functioned independently of each other. Also, how
much inexactness (variance and bias) online gradient-based
algorithms can handle depends on factors including decision
dimension, gradient norm, functions variations, alignment
of functions’ gradients, and the curvature of the functions.
Future research includes developing adaptive algorithms that
dynamically respond to varying degrees of inexactness.
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VII. APPENDIX

Lemma 7.1: Assuming a small learning rate η, the bias, b, and variance, σ2, in gradient estimates can be linked to
changes in a cumulative loss upon one decision update step as compared to the cumulative loss under a true online gradient
descent decision update step:

Ed̂

[
∆f

(
b, σ2

)]
= Ed̂

[
[ft+1 (xt+1) + ft(xt)](b,σ2) − [ft+1 (xt+1) + ft(xt)](0,0)

]
,

= b
〈
∇xft+1(xt),

−→
β
〉
η +

1

2
b2

〈−→
β ,∇2

xft+1(xt)
−→
β
〉
η2 − 1

2
b
〈
∇xft(xt),

(
∇2

xft+1(xt) +∇2
xft+1(xt)

T
)−→
β
〉
η2

+
1

2

σ2h(d)

d
Tr

[
∇2

xft+1(xt)
]
η2.

A. Proof of Lemma ??

Proof: We use the second-order Taylor series expansion of the task error to understand how the cumulative error
changes as system parameters evolve. The parameter update rule is a noisy version of the gradient descent update:

∆xt := −∇xft(xt) + b
−→
β + σ

√
h(d)d̂. (7)

For a small step η, the Taylor series expansion is given as:

f(xt+1) = f(xt) + ⟨∇xf(xt),∆xt⟩ η +
1

2

〈
∆xt,∇2

xf(xt)∆xt

〉
η2, (8)

Using this approach, let us compare the change in cumulative error after one decision update to the cumulative error using
the standard online gradient descent method for decision update,

∆f
(
b, σ2

)
= [ft+1 (xt+1) + ft(xt)](b,σ2) − [ft+1 (xt+1) + ft(xt)](0,0), (9)

Plugging in Equations ?? and ?? in Equation ??,

∆L
(
b, σ2

)
=

[
b
〈
∇xft+1(xt),

−→
β
〉
+ σ

√
h(d)

〈
∇xft+1(xt), d̂

〉]
η

+
1

2

[
−b

〈
∇xft(xt),∇2

xft+1(xt)
−→
β
〉
− σ

√
h(d)

〈
∇xft(xt),∇2

xft+1(xt)d̂
〉

− b
〈−→
β ,∇2

xft+1(xt)∇xft(xt)
〉
− σ

√
h(d)

〈
d̂,∇2

xft+1(xt)∇xft(xt)
〉
+ bσ

√
h(d)

〈−→
β ,∇2

xft+1(xt)d̂
〉

+ bσ
√

h(d)
〈
d̂,∇2

xft+1(xt)
−→
β
〉
+b2

〈−→
β ,∇2

xft+1(xt)
−→
β
〉
+ σ2h(d)

〈
d̂,∇2

xft+1(xt)d̂
〉]

η2

Taking the expectation:

Ed̂

[
∆f

(
b, σ2

)]
=

[
b
〈
∇xft+1(xt),

−→
β
〉]

η +
1

2

[
−b

〈
∇xft(xt),∇2

xft+1(xt)
−→
β
〉

− b
〈−→
β ,∇2

xft+1(xt)∇xft(xt)
〉
− σ

√
h(d)

〈
d̂,∇2

xft+1(xt)∇xft(xt)
〉

+b2
〈−→
β ,∇2

xft+1(xt)
−→
β
〉
+ σ2h(d)

〈
d̂,∇2

xft+1(xt)d̂
〉]

η2 (10)

Additionally, we make the following assumptions for elements of the d-dimensional noise vector d̂ : Ed̂

[
d̂2i

]
= 1

d and

Ed̂

[
d̂id̂j

]
= 0,∀i ̸= j ∈ 1 . . . d. Therefore,

Ed̂

[〈
d̂,∇2

xft+1(xt)d̂
〉]

= Ed̂

∑
i,j

d̂id̂j∇2
xft+1(xt)ij


=

∑
i

Ed̂

[
d̂2i

]
∇2

xft+1(xt)ii +
∑
i ̸=j

∑
j

Ed̂

[
d̂id̂j

]
∇2

xft+1(xt)ij

=
1

d

∑
i

∇2
xft+1(xt)ii =

1

d
Tr

[
∇2

xft+1(xt)
]
, (11)

Moreover:



〈
∇xft(xt),∇2

xft+1(xt)
−→
β
〉
+
〈−→
β ,∇2

xft+1(xt)∇xft(xt)
〉
= ∇xft(xt)

T∇2
xft+1(xt)

−→
β +

−→
β T∇2

xft+1(xt)∇xft(xt)

= ∇xft(xt)
T∇2

xft+1(xt)
−→
β +∇xft(xt)

T∇2
xft+1(xt)

T−→β

= ∇xft(xt)
T
(
∇2

xft+1(xt) +∇2
xft+1(xt)

T
)−→
β

=
〈
∇xft(xt),

(
∇2

xft+1(xt) +∇2
xft+1(xt)

T
)−→
β
〉

(12)

The second equality holds because each item is a scalar value. Now, incorporating Equations ?? and ?? to simplify Equation
??:

Ed̂

[
∆f

(
b, σ2

)]
= Ed̂

[
[ft+1 (xt+1) + ft(xt)](b,σ2) − [ft+1 (xt+1) + ft(xt)](0,0)

]
,

= b
〈
∇xft+1(xt),

−→
β
〉
η +

1

2
b2

〈−→
β ,∇2

xft+1(xt)
−→
β
〉
η2 − 1

2
b
〈
∇xft(xt),

(
∇2

xft+1(xt) +∇2
xft+1(xt)

T
)−→
β
〉
η2

+
1

2

σ2h(d)

d
Tr

[
∇2

xft+1(xt)
]
η2.

Lemma 7.2: Consider the online gradient descent algorithm. Define the dynamic regret at time t with variance σ2 as
DR(t)(0,σ2) = [ft (xt)− ft (x

∗
t )](0,σ2). The regret is growing at a constant rate ( DR(t+1)(0,σ2)−DR(t)(0,σ2) ≥ C1) if the

variance satisfied:

σ2 ≥ 2C1

λminη2
+

2 (ft(xt)− f∗
t )−

(
ft+1(xt)− f∗

t+1

)
λminη2

+
2∇f⊤

t+1 (xt)∇ft (xt)

λminη
−

∇f⊤
t (xt)

(
∇2ft+1 (xt)

)
(∇ft (xt))

λmin
,

B. Proof of Lemma ??
Proof:

DR(t+ 1)(0,σ2) −DR(t)(0,σ2) =
(
ft+1(xt)− f∗

t+1

)
− (ft(xt)− f∗

t ) + ⟨∇ft+1(xt),−∇ft(xt)⟩ η

+
1

2

〈
∇ft(xt),∇2ft+1(xt) (∇ft(xt)

〉
η2 +

1

2

σ2h(d)

d
Tr

[
∇2ft+1

]
η2,

≥
(
ft+1(xt)− f∗

t+1

)
− (ft(xt)− f∗

t ) + ⟨∇ft+1(xt),−∇ft(xt)⟩ η

+
1

2

〈
∇ft(xt),∇2ft+1(xt) (∇ft(xt)

〉
η2 +

1

2
σ2h(d)λminη

2,

The inequality holds as λmin ≤ 1
d Tr

[
∇2

xft+1

]
≤ λmax. If the RHS of inequality is greater than C1 > 0, then the decision

update step necessarily implies DR(t+ 1)(0,σ2) −DR(t)(0,σ2) ≥ C1, and let h(d) = 1 Therefore,(
ft+1(xt)− f∗

t+1

)
− (ft(xt)− f∗

t ) + ⟨∇ft+1(xt),−∇ft(xt)⟩ η +
1

2

〈
∇ft(xt),∇2ft+1(xt) (∇ft(xt)

〉
η2 +

1

2
σ2h(d)λminη

2 ≥ C1,

σ2 ≥ 2C1

λminη2
+

2 (ft(xt)− f∗
t )−

(
ft+1(xt)− f∗

t+1

)
λminη2

+
2∇f⊤

t+1 (xt)∇ft (xt)

λminη
−

∇f⊤
t (xt)

(
∇2ft+1 (xt)

)
(∇ft (xt))

λmin
,

Lemma 7.3: Consider the online gradient descent algorithm. Define the dynamic regret at time t with biased b in the
gradient as DR(t)(b,0) = [ft (xt)− ft (x

∗
t )](b,0). The regret is growing at a constant rate ( DR(t+1)(b,0)−DR(t)(b,0) ≥ C2),

if and only if the bias satisfied:

b ≥
C2 + (ft(xt)− f∗

t )−
(
ft+1(xt)− f∗

t+1

)
+∇f⊤

t+1 (xt)∇ft (xt) η√
d ∥∇ft+1∥ η

C. Proof of Lemma ??
D. First order approximation:

Proof: For simplicity, we consider first order Taylor approximation ft+1(xt+1) as the following:

ft+1(xt+1) = ft+1(xt) + ⟨∇ft+1(xt),−∇ft(xt)⟩ η +
〈
∇ft+1(xt), b

−→
β
〉
η,



Then,

DR(t+ 1)(b,0) −DR(t)(b,0) =
(
ft+1(xt)− f∗

t+1

)
− (ft(xt)− f∗

t ) + ⟨∇ft+1(xt),−∇ft(xt)⟩ η +
〈
∇ft+1(xt), b

−→
β
〉
η,

If the RHS of inequality is greater than C2 > 0, then the decision update step necessarily implies DR(t + 1)(b,0) −
DR(t)(b,0) ≥ C2, then

(
ft+1(xt)− f∗

t+1

)
− (ft(xt)− f∗

t ) + ⟨∇ft+1(xt),−∇ft(xt)⟩ η +
〈
∇ft+1(xt), b

−→
β
〉
η ≥ C2,〈

∇ft+1(xt), b
−→
β
〉
η ≥ C2 + (ft(xt)− f∗

t )−
(
ft+1(xt)− f∗

t+1

)
+∇f⊤

t+1 (xt)∇ft (xt) η,

b
√
d ∥∇ft+1∥ η ≥ C2 + (ft(xt)− f∗

t )−
(
ft+1(xt)− f∗

t+1

)
+∇f⊤

t+1 (xt)∇ft (xt) η,

b ≥
C2 + (ft(xt)− f∗

t )−
(
ft+1(xt)− f∗

t+1

)
+∇f⊤

t+1 (xt)∇ft (xt) η√
d ∥∇ft+1∥ η

.

E. Second order approximation:

Now, let us analyze the second-order Taylor approximation :

DR(t+ 1)(b,0) −DR(t)(b,0) =
(
ft+1(xt)− f∗

t+1

)
− (ft(xt)− f∗

t ) + ⟨∇ft+1(xt),−∇ft(xt)⟩ η +
〈
∇ft+1(xt), b

−→
β
〉
η,

+
1

2

〈
∇ft(xt),∇2ft+1(xt) (∇ft(xt)))

〉
η2 − 1

2
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b
−→
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〉
η2

− 1

2

〈
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−→
β )

〉
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1

2

〈
b
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−→
β )

〉
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(i)
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(
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)
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√
d∥2η2,
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(
ft+1(xt)− f∗
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)
− (ft(xt)− f∗

t ) + ⟨∇ft+1(xt),−∇ft(xt)⟩ η +
η2

2
λmax∥∇ft(xt)∥2

+
η2

2
λmax∥b

√
d∥2 +

〈
η∇ft+1(xt)−

η2
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∇ft(xt)

(
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T
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, bβ⃗
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(ii)

≤
(
ft+1(xt)− f∗

t+1

)
− (ft(xt)− f∗

t ) + ⟨∇ft+1(xt),−∇ft(xt)⟩ η +
η2

2
λmax∥∇ft(xt)∥2

+ ∥∇ft+1(xt)− η
(
∇2ft+1(xt)

)
∇ft(xt)∥∥b

√
dη∥+ 1

2
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√
dη∥2,

where (i) follows from a linear algebra inequality that λmin ∥C∥2 ≤
〈
C,∇2ft+1(xt)C

〉
≤ λmax ∥C∥2 for vector C and

λmax ≥ . . . ≥ λmin denotes the eigenvalues of ∇2ft+1. Finally, (ii) follows from Cauchy-Schwarz inequality. If the RHS
of inequality is less than −C2, then the decision update step sufficiently implies a decrease in the dynamic regret by, at
most, a constant C2, then

α∥b
√
dη∥2 + β∥b

√
dη∥+ γ ≤ 0,

where α = 1
2λmax, β = ∥∇ft+1(xt) − η

(
∇2ft+1(xt)

)
∇ft(xt)∥, and γ =

(
ft+1(xt)− f∗

t+1

)
− (ft(xt)− f∗

t ) +

⟨∇ft+1(xt),−∇ft(xt)⟩ η+ η2

2 λmax∥∇ft(xt)∥2 +C2. Since ∥b
√
dη∥ cannot be negative and to get intuition, let us assume

ft+1 being smooth and c < 0, then the allowed value of bias is in [0,
−β+

√
β2−4αγ

2αη
√
d

). This implies that as the dimensionality
of our problem increases, the amount of bias the algorithm can tolerate decreases which is consistent with the first-order
expansion condition.

Lemma 7.4: The sequence {xt} for all t ∈ N generated by IOGD algorithm with a step size η ≤ 1
L for L−smooth



and µ−strongly convex f(·) satisfies the following bounds for any sequence {x∗
t }

Ed̂∥z
j+1
t − x∗

t ∥2 ≤
(
1− hµ

L

)
∥zjt − x∗

t ∥2 +
h

L
ϵt,

∥xt+1 − x∗
t ∥2 ≤ βK∥xt − x∗

t ∥2 +
1

µ
ϵt,

T∑
t=1

∥xt − x∗
t ∥

2 ≤ 1

1− 2βK

(
∥x1 − x∗

1∥
2
+ 2ET + 2S∗

T

)
,

where β = 1− hµ
L , ϵt = 2D

(
bt
√
d+ σt

)
, and ET = 1

µ

∑T
t=2 ϵt.

F. Proof of Lemma ??

Proof: Strong convexity of the function ft implies that

ft(x)−
µ

2
∥x− zjt ∥2 ≥ ft

(
zjt

)
+∇ft

(
zjt

)T (
x− zjt

)
, (13)

for any x ∈ X . By adding and subtracting the inner product ∇ft

(
zjt

)T (
ẑjt − zjt

)
to the right-hand side of ??, we obtain

ft(x)−
µ

2
∥x− zjt ∥2 ≥ ft

(
zjt

)
+∇ft

(
zjt

)T (
ẑjt − zjt

)
+∇ft

(
zjt

)T (
x− ẑjt

)
= ft

(
zjt

)
+∇ft

(
zjt

)T (
ẑjt − zjt

)
+ ∇̂ft

(
zjt , ξ

)T (
x− ẑjt

)
+

(
∇ft

(
zjt

)
− ∇̂ft

(
zjt , ξ

))T (
x− ẑjt

)
(14)

Observe that the optimality condition of the update of ẑjt in line 7 of Algorithm 1 implies that(
∇̂ft

(
zjt , ξ

)
+

1

η

(
ẑji − zji

))T (
x− ẑjt

)
≥ 0, (15)

for any x ∈ X . From the result in ??, it follows that the inner product ∇̂ft

(
zjt , ξ

)T (
x− ẑjt

)
is bounded below by

1
η

(
zjt − ẑji

)T (
x− ẑjt

)
. Applying this substitution to ?? yields

ft(x)−
µ

2
∥x− zji ∥

2 ≥ ft

(
zji

)
+∇ft

(
xj
i

)T (
zjt − zjt

)
+

1

η

(
zjt − zji

)T (
x− zji

)
+

(
∇ft

(
zji

)
− ∇̂ft

(
zji , ξ

))T (
x− zjt

)
.

(16)

According to the Lipschitz continuity of the instantaneous gradients ∇ft and Taylor’s series of the objective function ft

(
ẑjt

)
near the point zjt we can write

ft

(
ẑji

)
≤ ft

(
zji

)
+∇ft

(
zji

)T (
zji − zjt

)
+

L

2
∥ẑji − zji ∥

2.

Thus, the sum ft

(
zjt

)
+∇ft

(
zjt

)T (
ẑjt − zjt

)
is bounded below by ft

(
ẑjt

)
− L

2 ∥ẑ
j
t − zjt ∥2. By applying this substitution

into ??, we obtain

ft(x)−
µ

2
∥x− zji ∥

2 ≥ ft

(
ẑjt

)
− L

2
∥ẑji − zjt ∥2 +

1

η

(
zjt − ẑjt

)T (
x− ẑjt

)
+
(
∇ft

(
zji

)
− ∇̂ft

(
zjt , ξ

))T (
x− ẑjt

)
.

(17)

By adding and subtracting zjt we can expand the inner product
(
zjt − ẑjt

)T (
x− ẑjt

)
as the sum of

(
zjt − ẑjt

)T (
x− zjt

)
and

(
zjt − ẑjt

)T (
zjt − ẑjt

)
. From applying this substitution into ?? and η ≤ 1

L it follows that

ft(x)−
µ

2
∥x− zjt ∥2 ≥ ft

(
ẑjt

)
+

L

2
∥ẑjt − zjt ∥2 +

1

η

(
zjt − ẑjt

)T (
x− zjt

)
+
(
∇ft

(
zjt

)
− ∇̂ft

(
zjt , ξ

))T (
x− ẑjt

)
.

(18)



Now set x = x∗
t in ?? and regroup the terms to obtain

ft (x
∗
t )− ft

(
ẑjt

)
≥ µ

2
∥x∗

t − zjt ∥2 +
L

2
∥ẑjt − zjt ∥2 +

1

η

(
zjt − ẑjt

)T (
x∗
t − zjt

)
+

(
∇ft

(
zjt

)
− ∇̂ft

(
zjt , ξ

))T (
x− ẑjt

)
.

(19)

Note that the optimal objective function value ft (x
∗
t ) is smaller than ft

(
ẑjt

)
. Thus, the left-hand side of ?? is nonpositive,

which implies that the right-hand side is also smaller than 0 :

µ

2
∥x∗

t − zjt ∥2 +
L

2
∥ẑjt − zjt ∥2 +

1

η

(
zjt − ẑjt

)T (
x∗
t − zjt

)
+

(
∇ft

(
zjt

)
− ∇̂ft

(
zjt , ξ

))T (
x− ẑjt

)
≤ 0.

Therefore, by dividing both sides of the inequality by L and regrouping the terms, it follows that(
zjt − ẑjt

)T (
zjt − x∗

t

)
≥ 1

2
∥ẑjt − zjt ∥2 +

µ

2L
∥x∗

t − zjt ∥2 +
1

L

(
∇ft

(
zjt

)
− ∇̂ft

(
zjt , ξ

))T (
x− ẑjt

)
. (20)

Now by showing a lower bound for the inner product
(
zjt − ẑjt

)T (
zjt − x∗

t

)
in terms of the squared norms ∥ẑjt − zjt ∥2 and

∥x∗
t − zjt ∥2 we proceed to prove the main claim. Consider the update zj+1

t = (1 − h)zjt + hẑjt in line 8 of Algorithm ??.
By subtracting x∗

t from both sides of the equality and computing the squared norm of the resulted expression, we obtain

∥zj+1
t − x∗

t ∥2 = ∥zjt − x∗
t ∥2 + h2∥zjt − ẑjt ∥2 − h

(
zjt − x∗

t

)T (
zjt − ẑjt

)
. (21)

Substitute the inner product
(
zjt − x∗

t

)T (
zjt − ẑjt

)
in ?? by its lower bound in ?? to obtain

∥zj+1
t − x∗

t ∥2 ≤
(
1− hµ

L

)
∥zjt − x∗

t ∥2 + h(h− 1)∥zjt − ẑjt ∥2 −
2h

L

(
∇ft

(
zjt

)
− ∇̂ft

(
zjt , ξ

))T (
x− ẑjt

)
. (22)

First, note that h is a constant from the interval (0, 1]; therefore, the term h(h− 1)∥zjt − ẑjt ∥2 is smaller than zero, and we
can simplify the right-hand side of ?? as

∥zj+1
t − x∗

t ∥2 ≤
(
1− hµ

L

)
∥zjt − x∗

t ∥2 −
2h

L

(
∇ft

(
zjt

)
− ∇̂ft

(
zjt , ξ

))T (
x− ẑjt

)
,

≤
(
1− hµ

L

)
∥zjt − x∗

t ∥2 +
2h

L

(
b
−→
β + σ

√
h(d)d̂

)⊤ (
x− ẑjt

)
,

≤
(
1− hµ

L

)
∥zjt − x∗

t ∥2 +
2h

L
∥b
−→
β + σ

√
h(d)d̂∥∥x− ẑjt ∥,

≤
(
1− hµ

L

)
∥zjt − x∗

t ∥2 +
2hD

L

(
∥b
−→
β ∥+ ∥σ

√
h(d)∥

)
, (23)

Taking the expectation over the randomness on both sides of ??, we have

Ed̂∥z
j+1
t − x∗t ∥2 ≤

(
1− hµ

L

)
∥zjt − x∗

t ∥2 +
2hD

L

(
b
√
d+ σ

√
h(d)

)
, (24)

Case(1): summation bound for S∗
T : Note that the strong convexity constant µ is smaller than the constant of gradients

Lipschitz continuity L, i.e., µ ≤ L. Moreover, h ≤ 1 which implies that 0 < hµ
L ≤ 1. Hence, the constant β := (1− hµ

L ) is
from the interval [0, 1). Recall the updating rule zj+1

t−1 = PX

(
zjt−1 − α∇̂ft−1

(
zjt−1

))
, j = 1, . . . ,K; then, we can write

that

∥xt+1 − x∗
t ∥

2
=

∥∥zK+1
t − x∗

t

∥∥2
≤ βK ∥xt − x∗

t ∥
2
+

2hD
(
1− βK

)
L(1− β)

(
b
√
d+ σ

√
h(d)

)
,

≤ βK ∥xt − x∗
t ∥

2
+

2h

µ

(
b
√
d+ σ

√
h(d)

)
,



where we recursively apply the result from Equation ??. Let ϵt = 2Db
√
d

µ . Now, using ∥x − y∥2 ≤ (1 + ι)∥x − z∥2 +(
1 + 1

ι

)
∥z − y∥2, we can bound

T∑
t=1

∥xt − x∗
t ∥

2 ≤ ∥x1 − x∗
1∥

2
+

T∑
t=2

(1 + ι)
∥∥xt − x∗

t−1

∥∥2 + T∑
t=2

(
1 +

1

ι

)∥∥x∗
t − x∗

t−1

∥∥2 .
≤ ∥x1 − x∗

1∥
2
+

T∑
t=1

(1 + ι)βK ∥xt − x∗
t ∥

2
+

T∑
t=1

(1 + ι)ϵt +

T∑
t=2

(
1 +

1

ι

)∥∥x∗
t − x∗

t−1

∥∥2 .
T∑

t=1

∥xt − x∗
t ∥

2 ≤ ∥x1 − x∗
1∥

2

(1− (1 + ι)βK)
+

T∑
t=2

(1 + ι)ϵt
(1− (1 + ι)βK)

+

(
1 + 1

ι

)
S∗
t

(1− (1 + ι)βK)
. (25)

Then, by setting ι = 1
T∑

t=1

∥xt − x∗
t ∥

2 ≤ 1

1− 2βK

(
∥x1 − x∗

1∥
2
+ 2E∗

T + 2S∗
T

)
. (26)

Recap that β = (1− hµ
L ), then by choosing K ∝ L

hµ .i.e., K = ⌈ ln(4)L
hµ ⌉, then

T∑
t=1

∥xt − x∗
t ∥

2 ≤ 2 ∥x1 − x∗
1∥

2
+ 4E∗

T + 4S∗
T . (27)

Note that κ = L
µ is the conditional number. If κ is large, we have ill-condition. It is known that it is more difficult to

optimize, and that is why we need more iterations as K ∝ L
µ .

Case(2): summation bound for P∗
T :

T∑
t=1

∥xt − x∗
t ∥ ≤∥x1 − x∗

1∥ − β
K
2 ∥xT − x∗

T ∥
1− β

K
2

+
1

1− β
K
2

T∑
t=2

∥∥x∗
t − x∗

t−1

∥∥+
1

1− β
K
2

√
ET

=
∥x1 − x∗

1∥ − β
K
2 ∥xT − x∗

T ∥
1− β

K
2

+
P∗
T

1− β
K
2

+
1

1− β
K
2

√
ET


