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Abstract— We describe a new method of parametric utility
learning for non-cooperative, continuous games using a proba-
bilistic interpretation for combining multiple utility functions—
thereby creating a mixture of utilities—under non-spherical
noise terms. This framework allows for the estimated parame-
ters of the learned utility functions to depend on the historical
actions of the players and allows us to capture the fact that
players’ utility functions are not static. In particular, we present
an adaptation of mixture of regression models that takes in to
account heteroskedasticity. We show the performance of the
proposed method by estimating the utility functions of players
using data from a social game experiment designed to encourage
energy efficient behavior amongst building occupants. Using
occupant voting data we simulate the new game defined by the
estimated mixture of utilities and show that the resulting fore-
cast is more accurate than robust utility learning methods such
as constrained Feasible Generalized Least Squares (cFGLS),
ensemble methods such as bagging, and classical methods such
as Ordinary Least Squares (OLS).

I. INTRODUCTION

Due to an increase in technology, there are new sensing
and actuation platforms that are being deployed. As a result,
humans are being integrated into the decision-making pro-
cess for operations and management of large-scale systems
such as the smart grid and intelligent transportation network.
We can now observe how end-users in these systems are
consuming resources and, moreover, what their individual
preferences are with regard to resource consumption. Meth-
ods of learning how humans make decisions and how they
interact with their environment are needed in order to account
for their impact on the system and control for it via cyber-
physical control schemes or economic mechanisms such as
incentives.

In our past work [13], [14], we developed tools for esti-
mating parameters of users’ utility functions and designing
incentives to encourage socially optimal and efficient behav-
iors. At the core of our approach is the fact that we modeled
the agents as non-cooperative agents who play according
to a Nash equilibrium strategy. This serves the purpose of
modeling the agents as strategic entities who make decisions
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based on their own preferences in spite of others. The game
theoretic framework both allows for qualitative insights to
be made about the outcome of such selfish behavior and,
more importantly, can be leveraged in designing incentives
for adjusting agents strategies.

We extended those results to a robust utility estimation
framework in [15]. In particular, assuming a parametric form
of utility function for each agent, we utilized constrained
Feasible Generalized Least Squares (cFGLS) to formulate a
parameter estimation scheme in which the estimator variance
is reduced, unbiased, and consistent. We explored wild boot-
straping, a powerful technique for asympotic approximation
of the bias and standard error of an estimator in a complex
and noisy statistical model. Strengthened by the bootstrap
estimators, we improved the parameter estimation scheme
by using ensemble methods such as bagging.

In the present work, we develop a novel framework for
estimating a mixture of utility functions by extendeding the
classical mixture of regression models framework to inverse
modeling of utility functions in non–cooperative, continuous
games. We show that the proposed method outperforms many
other robust utility learning frameworks including those in
our previous works such as cFGLS, enemble methods such
as bagging, and several other standard techniques such as
OLS and our preliminary estimation scheme in [13].

In particular, we present the theoretical formulation of a
new parametric utility learning method that uses a proba-
bilistic interpretation—i.e. a mixture of utilities—of agent
utility functions. The mixture of utilities modeling paradigm
allows us to account for variations in agents’ parameters
over time. The resulting scheme is a Mixture of constrained
Feasible Generalized Least Squares (Mix-cFGLS) that uses
heteroskedasticity inference for correlated errors in the re-
sulting regression model. Mix-cFGLS is a complex statistical
model that we show is a powerful tool for utility learning
that providing greater accuracy in the prediction of players
responses. Furthermore, captured in this framework is the
fact that players’ utility functions are not static; instead,
the parameters of players utility functions can depend on
historical data. Inherent to the Mix-cFGLS framework is the
fact that we can explore the tradeoff between minimizing
bias and minimizing the variance of predictions. We show
that by using Mix-cFGLS for utility learning, allowing for
a small amount of bias results in a substantial decrease in
variance and forecasting accuracy.

The rest of the paper is organized as follows. We begin
in Section II by describing a social game framework for an
experiment that we conducted on the UC Berkeley campus
and and formulating the decision making model for agents.



In Section III we propose the robust parametric learning
framework for a mixture of utilities which uses probabilistic
softmax gates. We present the results of our estimation
scheme in Section IV using data from the social game for
energy efficiency. We conclude with some discussion and
proposal for future work in Section V. We remark that while
we present our results in the context of the social game for
energy efficient behavior in buildings, it is general enough
to apply to many other applications.

II. USER DECISION MAKING FRAMEWORK

In this section, we briefly describe the social game exper-
imental setup and we introduce the non–cooperative game
framework between users in the social game experiment. We
refer the reader to our previous works [13], [14] for a more
detailed description of the social game.

A. Social Game

We designed and implemented a social game for encour-
aging energy efficiency in a collaboratory which resides in
the Center for Research in Energy Systems Transformation
(CREST) on the Berkeley campus. We have deployed an
automated lighting control system (Lutron system1), which
enables its occupants to adjust the lighting through a web
portal. In particular, using this web portal, the social game
consists of occupants who select a lighting setting by bal-
ancing their preferences over comfort, productivity, desired
to be green and desire to win a prize. The portal also allows
for users to visualize the social game—in particular, the
dim level of the lights and the energy efficiency level of
occupants—as well as view the point levels and historical
votes of all occupants.

The game is designed to leverage interactions amongst
occupants, who win points based on how energy efficient
their vote is compared to others. The occupants select their
desired lighting dim level in the continuous interval [0, 100]
(0 being off, and 100 being the maximum level of lighting).
The occupants can vote as frequently as they like and
the average of all the occupants’ current votes sets the
implemented dim level in the collaboratory.

Three persistent user behavior profiles have emerged:
those who actively participate through voting, those who are
present yet keep their vote at the default value, and those who
are absent (i.e. do not participate in the game). Experiments
with four default levels, namely {10, 20, 60, 90}, have been
conducted, covering a spectrum of lighting conditions from
being dim to bright. To enforce the rule that those who are
not present in the space cannot vote remotely, we executed
a simple presence detection algorithm based on their power
usage [16].

B. Occupant Decision Making

In the previous work [13], we modeled the interaction
between the building manager and the occupants as a leader–
follower(s) game. We designed the incentives by estimating
the parameters using an OLS framework and optimized the

1http://www.lutron.com

points and default lighting value using the estimated utilities
of the occupants. This work is based on the theoretical utility
learning and incentive design framework presented in [17].
In a follow-up work [15], we extended the utility learning
framework to a more robust learning scheme using cFGLS
and ensemble methods such as bagging. In the present work,
we take a step back and re-examine the utility learning step
using statistical methods that provide greater accuracy in
the estimation and prediction of player decision-making. In
future work, we will fold the new estimation scheme into
the overall incentive design framework.

Let the number of occupants participating in the game be
denoted by n. We model the occupants as utility maximizers
having utility functions that are a mixture of utilities where
the base utility function is composed of two terms that
capture the tradeoff between comfort and desire to win. Let
us first describe this base utility function before we dive into
the mixture of utilities model.

We model an occupant’s comfort level using a Taguchi loss
function [18] which is interpreted as modeling dissatisfaction
in such a way that it is increasing as variation increases from
their selected lighting setting. In particular, each occupant
has the following comfort function:

ψi(xi, x−i) = − (x̄− xi)2 (1)

where xi ∈ R is occupant i’s lighting vote, x−i =
{x1, . . . , xi−1, xi+1, . . . , xn}, and

x̄ = 1
n

∑n
i=1 xi (2)

is the average of all the occupant votes and is the lighting
setting which is implemented. Hence, this term measures the
discomfort an occupant feels given that its vote is xi and the
state of the environment is actually x̄.

In addition, each occupant has the following winning
function:

φi(xi, x−i) = −ρc (xi)
2 (3)

where ρ is the total number of points distributed by the
building manager and c is a scaling factor which we set
to 10−4. The points are distributed by the leader using the
relationship

ρ xb−xi
nxb−

∑n
j=1 xj

(4)

where xb = 90 is the baseline setting for the lights, i.e. the
lighting setting that occurred before the implementation of
the social game in the office.

Let each agent’s decision xi be constrained to lie in the
set Si = [0, 100]. Then the constraint set can be described
as follows. Let hi,j(xi, x−i) for j ∈ {1, 2} denote the con-
straints on occupant i’s optimization problem. For occupant
i, the constraints are described by

hi,1(xi) = 100− xi (5a)
hi,2(xi) = xi (5b)

Let Ci = {xi ∈ R| hi,j(xi) ≥ 0, j ∈ {1, 2}} and C =
C1 × · · · × Cn.

In our previous works, each occupant’s utility function was



given by

fi(xi, x−i) = ψi(xi, x−i) + θiφi(xi, x−i) (6)

where θi is parameter unknown to the leader, the source of
asymmetric information in the leader–follower(s) game. We
propose that for each player there will be M decision making
profiles each with a different parameter θis, s ∈ {1, . . . ,M}
so that each player’s utility function is described by a mixture
of these profiles. In particular, each player’s utility is given
by

fi(xi, x−i) = ψi(xi, x−i) + θMi (xi, x−i)φi(xi, x−i) (7)

where θMi (xi, x−i) is the mixture model unknown to the
leader (e.g. building manager) and has the following form:

θMi (xi, x−i) =

M∑
s=1

πis(x
p, ξis)θ

i
s (8)

where πij(x
p, ξij) is a softmax function defined by

πij(x
p, ξij) =

exp (−(ξij)
>xp)∑M

s=1 exp (−(ξis)
>xp)

(9)

where ξis’s are the different vectors that govern the softmax
function and characterize distribution probability of each
θs. The ξis’s are unknown to leader and must be learned
along with the parameters θis. The softmax function assigns
a probability to each θis based indirectly on past actions
through xp =

[
Dihi,1(xpi ) Dihi,2(xpi ) Diφi(x

p)
]

and
it is a continuous probability density and sums to one—
i.e.

∑M
l=1 π

i
l(x

p, ξil ) = 1. More specifically, the unknown
parameters θMi vary using a learned softmax function driven-
by agents’ past actions.

The reason we adopt the mixture of utilities approach
where parameters can depend on past actions is that char-
acterizing agents’ behavior with a static parameter is a
difficult task for accurate, long-run predictions since agents’
preferences may change over time or be affected by random
external signals.

The i-th occupant faces the following optimization prob-
lem:

max
xi∈Si

fi(xi, x−i) (10)

where Si = [0, 100] ⊂ R is the constraint set for xi. In
this framework, the occupants are non-cooperative agents in
a continuous game with convex constraints. We model their
interaction using the Nash equilibrium concept.

Definition 1: A point x ∈ C is a Nash equilibrium for
the game (f1, . . . , fn) on C if

fi(xi, x−i) ≥ fi(x′i, x−i) ∀ x′i ∈ Ci (11)

for each i ∈ {1, . . . , n}.
The interpretation of the definition of Nash is as follows:
no player can unilaterally deviate and increase their utility.
Additional constraints on the parameters {θMi }ni=1 ensure
that the game is a concave n-person game on a convex set.

Theorem 1 (Rosen [19]): A Nash equilibrium exists for

every concave n-person game.
Define the Lagrangian of each player’s optimization prob-

lem as follows:

Li(xi, x−i, µi) = fi(xi, x−i)+
∑
j∈Ai(xi) µi,jhi,j(xi) (12)

where Ai(xi) is the active constraint set at xi. The differen-
tial game form [20], [17] is given by

ω(x, µ) = [D1L1(x, µ1)T · · · DnLn(x, µn)T ]T (13)

where DiLi denotes the derivative of Li with respect to xi.
Definition 2 (Ratliff [17]): A point x∗ ∈ C is a differ-

ential Nash equilibrium for the game (f1, . . . , fn) on C if
ω(x∗, µ∗) = 0, zTDiiLi(x

∗, µ∗i )z < 0 for all z 6= 0 such
that Dihi,j(x

∗
i )
T z = 0, and µi,j > 0 for j ∈ Ai(x∗i ).

These conditions are sufficient for defining a local Nash
equilibrium.

Proposition 1 (Ratliff [13]): A differential Nash equilib-
rium of the n-person concave game (f1, . . . , fn) on C is a
Nash equilibrium.
A sufficient condition guaranteeing that a Nash equilibrium x
is isolated is that the Jacobian of ω(x, µ), denoted Dω(x, µ),
is invertible [17]. We refer to such points as being non-
degenerate. The above characterization of Nash are useful
in formulating the utility learning problem as they provide,
first, a set of stationarity conditions that can be exploited
and, second, a mechanism for computing Nash—projected
gradient descent, which converges for stable Nash equilibria.

III. UTILITY LEARNING FRAMEWORK

In this section, we present the utility learning framework
under a non–spherical noise assumption and the theoretical
formulation of the utility learning framework using the
mixture of utilities model of decision-making for players.
Note that we will use the words learner and estimator to
mean the same thing.

A. Utility Estimation Under Non-Spherical Noise
The utility estimation problem can be formulated as a

convex optimization problem by using first– and second–
order conditions for Nash equilibria [17], [20]. Strengthen
by the constraints that guarantee unique Nash equilibria
our utility learning method can be viewed as a constrained
regression model.

Let Ki denote the number of data points for player i.
We assume that each observation x(k) corresponds to an ε–
approximate Nash equilibrium where the superscript notation
(·)(k) indicates the k-th observation. Thus, we can consider
first-order optimality conditions for each occupants optimiza-
tion problem and define a residual function capturing the
amount of suboptimality of x(k)i [21], [22]. Indeed, let the
residual of the stationarity and complementary conditions for
occupant i’s optimization problem be given by

r
(k)
s,i (θi, µi) = Difi(x

(k)
i , x

(k)
−i ) +

∑2
j=1 µ

j
iDihi,j(x

(k)
i )

(14)

and r
j,(k)
c,i (µ) = µjihi,j(x

(k)
i ), j ∈ {1, 2}, respectively.

Define r
(k)
s (θ) = [r

(k)
s,1 (θ1, µ1) · · · r

(k)
s,n (θn, µn)]T and



r
(k)
c = [r

(k)
c,1 (µ1) · · · r

(k)
c,n(µn)]T where r

(k)
c,i (µi) =

[r
1,(k)
c,i (µi) r

2,(k)
c,i (µi)] and µi = (µ1

i , µ
2
i ). Then, given the

data from the occupants’ actions, we solve the following
convex optimization problem:

min
µ,θ

∑K
k=1 χ(r

(k)
s (θ, µ), r

(k)
c (µ))

s.t. θi ≥ θLB , µi ≥ 0 ∀ i ∈ {1, . . . , n}
(P1)

where θLB is a lower bound for the unknown parameters
{θi}ni=1 that ensures the inferred game is concave and χ :
Rn × R2n → R+ is a nonnegative, convex penalty function
satisfying χ(z1, z2) = 0 if and only if z1 = 0 and z2 = 0,
i.e. any norm on Rn×R2n, the inequality µi ≥ 0 is element-
wise.

To determine θLB we utilize the second derivative condi-
tion on players’ utility functions; in particular, if D2

iifi(x) =
−2(1 − 1/n)2 − 2θicρ < 0 for each i, then the game
is concave. Hence, θi > −c−1ρ−1(1 − n−1)2 where the
right-hand side is a a negative non-increasing function of
n. Using a relaxation, concavity is ensured regardless of the
number of players by setting n = 2, the minimum number
of users in a non-cooperative game. Then, given fixed ρ
and 0 < ζ << 1, the lower bound θ̄LB = −0.3571 + ζ
will guarantee the estimated game is concave. The subgra-
dient projection method applied to the gradient dynamics
ẋ = [D1f1(x)T · · · Dnfn(x)T ]T and the constraint set
defined by (5b) are known to converge to a differential Nash
equilibrium of the constrained n-person concave game [23]
and we know the differential Nash equilibrium is unique if
the game Hessian, given by

H =

D11f1 · · · D1nf1
...

. . .
...

Dn1fn · · · Dnnfn

 , (15)

is positive definite [20, Theorem 2]. This is automatically
guaranteed for n ≥ 4 provided the constraint defined by
θ̄LB using ζ = 10−2; this is straightforward to verify by
determining the eigenvalues of H as n varies via the method
described in [24]. Hence, we use a lower bound on the θi’s
in (P1) that guarantees our the game is not only concave but
has a unique differential Nash equilibrium. Indeed, we set
θLB = −c−1ρ−1(1− 4−1)2 + ζ = −0.8035 + ζ for a given
ρ and 0 < ζ << 1.

Now, we convert (P1) to a standard estimation framework.
Define the regressor-design matrix X = diag(X1 · · ·Xn)

where Xi = [(X
(1)
i )T · · · (X

(Ki)
i )T ]T ,

X
(k)
i =

Dihi,1(x
(k)
i ) Dihi,2(x

(k)
i ) Diφi(x

(k)))

hi,1(x
(k)
i ) 0 0

0 hi,2(x
(k)
i ) 0

 ,
(16)

the observation-dependent vector Y = [Y1 · · ·Yn]T where
Yi = [−Diψi(x

(1)) 0 0 · · · − Diψi(x
(Ki)) 0 0]T and the

regression coefficient-learner β = [µ1
1 µ

2
1 θ1 · · · µ1

n µ
2
n θn]T .

Using an Euclidean norm on Rn×R2n for χ in (P1) leads

to a constrained OLS (cOLS) problem:

min
β
{‖Y −Xβ‖2| β > βLB} (P2)

where βLB = [0 0 θLB · · · 0 0 θLB ]T . Our data generation
process, as described by problem (P2), is a classical multiple
linear regression with inequality constraints as follows

Y = Xβ + ε, β > βLB (17)

where ε = (ε1, . . . , εn) is a spherical error term following:
E(ε|X) = 0nd×1 and cov(ε|X) = σ2Ind×nd where nd is
the total data points.

The data generation process (17) lacks robustness in
presence of non-spherical noise, results in biased utility
learners (parameter estimates), and performs poorly in fore-
casting players decision making. Robustness can be ensured
by assuming heteroskedasticity [25, Chapter 5]. Moreover,
heteroskedasticity allows for inference of correlated errors
in the resulting regression model which can be used to
determine the relationship between agents decision-making
processes. In our data generation model, we adopt a non-
spherical standard error ε and it is robust for data generation
processes in which the error terms do not follow constant
variance or are correlated. Mathematically the non-spherical
error terms are modeled by

cov(ε|X) = G � 0, G ∈ Rnd×nd . (18)

The model’s standard error ε is drawn from multivariable
normal probability distribution with zero mean and different
variances and ε models autocorrelated events. Hence, we
have a complex statistical model that captures possible
interactions between users through correlations between their
decision-making models.

On the other hand, under a non-spherical standard error
the cOLS estimator is biased and does not satisfy the
Gauss–Markov theorem for Best Linear Unbiased Estimator
(BLUE). By multiplying (17) on the left with G−

1
2 , we

can derive an unbiased estimator which satisfies the BLUE
property [25]. The resulting constrained Generalized Least
Squares (cGLS) statistical model is given by

(G−
1
2Y ) = (G−

1
2X)β + (G−

1
2 ε), β > βLB . (19)

In real applications, like the utility learning problem, the
explicit form of cov(ε|X) = G is unknown. Due to the fact
that we have many unknown parameters for our problem’s
given data points, using the residuals from the resulting cOLS
regression learner (17), we apply noise inference by imposing
structural constraints on G matrix.

We impose two structures for the non-spherical error term.
The first is known as the Freedman Noise Structure [25,
Chapter 5], [26] and is given by Ĝ = diag(K̃, · · · , K̃) ∈
Rnd×nd where K̃ ∈ RKi×Ki . In the utility learning problem
for the social game described in the previous section, Ki = 3
and

K̃ =

K̃11 K̃12 K̃13

K̃21 K̃22 K̃23

K̃31 K̃32 K̃33

 ∈ R3×3 (20)



where K̃11 = 3
nd

∑nd
3
i=1 e

2
3i−1, K̃22 = 3

nd

∑nd
3
i=1 e

2
3i−2,

K̃33 = 3
nd

∑nd
3
i=1 e

2
3i, K̃1,3 = K̃3,1 = 3

nd

∑nd
3
i=1 e3i−1e3i,

K̃2,3 = K̃3,2 = 3
nd

∑nd
3
i=1 e3i−2e3i, K̃1,2 = K̃2,1 =

3
nd

∑nd
3
i=1 e3i−1e3i−2 and the ei’s are the residuals.

The second is known as the HC4 Noise Structure [27] and
is given by

Ĝ = diag(
e21

(1− h1)δ1
,

e22
(1− h2)δ2

, · · · ,
e2nd

(1− hnd)δnd
)

(21)
where δi = min{4, ndhi/

∑nd
i=1 hi} and the hi’s are the diag-

onal elements of H = X(X>X)−1X>. With this structure,
the penalty for each residual increases with hi/

∑nd
i=1 hi.

To infer the noise structure Ĝ and estimate the parameters
of the utility functions β, we start with the fitted cOLS
learner and use the cOLS residuals to get an initial Ĝ. We
substitute the inferred noise, Ĝ, to the cGLS statistical model
(19) to get the one-step constrained Feasible GLS (cFGLS)
learners. We iterate between the estimation of Ĝ and βcFGLS
either until convergence or for a fixed number of iterations
to prevent overfitting.

B. Utility Estimation—Mixture of cFGLS

We extend the above learning framework to a probabilistic
setting that allows us to learn a mixture of utilities. A mixture
of regression models is a powerful statistical model that
splits data points into several subareas while fitting regression
learners in each of area’s splitted data sets. Unfortunately,
in real applications we do not have a priori knowledge
of each subarea’s data structure and density. Thus, the
Mix-cFGLS procedure has to learn, in parallel, both the
subareas’ data point density plus the best regression learners
that fit data points in these subareas. This is achievable
by the Expectation-Maximization (EM) algorithm over the
cost function resulting from the complete likelihood of our
statistical model.

The Mix-cFGLS model includes a softmax function as a
gate for calculating the distribution probability of each com-
ponent for each player’s utility function. The probabilistic
model for player σ is given by

p(Y σ|Xσ, βσ, ξσ) =
∑M
j=1 (πj(x

σ, ξσj )

·N(Y σ|(βσj )>xσ, Gσ � 0, βσj > βσLB)) (22)

where βσ = [βσ1 · · · βσM ] ∈ R3×M , ξσ = [ξσ1 · · · ξσM ] ∈
R3×M , βσLB = [0 0 θLB ]T ∈ R3×1, Kσ denotes the number
of data points for player σ, M is the number of mixture
components,

Y σ = [−Dσψσ(x(1)) 0 0 · · · −Dσψσ(x(Kσ)) 0 0]T

is an observation–dependent vector, xσ is a covariate vector
and is a transposed row of the regressor–design matrix
Xσ = [(X

(1)
σ )T · · · (X

(Kσ)
σ )T ]T for player σ, βσj ∈

R3×1 = [µ1
σ µ2

σ θσ]T is the regression coefficient–learner
for each mixture component of player σ, ξσj ∈ R3×1 is the
coefficient of softmax for each mixture component of player

σ, πj(x, ξσj ) for j = 1, 2, · · · ,M is the mixture coefficient
probability distribution governed by a softmax function (see
(9)), and Gσ � 0 is the non-spherical structure that models
the noise term of the statistical process of each player’s utility
learning problem.

Given a data set for player σ and assuming i.i.d. obser-
vations Dσ = {(xσi , yσi ) : i = 1, · · · ,Kσ}, where xσi , y

σ
i

are the i-th rows of Xσ, Y σ respectively, the log-likelihood
function of the model is given by

L(βσ, ξσ|Dσ) =
∑Kσ
i=1 log

[∑M
j=1 πj(x

σ
i , ξ

σj )

·N(Y σ|(βσj )>xσi , Gσ � 0, βσj > βσLB)
]

(23)

We optimize the cost function (23) using the EM algorithm.
In support of this, we introduce a set of binary latent
variables Zσ = {zσi } such that zσi,j ∈ {0, 1}; in particular, for
each data point indexed by i, we have a latent variable that
indicates which mixture j it belongs to. Given Zσ = {zσi }
we have the complete data set, called Dσ

C = {(xσi , yσi , zσi ) :
i = 1, · · · ,Kσ}. The complete log-likelihood for the (22)
problem is given by

LC(βσ, ξσ|Dσ
C) =

∑Kσ
i=1

∑M
j=1 z

σ
i,j log

[
πj(x

σ
i , ξ

σj )

·N(yσi |(βσj )>xσi , Gσ � 0, βσj > βσLB)
]

(24)

However, since we do not observe the latent variables Zσ we
compute their posterior probability in the expectation step—
E–step—of the EM algorithm. The posterior probability of
latent variables Zσ is given by

τσ(i, j) = E[zσ(i, j)] = p(Zσi = 1|Xσ, Y σ) =

πj(x
σ
i , ξ

σj )N(yσi |(βσj )>xσi , Gσ � 0, βσj > βσLB)∑M
s=1 πs(x

σ
i , ξ

σs)N(yσi |(βσs )>xσi , G
σ � 0, βσj > βσLB)

.

(25)

Next in the maximization step—M–step—of the EM al-
gorithm, we maximize the following objective function:

LC(βσ, ξσ|Dσ
C) =

∑Kσ
i=1

∑M
j=1 τ

σ
i,j log

[
πj(x

σ
i , ξ

σj )

·N(yσi |(βσj )>xσi , Gσ � 0, βσj > βσLB)
]

=
∑Kσ
i=1

∑M
j=1 τ

σ
i,j log

[
N(yσi |(βσj )>xσi , Gσ � 0, βσj >

βσLB)
]

+
∑Kσ
i=1

∑M
j=1 τ

σ
i,j log [πj(x

σ
i , ξ

σj )] = Qβσ,ξσ . (26)

The solution of the optimization problem at the M–step
is given by solving the following completely decoupled
optimization problems. First, we minimize the cost function

Q̂βσ =
∑Kσ
i=1

∑M
j=1 τ

σ
i,j log

[
N(yσi |(βσj )>xσi ,

Gσ � 0, βσj > βσLB)
]

(27)

with respect to βσ . The above cost function is solved using
a weighted constrained Iteratively Reweighted Least Squares
(IRLS) algorithm using data pairs {xσi , yσi } with weights τσi,j .



Then, we minimize the cost function

Q̂ξσ =
∑Kσ
i=1

∑M
j=1 τ

σ
i,j log [πj(x

σ
i , ξ

σj )] (28)

with respect to ξσ . The above cost function is optimized
using an IRLS algorithm using data pairs {xσi , τσi,j}.

In summary, we propose Algorithm 1 for solving EM for
the utility learning problem cast as a Mix-cFGLS problem.
A key aspect to the solution is in selecting an appropriate
noise structure for each player’s data structure. We initially
fit the data using cFGLS, initialize our algorithm and use
the estimated Ĝ in the EM update steps. Since EM is a co-
ordinate descent algorithm for the non-convex optimization
problem (23), we run it several times and select the learners
resulting from the highest log-likelihood LN

Algorithm 1 EM-algorithm for Mix-cFGLS utility learning
of player σ

1: function EM-MIX-CFGLS(X ,Y ,M ,Climit)
2: Initialization: Fit data with cFGLS learner using
3: an appropriate Heteroskedasticity-noise structure G
4: from (20) or (21)
5: ĜEM ← ĜcFGLS . assignment of noise matrix
6: θσs ← θcFGLS for s = 1, · · · ,M . θσs initialization
7: ξσs ← 0 for s = 1, · · · ,M . ξσs initialization
8: C ← Climit . convergence tolerance
9: k ← 1 . iteration number

10: Mmax ← N . upper iterations bound
11: Compute initial log-likelihood value, LI , using (24)
12: Main Program:
13: while k < Mmax do
14: Update latent variables τσ using (25) . E–step
15: Update θσ solving (27) . M–step
16: Update ξσ solving (28) . M–step
17: Update log-likelihood, LN , using (24)
18: if LN − LI < C then
19: break
20: elseLI ← LN
21: k ← k + 1

22: Outputs: θσ , ξσ and LN

C. Parametric Bootstrap: Balancing Bias vs. Variance

As in our past work [15], we again employ bootstrapping
techniques to improve the results. This helps increase the
size of our social game data set.

The technique we consider is wild bootstrapping since it
is a technique of parametric bootstrapping that is consistent
with heteroskedasticity inference and the cFGLS framework.
Wild bootstrap in regression models is a powerful tool for
reducing the overall variance [28]. Using wild bootstrapping
we estimate the asymptotic approximation of bias and stan-
dard error of the cFGLS estimators [25], [28]. The wild boot-
strapping data generation model assumes E(Y |X) = Xβ
but allows for heteroskedasticity—a noise structure using
transformations of residuals resulting from the cFGLS fitting
(see (20), (21)).

The data generation process under wild bootstraping is
given by

Y ∗ = XβcFGLS + Φ(e)ε∗ (29)

where Y ∗ ∈ Rnd×1 is the new observation-dependent vector
(pseudo-vector), βcFGLS ∈ Rnd×1 is the learner estimated
using a cFGLS framework, ε∗ ∼ N(0, Ind×nd), e ∈ Rnd×1
is the residuals vector—namely, the difference between ob-
served and fitted cFGLS values and mathematically is given
by e = Y −XβcFGLS . In addition, Φ(e) = Ĝ

1
2 ∈ Rnd×nd is

a non-linear transformation that maps from Rnd×1 to Rnd×1
using the estimated noise structure from (20) or (21).

The bootstrapping process can be described in two steps:
First, we fit our cFGLS model and then we perturb our model
by adding Gaussian noise to the predicted values of the
cFGLS statistical model. The data generation process (29)
creates N replicates of pseudo–data which gives us N fitted
bootstrap cFGLS estimators. Using ensemble methods such
as bagging, we combine the resulting N weak bootstrapped
cFGLS estimators. Bagging works efficient with high vari-
ance models and does not hurt the overall performance of
the statistical model. The bagged estimator is given by

βBagged = 1
N

∑N
s=1 β

s
cFGLS (30)

where βscFGLS is the estimator using the s–th pseudo–data
sample. We refer to the bagged estimates as bagged mega-
learners since they combine a number of weak learners.

Bagging serves to reduce the estimator bias. In the mixture
of utilities model, we considered two noise structures: (20)
and (21). For both cases, bagging results in an estimator that
has higher forecasting accuracy since it reduces the first term
of the so called Bias-Variance Tradeoff which, for a process
Y = Xθ + ε, is seen in the Mean Square Error (MSE):

MSE(x) = E[(Y − θ>estx)2]

= (E[θ>estx]− Y )2︸ ︷︷ ︸
Bias

+E[(θ>estx− E[θ>estx])2]︸ ︷︷ ︸
V ariance

(31)

In machine learning, you can enhance forecasting accuracy
by allowing for a small amount of bias if it results in a
large reduction in variance. This is widely used in Ridge
regression and in Lasso [28] in a form of a prior knowl-
edge. In the Mix-cFGLS framework, we are able to explore
the tradeoff between minimizing bias and variance. Indeed,
having captured the noise structure using heteroskedasticity
inference we are able to reduced estimation bias. However,
since the learners in Mix-cFGLS framework are not static—
they depend on historical data—we allow an amount of bias
in order to gain a substantial decrease the variance.

IV. UTILITY LEARNING RESULTS

In this section, we present the results of Mix-cFGLS
utility learning applied to the data collected from the social
game experiment we conducted. We show that the resulting
forecast using the proposed method is more accurate than
ensemble utility methods such as bagging, and classical
methods such as OLS. For the Mix-cFGLS we use two
mixture components, one aggressive θA and one defensive



TABLE I
ROOT MEAN SQUARE ERROR (RMSE), MEAN ABSOLUTE ERROR (MAE) AND

MEAN ABSOLUTE SCALED ERROR (MASE) [29] OF FORECASTING USING

MIX-CFGLS, BAGGED, AND COLS UTILITY LEARNERS. FORECASTING PREDICTS

OCCUPANTS’ BEHAVIOR FOR DEFAULT LIGHTING SETTINGS OF 20 AND 10.

Default 20 Mix-cFGLS Bagged cOLS
RMSE 7.45 8.31 22.53
MAE 4.11 5.20 18.35
MASE 1.65 2.08 7.34

Default 10 Mix-cFGLS Bagged cOLS
RMSE 7.75 8.17 17.63
MAE 6.42 7.01 14.24
MASE 4.42 4.82 9.13

θD, to represent each occupant. In particular, θA represents a
player’s profile that cares more about rewards, i.e. sacrifices
comfort level for winning more points, while θD represents
the opposite, i.e. covets comfort over winning.

Occupant action index
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Fig. 1. The ground truth mean of the observed lighting votes for default
lighting setting of 20 is depicted by the black dots. The forecasting results
via simulation of the occupant game using the cOLS, bagged mega-learners,
and Mix-cFGLS learners are indicated in blue, grey, and orange respectively.
On the x–axis we indicate the index of when a choice was made by one
or more of the occupants (i.e. when the implemented lighting setting is
changed); the time from one index to the next may be several minutes
to hours depending on the activity level of the occupants. Notice that the
mean of the Nash equilibria of the simulated game using the bagged mega-
learners and Mix-cFGLS learners is approximately near the true mean where
the cOLS learners produce Nash equilibria with a large error. Mix-cFGLS
learners have a nearly perfect forecast.

Using occupant voting data we simulate the game defined
by the learned Mix-cFGLS utility functions and show that
the estimated model significantly reduces prediction error as
compared to classical OLS and bagging (see Table I). Our
training data consisted of 80% of the users’ actions in each
default area. We test—i.e. compare the simulated forcast
from our learned utility functions to the ground truth—on
the remaining data for each default region2.

In Figure 1, we see that the mixture of utilites model
nearly approximates the ground truth and outperforms the
other methods. In addition, using wild bootstrapping, we
approximate the bias of the learners for the bagging and

2We remark that the prediction error as reported in Table I is different
than in our earlier publication [15] due to the fact that we utilized a different
proportion of the data for testing and training

3
2
 utility learners
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Fig. 2. The histogram depicts the learners using the wild bootstrapping
technique. We have approximately a Gaussian distribution around the initial
cFGLS estimator which depicts an unbiased cFGLS utility learner. The
vertical orange line represents the cFGLS estimator. The grey shaded region
represents the area between the aggressive (red dotted vertical line) and
defensive (green dashed vertical line) utility learners—i.e. θA and θD ,
respectively—estimated using Mix-cFGLS framework.

TABLE II
CFGLS ESTIMATES, BAGGED MEGA-LEARNER ESTIMATES AND BIAS

APPROXIMATION USING WILD BOOTSTRAPPING. IN BOLD, WE DENOTE

THE OCCUPANTS WITH NEARLY UNBIASED ESTIMATORS. THESE ARE

THE OCCUPANTS WITH THE LARGEST VARIATION IN THEIR VOTES.

User id cFGLS Bagged bias
2 -0.69 -0.58 0.11
6 0.5 1.62 1.12
8 298.06 121.2 -176.86

14 337.52 151.26 -186.26
20 -0.8 -0.73 0.07

cFGLS methods. We remark that the Mix-cFGLS method
aims to increase the bias in exchange for a reduction in
variance. In Figure 2, we show the histogram of the cFGLS
learners for player with user–id 2 obtained by replicates
of data using wild bootstrapping. This particular occupant
represents a player that prefers comfort to winning the
majority of the time. Notice his bagged cFGLS estimator
is almost completely unbiased. The resulting utility learner
Mix-cFGLS varies inside the grey region due to the fact that
the softmax function gives a weighted sum of θA (red dotted
vertical line) and θD (green dashed vertical line) learners
(borders of the shaded region). This shows how the Mix-
cFGLS introduces bias in the player’s parameters estimates
and, in exchange, we get more accurate forecasting of the
users’ actions.

Lastly, in Table II, we present the cFGLS estimates, the
bagged mega-learner estimates, and the bias for the most
active users. For some users, we see that the bias is not
significantly reduced; this is likely due to the fact that some
users are not nearly as active as others and hence, there was
little variation in their data. In future work, we can design
incentive mechanisms targeted at these individuals so that
they provide more informative responses that will help us
learn and more accurate model for their decision-making.



V. DISCUSSION AND FUTURE WORK

We presented a new framework of parametric utility learn-
ing using a probabilistic interpretation for combining mul-
tiple utility functions via Mix-cFGLS using a non-spherical
noise model. Our framework allows for the estimated pa-
rameters of the learned utility functions to depend on the
historical actions of the players which, in turn, captures the
fact that players’ utility functions are not static. Moreover,
Mix-cFGLS enhances forecasting accuracy by allowing for
a slight amount of bias in the utility learners in exchange for
a reduction in variance of the MSE.

We applied the mixture of utilities method to learn the
utility functions of participants in the social game that we
conducted and showed that the forecasting error of the occu-
pants’ actions is significantly less than other methods such
cOLS, cFGLS, and bagged mega-learners. The mixture of
utilities framework can be applied broadly to many different
applications.

There are several directions for future research. We are
actively working on employing prior knowledge—e.g. sur-
vey results—into the estimation of players utility functions.
This results in a penalized Mix-cFGLS model and has
the potential to lead to better forecasting. In addition, we
are exploring a graphical representation model for utility
learning using Hidden Markov Models (HMM) or more
advanced Contextual Hidden Markov Model (CHMM) with
regression emissions. As for the social game experiment,
we are in the process of implementing new building energy
management social game experiments, both small- and large-
scale in Singapore and on the Berkeley campus.

REFERENCES

[1] J. McQuade, “A system approach to high performance buildings,”
United Technologies Corporation, Tech. Rep, 2009.

[2] A. Aswani, N. Master, J. Taneja, V. Smith, A. Krioukov, D. Culler,
and C. Tomlin, “Identifying models of HVAC systems using semi-
parametric regression,” in Proc. of the American Control Conf., 2012,
pp. 3675 – 3680.

[3] M. Boman, P. Davidsson, N. Skarmeas, K. Clark, and R. Gustavsson,
“Energy saving and added customer value in intelligent buildings,”
in Third International Conference on the Practical Application of
Intelligent Agents and Multi-Agent Technology, 1998, pp. 505–517.

[4] D. Bourgeois, C. Reinhart, and I. Macdonald, “Adding advanced
behavioural models in whole building energy simulation: A study on
the total energy impact of manual and automated lighting control,”
Energy and Buildings, vol. 38, no. 7, pp. 814 – 823, 2006, special
Issue on Daylighting Buildings.

[5] Y. Ma, G. Anderson, and F. Borrelli, “A distributed predictive control
approach to building temperature regulation,” in Proc. of the American
Control Conf., 2011, pp. 2089–2094.

[6] F. Oldewurtel, A. Parisio, C. Jones, M. Morari, D. Gyalistras, M. Gw-
erder, V. Stauch, B. Lehmann, and K. Wirth, “Energy efficient building
climate control using stochastic model predictive control and weather
predictions,” in Proc. of the American Control Conf., 2010, pp. 5100–
5105.

[7] T. Lovett, E. Gabe-Thomas, S. Natarajan, E. O’Neill, and J. Padget,
“’just enough’ sensing to enliten: A preliminary demonstration of
sensing strategy for the ’energy literacy through an intelligent home
energy advisor’ (enliten) project,” in Proc. of the Fourth Inter. Conf.
on Future Energy Systems. New York, NY, USA: ACM, 2013, pp.
279–280.

[8] J. Mathieu, M. Dyson, D. Callaway, and A. Rosenfeld, “Using residen-
tial electric loads for fast demand response: The potential resource and
revenues, the costs, and policy recommendations,” in ACEEE Summer
Study on Energy Efficiency in Buildings, 2012.

[9] M. Roozbehani, M. Dahleh, and S. Mitter, “Dynamic pricing and
stabilization of supply and demand in modern electric power grids,” in
First IEEE International Conference on Smart Grid Communications,
oct. 2010, pp. 543 –548.

[10] M. Albadi and E. El-Saadany, “A summary of demand response in
electricity markets,” Electric Power Systems Research, vol. 78, no. 11,
pp. 1989 – 1996, 2008.

[11] J. L. Mathieu, P. N. Price, S. Kiliccote, and M. A. Piette, “Quanti-
fying changes in building electricity use, with application to demand
response,” IEEE Transactions on Smart Grid,, vol. 2, no. 3, pp. 507–
518, 2011.

[12] M. Lee, O.Aslam, B. Foster, D. Kathan, J. Kwok, L. Medearis,
R. Palmer, P. Sporborg, and M. Tita, “Assessment of demand response
and advanced metering,” Federal Energy Regulatory Commission,
Tech. Rep., 2013.

[13] L. Ratliff, M. Jin, I. C. Konstantakopoulos, C. Spanos, and S. S. Sastry,
“Social Game for Building Energy Efficiency: Incentive Design,” in
Proc. of the 52nd Allerton Conf. on Communication, Control, and
Computing, 2014.

[14] I. C. Konstantakopoulos, L. J. Ratliff, M. Jin, S. S. Sastry, , and
C. Spanos, “Social game for building energy efficiency: Utility learn-
ing, simulation, and analysis,” arXiv, Tech. Rep., 2014.

[15] I. C. Konstantakopoulos, L. Ratliff, M. Jin, C. Spanos, and S. S. Sastry,
“Smart building energy efficiency via social game: A robust utility
learning framework for closing–the–loop,” in In the Proceedings of
the 1st International Workshop on Science of Smart City Operations
and Platforms Engineering under Cyber Physical Systems Week, 2016.

[16] M. Jin, R. Jia, Z. Kang, I. C. Konstantakopoulos, and C. Spanos,
“Presencesense: Zero-training algorithm for individual presence de-
tection based on power monitoring,” in BuildSys’14, November 5–6,
2014, Memphis, TN, USA. ACM, 2014, pp. 1–10.

[17] L. J. Ratliff, “Incentivizing efficiency in societal-scale cyber-physical
systems,” Ph.D. dissertation, University of California, Berkeley, 2015.

[18] G. Taguchi, E. A. Elsayed, and T. C. Hsiang, Quality engineering in
production systems. McGraw-Hill College, 1989.

[19] J. B. Rosen, “Existence and uniqueness of equilibrium points for
concave n-person games,” Econometrica, vol. 33, no. 3, p. 520, 1965.

[20] L. J. Ratliff, S. A. Burden, and S. S. Sastry, “On the characterization
of local nash equilibria in continuous games,” IEEE Transactions on
Automatic Control, 2016 (to appear).

[21] A. Keshavarz, Y. Wang, and S. Boyd, “Imputing a convex objective
function,” in IEEE International Symposium on Intelligent Control.
IEEE, 2011, pp. 613–619.

[22] L. J. Ratliff, R. Dong, H. Ohlsson, and S. S. Sastry, “Incentive design
and utility learning via energy disaggregation,” in Proc. of the 19th
World Congress of the Inter. Federation of Automatic Control, 2014.
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