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Abstract
Large language models (LLMs) are making in-
roads into classical AI problems such as au-
tomated planning, yet key shortcomings con-
tinue to hamper their integration. Chain-of-
Thought (CoT) struggles in complex multi-step
reasoning, and Tree-of-Thoughts requires mul-
tiple queries that increase computational over-
head. Recently, Algorithm-of-Thoughts (AoT)
have shown promise using in-context examples, at
the cost of significantly longer solutions compared
to CoT. Aimed at bridging the solution length
gap between CoT and AoT, this paper introduces
AoT-O3, which combines supervised finetuning
on AoT-style plans with a reinforcement learn-
ing (RL) framework designed to reduce solution
length. The RL component uses a reward model
that favors concise, valid solutions while main-
taining planning accuracy. Empirical evaluations
indicate that AoT-O3 shortens solution length by
up to 80% compared to baseline AoT while main-
taining or surpassing prior performance. These
findings suggest a promising pathway for more
efficient, scalable LLM-based planning.

1. Introduction
Developments in large language models (LLMs) (Vaswani,
2017; Radford, 2018; Radford et al., 2019; Brown et al.,
2020; Chowdhery et al., 2023; Zhao et al., 2023, inter alia)
have led to remarkable advancements in artificial intelli-
gence, particularly in natural language processing. These
models, pre-trained on vast corpora of data, have demon-
strated impressive capabilities across diverse domains, suc-
cessfully transferring their knowledge to downstream tasks
including code generation (Chen et al., 2021; Li et al., 2022;
Jiang et al., 2024), language understanding (Yuan et al.,
2022; Katz et al., 2024), instruction following (Ouyang
et al., 2022; Bai et al., 2022; Rafailov et al., 2024), optimiza-
tion (Jin et al., 2024), and general problem-solving (Brown
et al., 2020; Nye et al., 2021; Wei et al., 2022; Huang &
Chang, 2022). Despite these successes, their performance
in complex tasks requiring diverse thought processes, par-
ticularly in planning domains (Kambhampati et al., 2024a;

Valmeekam et al., 2024), has remained notably limited. This
limitation becomes particularly evident in scenarios requir-
ing long-horizon reasoning, where the models must main-
tain coherence and logical consistency across multiple steps
while exploring various solution paths.

The introduction of methods such as Chain-of-Thought
(CoT) (Wei et al., 2022), Least-to-Most prompting (L2M)
(Zhou et al., 2022), Self-Consistency CoT (CoT-SC) (Wang
et al., 2022), and Self-Refine (Madaan et al., 2024) has
failed to significantly improve planning capabilities, even
with state-of-the-art LLMs. These approaches, while effec-
tive in simpler reasoning tasks, struggle with the complexity
inherent in planning problems where a single misstep can
lead to an unrecoverable state. This limitation has sparked
the development of various approaches aimed at diversify-
ing reasoning paths (Long, 2023; Yao et al., 2024; Lei et al.,
2023; Yao et al., 2023; Besta et al., 2024). These methods
have demonstrated considerable improvements in accuracy
compared to CoT by allowing models to explore multiple
solution paths simultaneously. However, they face signifi-
cant challenges: computational expense due to the need for
multiple model queries, implementation complexity when
applying to new problems, and performance that still falls
short of human benchmarks (Sel et al., 2024b; Kambham-
pati et al., 2024b). The gap between model performance
and human capability remains particularly pronounced in
domains requiring strategic thinking and adaptive reasoning.

Recent innovations, notably the LLM-Modulo framework
(Valmeekam et al., 2024) and Algorithm of Thoughts (AoT)
(Sel et al., 2024b; 2025), have shown promising results in
approaching human-level performance. LLM-Modulo ad-
dresses the limitations of self-feedback by incorporating
external verifiers to provide fine-grained feedback to LLMs,
effectively creating a closed loop system that can identify
and correct errors in real-time. This approach has demon-
strated remarkable success in improving model accuracy,
but the reliance on external verification tools introduces
additional complexity and computational overhead. In con-
trast, AoT presents a pure LLM solution that eliminates the
need for external tools or additional prompting mechanisms.
It achieves self-correction by incorporating in-context exam-
ples that mirror human thought processes, either expanding
upon search nodes or transitioning to more promising nodes
that appear likely to reach the goal. This approach lever-
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Figure 1. Illustration showing three reasoning strategies with LLMs: Chain of Thought (CoT), Algorithm of Thoughts (AoT), and
AoT-O3. Each box represents a thought step, with green indicating promising paths and red showing less promising alternatives. AoT-O3
demonstrates a more streamlined structure while maintaining the key benefits of branching exploration.

ages the model’s inherent ability to learn from examples
while maintaining the efficiency of single-query solutions.
Subsequent research has revealed that these example search
processes need not explicitly contain human intuitions; sim-
ply augmenting correct CoT-like solutions with random
step-by-step solutions enables models to achieve compara-
ble performance (Sel et al., 2025). This finding suggests
that the key to improved performance lies not in mimick-
ing human reasoning patterns specifically, but in providing
structured examples of successful problem-solving strate-
gies.

While AoT represents a significant advancement in perfor-
mance requiring only a single query per problem solution,
the inclusion of multiple reasoning paths substantially in-
creases the total solution length compared to CoT. This
expansion introduces proportional increases in computa-
tional requirements and solution time per problem, raising
concerns about scalability and efficiency. Excessively long
solutions also raise environmental concerns due to increased
token usage (Earth.Org, 2024)1. Critical questions emerge
regarding the necessity and effectiveness of these additional
steps: What proportion of these additional steps represents
intentional exploration by the model versus mere imitation
of training examples? How much of the extended solution
length contributes meaningfully to problem-solving versus
serving as stylistic overhead? If unnecessary search paths ex-
ist primarily to match the style of training examples, can we
enable more efficient problem-solving by removing this con-
straint while maintaining the benefits of diverse reasoning

1Recent projections suggest AI-related power demand could
grow substantially in coming years (Agency, 2024). See Ap-
pendix A for an estimate of the potential impact.

paths? Understanding these aspects is crucial for developing
more efficient approaches that maintain the advantages of
AoT while reducing computational overhead.

These solution strategies can be analyzed through the lens
of human cognitive systems, providing insights into their op-
erational mechanisms and potential improvements. While
CoT and L2M align with the analytical System 2 think-
ing (Kahneman, 2011), contrasting with reflexive System
1 decision-making, recent work (Sel et al., 2025) suggests
that AoT activates System 3 thinking (Webb, 2021). This
third system, characterized by deliberate contemplation and
strategic decision-making in the face of uncertainty, rep-
resents a more sophisticated level of cognitive processing.
Although we acknowledge this perspective, we propose that
current AoT implementations may be imitating rather than
truly engaging in System 3 thinking, pointing to the potential
for more efficient and deliberate reasoning path exploration.
This distinction between imitation and genuine engagement
with different cognitive systems has important implications
for the development of more effective problem-solving ap-
proaches.

This paper introduces AoT-O3, named after the highest op-
timization level in C++ programming language compilers,
which aims to bridge the solution length gap between CoT
and AoT while maintaining or improving performance. Our
approach represents a fundamental shift in how LLMs can
be guided to solve complex problems more efficiently. We
employ reinforcement learning (RL) with carefully designed
objective reward models to encourage more concise AoT
responses without sacrificing solution quality. The reward
models are specifically crafted to balance the competing
objectives of solution efficiency and accuracy, ensuring that
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shorter solutions do not come at the cost of reduced perfor-
mance. Notably, we pioneer the use of non-LLM reward
models that extend beyond simple accuracy metrics, making
the fine-tuning process more efficient and memory-friendly.
This innovation addresses one of the key limitations of ex-
isting approaches that rely heavily on LLM-based reward
models, which can introduce significant computational over-
head and potential biases as illustrated in Figure 1.

We demonstrate our method’s effectiveness across a wide
range of open-source LLMs and diverse benchmarks, pro-
viding comprehensive evidence of its generalizability and
robustness. Our evaluation encompasses various planning
domains, from simple sequential tasks to complex strategic
problems requiring multiple levels of reasoning. Results
show that AoT-O3 achieves an 80% reduction in solution
length while improving accuracy, an advantage that becomes
even more critical under tight token constraints. This re-
markable improvement in efficiency does not come at the
cost of solution quality; in fact, we observe consistent im-
provements in accuracy across most benchmarks. The suc-
cess of AoT-O3 in maintaining or enhancing performance
while dramatically reducing computational requirements
represents a significant step toward more practical and scal-
able applications of LLMs in complex problem-solving do-
mains.

2. Related Work
Evolution of LLM Reasoning Approaches. The emer-
gence of large language models has revolutionized ap-
proaches to complex problem-solving tasks. Initial work
demonstrated that these models, trained on diverse textual
data, could tackle various challenges through direct prompt-
ing (Brown et al., 2020; Chowdhery et al., 2023). This capa-
bility was significantly enhanced through the development
of step-by-step reasoning methods that reframe problems as
sequential decision processes. Chain-of-Thought prompting
(Wei et al., 2022; Kojima et al., 2022) and its variants (Zhang
et al., 2022; Nye et al., 2021) marked a crucial advancement
in structured reasoning. However, these approaches revealed
limitations in inherently sequential domains, particularly
planning problems (Long, 2023). Subsequent research intro-
duced more sophisticated frameworks like Tree of Thoughts
(Yao et al., 2024), which spawned numerous extensions (Lei
et al., 2023; Besta et al., 2024). While these methods im-
proved accuracy by leveraging LLMs as heuristic generators
within external search frameworks, they introduced signif-
icant computational overhead through multiple API calls.
The Algorithm of Thoughts framework (Sel et al., 2024b)
addressed these efficiency concerns by demonstrating that
carefully crafted in-context examples incorporating search
trajectories could achieve comparable or superior perfor-
mance with a single query. AoT+ (Sel et al., 2025) further

improved the ease of use and performance of AoT, although
in this paper we will use AoT as the naming for both.

Self-Improvement and Verification in LLMs. The con-
cept of autonomous improvement through self-verification
has been extensively explored in LLM research. Initial ef-
forts focused on constitutional training (Bai et al., 2022)
and ethical decision-making (Ma et al., 2023; Sel et al.,
2024a), demonstrating that models could be guided to eval-
uate and refine their outputs. This approach has shown
promise in specific domains such as code generation (Zelik-
man et al., 2023; Kim et al., 2024) and question-answering
(Madaan et al., 2024; Paul et al., 2023). Recent work has ex-
panded these concepts through recursive self-improvement
(Zelikman et al., 2023; 2024). However, significant chal-
lenges remain in symbolic reasoning tasks (Valmeekam
et al., 2023; Kamoi et al., 2024), where self-verification
often fails to identify critical errors. These limitations have
sparked debate about the fundamental capabilities of LLMs
in autonomous error correction (Kambhampati et al., 2024a),
particularly in domains requiring precise logical reasoning.

Reinforcement Learning for LLM Alignment. Rein-
forcement learning has emerged as a powerful approach
for aligning language models with human preferences and
improving their capabilities across various tasks. The foun-
dation was laid by InstructGPT (Ouyang et al., 2022), which
demonstrated that RL from Human Feedback (RLHF) could
effectively tune models to better follow instructions. This
was further developed by Constitutional AI (Bai et al., 2022),
which showed how recursive reward modeling could instill
specific behavioral constraints. Recent work has explored
alternative reward mechanisms, with Direct Preference Op-
timization (DPO) (Rafailov et al., 2024) providing a more
computationally efficient alternative to traditional RLHF.
The application of RL to improve reasoning capabilities
has been particularly noteworthy, with ReAct (Yao et al.,
2022) showing how reward signals could encourage more
structured exploration of solution spaces.

3. Effect of In-Context Examples in Planning
Before we decide which type of examples to choose for
supervised and RL finetuning for our method, we proceed
with exploring how the style of in-context demonstrations
affect the LLMs when they are prompted with a test problem.
Here, we are interested in the differences between prompt-
ing and supervised finetuning. First, let’s define planning
problems of interest.
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Classical Planning Problems. (Russell & Norvig, 1995)
A classical planning problem can be defined as finding
a sequence of actions that transitions the system from an
initial state I to a goal state G, given:

• A set of possible states S,
• A set of actions A, where each action has:

– Preconditions that must hold true for the action to
be applied,

– Effects that describe how the action changes the
state.

The goal is to compute a plan π = [a1, a2, . . . , an] such
that applying these actions in sequence achieves G starting
from I .

3.1. Effect of Random Demonstrations in Finetuning

The role of demonstrations in chain-of-thought prompting
was fundamentally reexamined by Min et al. (2022), show-
ing that randomly generated reasoning paths could achieve
comparable performance to carefully crafted demonstra-
tions. Their study revealed that the presence of step-by-step
reasoning patterns, rather than their actual correctness or op-
timality, was the key factor in enabling successful problem-
solving behavior in language models. This finding sug-
gested that demonstrations primarily serve to elicit a partic-
ular problem-solving format from the model, rather than to
transmit specific solution strategies. Their work challenged
the prevailing assumption that high-quality demonstrations
were necessary for effective CoT prompting, indicating that
the structural aspects of reasoning demonstrations might be
more important than their content.

Method Accuracy (%)
CoT AoT

Prompting 8 64
Finetuning 3 5

Table 1. Random demonstrations performance of Llama-3.3-70B
with greedy-decoding on Game of 24 when prompted in 8-shot
setting and finetuned with 900 training and 100 test examples from
Yao et al. (2024); Sel et al. (2024b).

This insight has been recently extended to AoT. It’s been
demonstrated that augmenting correct AoT solutions with
random search trajectories achieved performance compa-
rable to carefully designed examples incorporating human
intuition (Sel et al., 2025). This shows that the benefits
of diverse reasoning paths in AoT persist even when some
of the demonstrated search trajectories are suboptimal or
irrelevant to the solution. This finding suggests that the
key advantage of AoT may lie not in its ability to mimic
human-like strategic thinking, but rather in its provision of a

structured framework for exploring multiple solution paths,
regardless of their individual quality.

However, while random demonstrations may be effective
for in-context prompting, their utility appears to diminish
significantly in model fine-tuning scenarios. As shown in
Table 1, when testing on the Game of 24 benchmark using
the Llama 3.3 70B model (Dubey et al., 2024), prompting
with random examples maintains comparable performance
to gold-standard demonstrations in both CoT and AoT set-
tings. In stark contrast, fine-tuning on random examples
leads to a dramatic deterioration in model performance,
with accuracy dropping below pre-finetuning levels. This
disparity suggests that while models can effectively filter
and utilize random demonstrations during inference, incor-
porating such noise during training may interfere with the
model’s ability to learn robust reasoning strategies.

3.2. Effect of Solution Length in AoT

To investigate the relationship between demonstration solu-
tion length and model performance, we conducted experi-
ments using the OpenAI GPT-4 model (Achiam et al., 2023)
on the Game of 24 benchmark (Yao et al., 2024; Sel et al.,
2024b). We examined this relationship in both in-context
learning (ICL) and fine-tuning scenarios, with particular
attention to how different solution length distributions affect
model accuracy and efficiency. For our ICL experiments,
we constructed three sets of 10-shot demonstrations (per
each test example, we select a new 10-shot examples), each
following a Gaussian distribution centered around differ-
ent mean solution lengths: short (10 steps), medium (30
steps), and long (60 steps) with std of 5.0 with a clip at 3.0
since the minimum number of steps in this game is three.
These demonstrations maintained consistent solution strate-
gies and reasoning patterns while varying in their degree of
elaboration and search path exploration.

As seen in Figure 2, our results indicate a strong positive
correlation between solution length and model performance,
with longer demonstrations leading to longer solutions pro-
duced by GPT-4 with higher accuracy rates, 15%, 31% and
61% with temperature of 0.5. These findings indicate that so-
lution length serves as more than just stylistic variation—it
appears to be fundamentally connected to the model’s ability
to reason effectively about complex problems. The superior
performance of longer solutions may be attributed to their
more comprehensive exploration of the solution space, al-
lowing the model to better understand and replicate success-
ful problem-solving strategies. These results have important
implications for both prompting and fine-tuning strategies,
suggesting that artificially constraining solution length may
inadvertently limit model performance.
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Figure 2. Effect of varying steps for demonstrations to generated
solutions in AoT

4. AoT-O3
In a typical RLHF pipeline, we have SFT stage, reward
model training stage and finally RL training stage. In our
framework, we will incentivize models to generate solutions
with less total number of steps while still generating valid
solutions. Since both of these objectives are objective, we
do not necessarily need the second stage which is the reward
model training stage, however, we will talk about the reward
model in its own subsection nevertheless.

4.1. SFT Stage

The supervised finetuning (SFT) stage aims to train the
model to follow AoT-style planning while maintaining so-
lution quality. Similar to how AoT uses carefully crafted
in-context examples to guide LLMs’ planning process, we
create a training dataset that demonstrates effective planning
strategies. However, instead of relying on human-authored
intuitions in the search trajectories, we utilize random search
paths that lead to valid solutions.

For each problem in our training set, we first obtain a valid
solution that successfully reaches the goal state. This solu-
tion can be obtained through various means, including tra-
ditional planning algorithms or even using an LLM. While
using an LLM might initially yield a lower percentage of cor-
rect solutions compared to curated datasets, this approach
offers greater flexibility and scalability. The efficiency trade-
off becomes a design choice based on specific requirements
and available resources.

Our training examples are structured around the concept
of state transitions guided by explicit thinking steps. Each
transition follows the format:

State: [Current state description]
Thinking/Transition: [Selection of an
action and considering its effects]
Next state: [New state description]

The thinking component serves as a crucial bridge between
states, providing the model with explicit reasoning that jus-
tifies the transition. This structured format helps the model
learn the relationship between states, actions, and their con-
sequences. Importantly, any given state in the sequence can
serve as a starting point for the next transition, allowing for
both forward progression and backtracking when necessary.

An example output from the model could be
represented as y = {(s0

a0−→ s00), (s0
a1−→

s01), (s00
a01−−→ s000), · · · , (s23424

a23424−−−−→ sgoal)} or
y = {T1, T2, · · · , Tfinal}. As seen from this representation,
at each step, the model has a choice to start from a previous
state and an action to perform on that state. This leads to
partial expansion, which is especially effective for memory
usage when the number of branches are very large in
classical planning problems with programs. In our case, we
are limited by the context in two ways: firstly, LLMs have a
maximum context window limit that they are pre-trained
for, and secondly, it is observed in the literature that LLMs
may fail to attend to some parts of the context in large
context sizes, especially the middle (Liu et al., 2024). There
exists works showing possible heuristics and algorithms
that are complete (like A*) such as Partial-Expansion A*
(Yoshizumi et al., 2000; Felner et al., 2012).

We generate random but valid exploration paths by starting
from either the initial state or intermediate states. At each
state, the model considers possible actions and their conse-
quences through the thinking step before transitioning to the
next state. This process creates a diverse set of trajectories
that may include both promising paths toward the goal and
dead-ends that require backtracking.

These exploration trajectories are then combined with seg-
ments of successful solution paths. The resulting training
examples demonstrate both the exploration of the search
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space and eventual convergence to valid solutions. This
combination teaches the model to balance exploration with
goal-directed behavior.

The SFT objective follows standard language model finetun-
ing approaches, using teacher forcing with a cross-entropy
loss:

L(θ) = −
∑

log pθ(yt|x, y<t) (1)

where x = (sstart, sgoal) is the input problem specification
and y is the target sequence containing the state-thinking-
transition triplets.

The training process develops several key capabilities in
the model. It learns to systematically explore the search
space while maintaining accurate state tracking. The ex-
plicit thinking steps help the model develop robust reason-
ing about state transitions and their consequences. The
model also learns to recognize promising solution paths and
successfully navigate toward goal states.

This supervised learning phase establishes the foundation
for the subsequent RL optimization stage. While the SFT
stage focuses on teaching the model the basic structure of
planning with thinking steps, the RL stage will introduce
rewards to encourage more efficient solutions while main-
taining these core planning capabilities.

4.2. Reward Model

While traditional reward models in language model align-
ment often rely on human feedback or complex learned
reward functions, our objective is more straightforward: we
with the model to generate solutions that are both correct
and efficient. To this end, we develop a simple but effective
reward function that balances solution validity with length
efficiency. In this section, we will use V for our reward
models due to them actually being value models used in RL
frameworks. This difference stem from the fact that most
RLHF frameworks consider the whole solution as a single
action, therefore framing the problem as a single-step RL, in
which reward and value models are the same. In our frame-
work, we consider each transition step as an action, leading
to our following feedback models being value models. If
they were to be thought of as actual reward models, due to
their definitions, the language model would try to hack the
reward by being close to the solution but prolonging the
solution to receive more total reward, conflicting with our
intention of shorter solutions.

The base reward structure assigns +1 for correct solutions
and -1 for incorrect ones, providing a clear signal for solu-
tion validity. However, this alone would not encourage the
model to find more concise solutions. To address this, we

introduce a step count penalty term for correct solutions:

V (Ti, y) =

{
max(1− nα, β) + κ1Ti∈y∗ if y is correct
−1 if y is incorrect

(2)
where n is the number of steps in the solution, α is the step
penalty factor, β is the cut-off to protect long solutions being
given less reward then incorrect solutions, e.g., β = −0.5,
κ controls the incentive if the transition was in the path
of the correct solution, and y∗ is the correct CoT solution
that can be extracted from a correct solution y. In cases
where it might be difficult to extract correct solution trace,
we can simply set κ = 0. We show in our experiments that
κ term is not crucial, though helps with faster adaptation
and slightly higher performance. This formulation creates a
clear trade-off: while the model is primarily incentivized to
find correct solutions, it receives higher rewards for doing
so with fewer steps.

The choice of α is crucial and depends on both the problem
domain and the context window constraints. For a given
problem type and context window size w, we aim to set α
such that:

1− wα ≳ β (3)

This ensures that a correct solution using the maximum
available context length receives a reward slightly higher
than an incorrect solution. Such calibration helps to have
more fine-grained levels of brevity to rewarded correctly.

Our reward model notably differs from traditional ap-
proaches in RLHF by eschewing learned reward models
in favor of this objective metric. This design choice offers
several advantages: it eliminates the need for reward model
training, reduces computational overhead during RL train-
ing stage and provides clear, interpretable feedback to the
model. Most importantly, it creates a direct optimization
pressure for finding shorter valid solutions while maintain-
ing the priority of solution correctness.

Reward model alternatives. The problems we focus on,
i.e., planning problems, typically have the trait of verifying
the solutions are much easier than producing solutions to
them. This assumption also affects the reward function
we propose in (2). In cases where we have more compute
available but the number of examples are more limited, it is
possible to have even finer grained feedback to the model
still with the assumption of no human-feedback. Consider
the following reward model,

Vπθ
(T ; sgoal) = Ey∼πθ(·|x=(T ′,sgoal)1(solution y is correct),

(4)
where T ′ refers to the ending state in transition T and x =
(T ′, sgoal) is the new problem where we prompt the model.
Here, we would like to attract attention to binary reward is
coming from not the solution of the model for the starting

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

LLMs Can Plan Faster Only If We Let Them

problem, but the newly constructed problem at each state.
This enables the model to learn per each transitions whether
the whole solution was correct or not and whether Ti is in
the path that lead to the correct solution. In reward function
(2), we either gave negative feedback for all transitions in
case of an incorrect solution, or gave a positive reward for
all transitions when the solution was correct. However, the
reward function in (2), also makes the distinction whether
a transition was indeed important for the solution of the
problem by the κ term.

4.3. RL Training Stage

The reinforcement learning stage builds upon the supervised
finetuning by optimizing the model for solution efficiency
while maintaining correctness. The core objective is to
maximize the expected reward under the policy distribution:

LRL(θ) = Ex∼D
[
Ey∼πθ(·|x) [ETi∈yV (Ti, y)]

]
(5)

where D is the dataset of problems, πθ represents the lan-
guage model being trained, x represents the input planning
problem, and R(·, ·) is our length-aware reward function
that balances solution correctness with efficiency defined in
(2).

This optimization can be accomplished through various RL
algorithms developed for language models. Trust Region
Policy Optimization (TRPO) (Schulman et al., 2015), Prox-
imal Policy Optimization (PPO) (Schulman et al., 2017;
Ziegler et al., 2019; Ouyang et al., 2022) and REINFORCE
leave-one-out (RLOO) (Ahmadian et al., 2024) have all
demonstrated success in language model alignment tasks.
Each algorithm offers different tradeoffs between training
stability, computational efficiency, and implementation com-
plexity.

The key distinction of our approach lies in the reward struc-
ture rather than the specific RL algorithm choice. Our re-
ward function provides clear, objective feedback about both
solution correctness and length efficiency, eliminating the
need for learned reward models or complex advantage esti-
mation schemes. This simplification allows us to focus on
the core challenge of finding shorter valid solutions without
introducing additional training complexity. In our experi-
ments later, we will utilize RLOO.

To maintain stability during RL training, we employ a refer-
ence model (the SFT model) to ensure the optimized policy
does not deviate too far from learned planning behaviors.
This constraint can be implemented through various mecha-
nisms depending on the chosen RL algorithm, such as KL di-
vergence penalties or direct probability ratio clipping. In our
setting, the KL divergence has the added benefit of entropy
regularization, popular in general RL setting. It is known

to help with mode collapse, an unwanted phenomenon that
occurs when the model exploits without enough exploration,
leading to suboptimal policies (Williams & Peng, 1991;
Ziebart et al., 2008; Mnih, 2016).

The training process samples planning problems from our
dataset and allows the model to generate complete solutions,
receiving rewards based on both correctness and solution
length. This creates a direct optimization pressure toward
finding more efficient solutions while maintaining the fun-
damental planning capabilities established during the SFT
stage.

5. Experimental Results
We evaluate AoT-O3 across two challenging planning bench-
marks: Game of X and N-Puzzle. Our experiments utilize
three open-source models of varying sizes: Gemma2-2B,
Llama3-1B, and Llama3-3B. We compare our approach
against two baselines: traditional Chain-of-Thought with su-
pervised fine-tuning (CoT-SFT) and Algorithm of Thoughts
with supervised fine-tuning (AoT-SFT). Our evaluation fo-
cuses on both solution accuracy and efficiency, measured by
the number of reasoning steps required to reach a solution.

5.1. Problem Setups

Game of X. We introduce a generalized variant of the
Game of 24, which presents a significantly more challeng-
ing planning problem. In our version, five numbers are
randomly sampled, and players must construct mathemat-
ical expressions using arbitrary combinations of addition,
subtraction, multiplication, and division operations to reach
a target value. This formulation creates a substantially larger
search space compared to the traditional Game of 24, requir-
ing more sophisticated planning and arithmetic reasoning
capabilities.

N-Puzzle. We utilize the classic 8-puzzle variant of the
sliding tile puzzle, where eight numbered tiles are arranged
on a 3×3 grid with one empty space. Each puzzle instance
is generated by starting from the goal state (tiles arranged
in numerical order) and applying a random sequence of
80-120 valid moves to ensure solvability. The objective is
to return the tiles to their original ordered configuration by
sliding tiles into the empty space. This creates a challenging
planning problem with a branching factor of up to 4 at each
step and requires careful consideration of move sequences
to avoid cycles or dead ends.

Word Ladder. We implement the classic word ladder
puzzle, where the objective is to transform one word into
another by changing a single letter at a time, with each inter-
mediate step forming a valid English word. Our dataset is
constructed using the NLTK base words dataset, focusing on
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Problem Method Accuracy (%) Solution Length (steps)
Gemma2-2B Llama3-1B Llama3-3B Gemma2-2B Llama3-1B Llama3-3B

Game of X

CoT-SFT 32 24 35 4 4 4
AoT-SFT 63 55 66 33.5 31.9 37.2

AoT-O3 (κ = 0.0) 74 71 79 18.3 11.6 15.0
AoT-O3 78 72 82 16.3 9.7 14.5

N-Puzzle

CoT-SFT 34 36 42 8.1 8.3 7.9
AoT-SFT 66 64 71 24.8 26.0 33.1

AoT-O3 (κ=0.0) 71 68 71 18.0 14.9 17.0
AoT-O3 73 68 75 17.9 14.2 15.7

W-Ladder

CoT-SFT 11 5 14 6.3 5.5 6.6
AoT-SFT 59 47 63 32.0 26.1 31.7

AoT-O3 (κ = 0.0) 59 51 66 18.6 16.2 20.1
AoT-O3 61 52 66 18.2 13.8 16.0

Table 2. Performance comparison of CoT-SFT, AoT-SFT, and AoT-O3 across different model sizes on Game of X, N-Puzzle and Word-
Ladder benchmarks. Results show both accuracy (percentage of successfully solved problems) and solution length (average number of
reasoning steps). AoT-O3 consistently achieves higher accuracy while requiring significantly fewer steps across all models and tasks.

words ranging from 4 to 10 letters in length. Test instances
are generated by first selecting random word pairs of equal
length from this corpus, then verifying that a valid solution
path exists between them with lengths ranging from 4 to
10 steps. This formulation creates a challenging planning
problem where the actions require language knowledge, and
success requires careful navigation through the lexical graph
while avoiding invalid words or circular paths.

5.2. Training and Testing Protocols

For both benchmarks, we implement a two-phase training
approach. The supervised fine-tuning (SFT) phase consists
of 500 training steps with a batch size of 128 and a learning
rate of 1e-5. This is followed by the reinforcement learning
phase using RLOO (REINFORCE leave-one-out), where we
employ a smaller batch size of 32 due to VRAM constraints
and a reduced learning rate of 1e-6. During the RL phase, we
generate 4 samples per problem to estimate policy gradients
while maintaining reasonable computational requirements.
Additionally, we set β = −0.5 and κ = 0.2. Further details
are given in Appendix B.

5.3. Results and Analysis

Table 2 presents comprehensive results comparing AoT-O3
against CoT-SFT and AoT-SFT baselines across three bench-
marks and multiple model sizes. Our results demonstrate
consistent improvements in both accuracy and solution ef-
ficiency. In the Game of X benchmark, AoT-O3 achieves
substantial improvements across all models, with solution
length reductions ranging from 51.3% to 62.4% while simul-
taneously improving accuracy by 11-17 percentage points.
The most notable improvement is observed with Llama3-
1B, reducing solution length from 31.9 to 9.7 steps while

improving accuracy from 55% to 72%. For the N-Puzzle
benchmark, we observe moderate but consistent improve-
ments. AoT-O3 achieves solution length reductions between
27.8% and 46.0% while maintaining or improving accuracy.
The smaller efficiency gains compared to Game of X can be
attributed to N-Puzzle’s larger state space and more complex
state transitions. The Word-Ladder results are particularly
interesting as they demonstrate AoT-O3’s effectiveness in
domains where actions must be derived from the LLM’s
prior knowledge of valid English words. Despite this addi-
tional complexity, AoT-O3 achieves a 47.1% reduction in
solution length (from 26.1 to 13.8 steps) while improving
accuracy from 47% to 52% on Llama3-1B. This suggests
that our approach effectively combines the model’s learned
knowledge with efficient planning strategies. These im-
provements in efficiency do not come at the cost of accuracy
- we observe consistent accuracy gains across all models and
benchmarks. This indicates that our approach not only pro-
motes more efficient solutions but also helps models develop
more robust planning strategies through focused exploration
of the solution space. The results are particularly promising
for applications where context window limitations or com-
putational resources are constrained, as AoT-O3 can achieve
better performance with significantly fewer tokens.

6. Conclusion
In this work, we introduced AoT-O3, an RL-enhanced AoT
framework that improves the efficiency of LLM-driven plan-
ning. By using a reward model that optimizes for both
accuracy and conciseness, our approach reduces reasoning
steps while maintaining quality. Results show up to 80%
reduction in solution length across benchmarks, demonstrat-
ing how structured learning and reinforcement fine-tuning
can make LLM planning more scalable and efficient.
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Impact Statement
This work has significant environmental and accessibility
implications for AI deployment. By reducing token usage by
up to 80% while maintaining or improving performance, our
method could substantially decrease the energy consump-
tion and carbon footprint of large-scale LLM deployments.
Given current LLM usage patterns, even a 30% reduction in
tokens could save tens of gigawatt-hours annually, equiva-
lent to the electricity usage of thousands of homes. However,
such efficiency gains could also accelerate LLM adoption
and lead to higher net resource consumption through the
Jevons paradox. Additionally, while improved planning
capabilities may enhance AI systems’ problem-solving abil-
ities, this could accelerate automation in ways that affect
human employment. We recommend careful consideration
of these tradeoffs as the technology is deployed, along with
continued research into techniques that balance computa-
tional efficiency with societal impact.
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A. Energy and Token Usage Calculations
In this appendix, we provide a detailed estimation of the current token usage in ChatGPT and the potential energy savings
from reducing token counts. All values and references herein are approximate but illustrate the magnitude of efficiency
gains possible at scale.

A.1. Estimating Token Usage

User Base and Queries. As of December 2024, ChatGPT has over 300 million weekly active users, with users sending
more than 1 billion messages daily.2 Assuming each message involves an average of 400 tokens — encompassing both user
input and model output — we can estimate the total token usage.

Total Daily and Yearly Token Count. Given over 1 billion messages daily, the total daily token amounts to 400 billion.
Extrapolating to a full year results in approximately 146 trillion tokens per year.

A.2. Energy Usage per Token

Energy consumption per token varies with model size, hardware, and data-center efficiency. Research estimates that models
like LLaMA 65B consume about 3–4 joules per token (Samsi et al., 2023). Since 1 joule = 2.77778 × 10−7 kWh, 3–4
joules per token converts to roughly 8.33 × 10−7 kWh/token to 1.11 × 10−6 kWh/token. We use the midpoint 9.72 ×
10−7 kWh/token for our calculations.

A.3. Daily and Annual Energy Consumption

Using the midpoint estimate, we see 400 billion tokens/day × 9.72× 10−7 kWh/token ≈ 388.8 MWh/day.

Over one year, we see 388.8 MWh/day × 365 ≈ 141.9 GWh/year.

A.4. Potential Savings from Token Reduction

Reducing token usage by 30% results in approximately 42.6 GWh/year.

If we cut token counts by half, we see approximately 71 GWh/year savings in energy usage.

A.5. Contextualizing the Energy Savings

Residential Electricity Usage. According to the U.S. Energy Information Administration (EIA), the average annual
electricity consumption for a U.S. residential utility customer was about 10,791 kWh in 2022.3 Hence:

• 42.6 GWh/year savings ≈ electricity usage of 42.6×106 kWh
10,791 kWh/home ≈ 3,948 homes for a year.

• 71 GWh/year savings ≈ electricity usage of about 71×106 kWh
10,791 kWh/home ≈ 6,580 homes for a year.

Carbon Emission Reductions. Using an estimate of 0.81 pounds (0.367 kg) of CO2 emitted per kWh in the U.S.4:

• 42.6 GWh → 42.6 ×106 kWh × 0.367 kg CO2/kWh ≈ 15,634 metric tons CO2.

• 71 GWh → 71 ×106 kWh × 0.367 kg CO2/kWh ≈ 26,057 metric tons CO2.

These quantities correspond to removing thousands of gasoline-powered cars from the road or preserving thousands of acres
of forest in terms of carbon offsets (see Fig. 3).5

2https://www.theverge.com/2024/12/4/24313097/chatgpt-300-million-weekly-users
3https://www.eia.gov/tools/faqs/faq.php?id=97&t=3
4https://www.eia.gov/tools/faqs/faq.php?id=74&t=11
5https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator

12

https://www.theverge.com/2024/12/4/24313097/chatgpt-300-million-weekly-users
https://www.eia.gov/tools/faqs/faq.php?id=97&t=3
https://www.eia.gov/tools/faqs/faq.php?id=74&t=11
https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator


660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

LLMs Can Plan Faster Only If We Let Them

Scenario 1: 

30% token reduction

Energy savings:

42.6 GWh/year

Carbon emission reduction:

15,634 metric tons/year

gasoline-powered passenger 
vehicles driven for one year 3,647 6,078

Scenario 2: 

50% token reduction

Energy savings:

71 GWh/year

Carbon emission reduction:

26,057 metric tons/year

pounds of coal burned 17,366,480 2,932,036

tons of waste recycled 
instead of landfilled 5,524 9,207

tree seedlings grown 
for 10 years 258,510 430,855

acres of U.S. forests in 
one year 15,682 26,137

*Greenhouse Gas 
Equivalencies Calculator

https://www.epa.gov/energy/greenhouse-
gas-equivalencies-calculator

Figure 3. Illustration of two scenarios—a 30% (pink) vs. 50% (green) reduction in token usage—and illustrates their equivalent environ-
mental impacts (e.g., cars off the road, coals burned, waste recycled, seedlings grown, acres of forest). These numbers contextualize the
calculations by showing how modest efficiency gains can yield significant benefits for emissions and resource consumption.

Overall, these estimates highlight the potential environmental and cost impact that arises from large-scale LLM inference.
Even moderate gains in token efficiency (e.g., 30–50%) can translate to tens of gigawatt-hours saved annually and
correspondingly meaningful CO2 reductions.

Key Assumptions and Limitations In these estimates, data center energy efficiency (often quantified by Power Usage
Effectiveness, or PUE) plays a major role. An ultra-efficient center with a PUE near 1.1 uses roughly 10% extra overhead
(e.g., cooling and networking), whereas a PUE above 1.5 can raise total consumption by 50% or more. Thus, even if token
usage shrinks by 30–50%, the real reduction in total energy may be proportionally less depending on the facility’s PUE.
Moreover, the uniform-token-savings assumption—that energy reduction scales linearly with fewer tokens—overlooks fixed
overheads (e.g., loading the model into memory each query) that may blunt the full benefits of shorter outputs. Finally,
unaccounted training energy can weigh in daily inference usage when models are re-trained frequently or undergo large-scale
fine-tuning cycles. Hence, while reducing tokens helps, it alone cannot capture AI’s entire environmental footprint. We also
did not account for the complex Jevons paradox, i.e., technological improvements increase the efficiency of resource use,
which may paradoxically lead to an overall increase in the consumption of that resource.

B. Experiment Details
This appendix provides comprehensive details about our experimental setup, hyperparameters, and implementation choices
to ensure reproducibility of our results.

B.1. Model Specifications

We conducted experiments using three open-source language models:

• Gemma2-2B: 2 billion parameters, using bfloat16 data type.

• Llama3-1B: 1 billion parameters, using bfloat16 data type.

• Llama3-3B: 3 billion parameters, using bfloat16 data type.
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All models were trained on 8x NVIDIA H100 GPUs with 80GB memory. For multi-GPU training, we utilized DeepSpeed
(Rasley et al., 2020) with a suitable gradient accumulation step of to maintain effective batch sizes while managing memory
constraints for the various models we trained.

B.2. Dataset Construction

For each benchmark, we constructed datasets following these specifications:

Game of X

• Training set: 64,000 examples

• Test set: 100 examples

• Numbers sampled uniformly from [1, 100]

• Target values sampled uniformly from [1, 100]

• Filtered to ensure each problem has at least one valid solution

N-Puzzle

• Training set: 64,000 examples

• Test set: 100 examples

• Initial states generated with 80-120 random moves from goal state

• Manhattan distance from initial to goal state ranging from 15 to 30

Word Ladder

• Training set: 32,000 examples

• Test set: 100 examples

• Word length range: 4-10 characters

• Solution path length range: 4-10 steps

• Dictionary: NLTK Words Corpus (filtered for common English words)

B.3. Training Protocol

Our training process consisted of two phases: Supervised Fine-tuning (SFT) and Reinforcement Learning (RL). Here we
detail the specific parameters and protocols for each phase.

B.3.1. SUPERVISED FINE-TUNING PHASE

Optimization Parameters

• Optimizer: AdamW

• Base learning rate: 1e-5

• Weight decay: 0.01

• Gradient clipping: 0.1 (max norm)

• Batch size: 128 (effective, after gradient accumulation)
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• Training steps: 500

• Warm-up steps: 50

• Learning rate scheduler: Cosine annealing

Implementation Details

• Mixed precision training (BF16)

• Gradient checkpointing enabled

• Token sequence length: 2048

• Padding: Dynamic batching with attention masking

B.3.2. REINFORCEMENT LEARNING PHASE

We utilized trl library from huggingface, however, we needed to have a custom RLOO trainer implementation with minor
but crucial differences to the original library due to it being designed for LLM reward models.

RLOO Implementation

• Algorithm: REINFORCE leave-one-out

• Base learning rate: 1e-6

• Batch size: 32

• Samples per problem: 4

• KL penalty coefficient: 0.1

• Value loss coefficient: 0.5

Reward Model Parameters

• Step penalty factor (α): 0.02

• Minimum reward cutoff (β): -0.5

• Solution path bonus (κ): 0.2

Training Schedule

• Total steps: 50

• Warm-up steps: 50

• Learning rate schedule: Cosine annealing

B.4. Evaluation Protocol

During evaluation, we used the following settings:

Inference Parameters

• Temperature: 0.0

• Top-p (nucleus sampling): 0.0

• Maximum new tokens: 1024

• Repetition penalty: No
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