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ABSTRACT: Surface-enhanced Raman spectroscopy (SERS) has gained
significant attention for its ability to detect environmental contaminants with
high sensitivity and specificity. The cost-effectiveness and potential portability of
the technique further enhance its appeal for widespread application. However,
challenges such as the management of voluminous quantities of high-dimensional
data, its capacity to detect low-concentration targets in the presence of
environmental interferents, and the navigation of the complex relationships arising
from overlapping spectral peaks have emerged. In response, there is a growing
trend toward the use of machine learning (ML) approaches that encompass
multivariate tools for effective SERS data analysis. This comprehensive review
delves into the detailed steps needed to be considered when applying ML
techniques for SERS analysis. Additionally, we explored a range of environmental
applications where different ML tools were integrated with SERS for the detection
of pathogens and (in)organic pollutants in environmental samples. We sought to comprehend the intricate considerations and
benefits associated with ML in these contexts. Additionally, the review explores the future potential of synergizing SERS with ML for
real-world applications.
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1. INTRODUCTION
Comprehensive environmental monitoring, spanning waste-
water, drinking water, surface water, and air quality, has the
potential for early detection of contaminants and pollutants.1

Increased integration of public health and environmental
monitoring is essential for safeguarding health, preserving
ecosystems, and upholding regulatory standards. Environ-
mental engineers have diligently worked to detect contami-
nants, including pathogenic bacteria and viruses, microplastics,
per- and polyfluorinated substances (PFAS), and heavy metals
within environmental matrices.2,3 Detection and monitoring of
these contaminants, whether in water, wastewater, or air, is
crucial and aids in understanding contaminant fate and
transport while offering substantial benefits, including
community-level surveillance and the potential for effective
epidemic management.4,5 To achieve rapid monitoring in
environment matrices, there is a need for techniques that offer
high sensitivity, cost-effectiveness, and field adaptability.
Conventional gold standard methods for pathogen detection,
such as enzyme-linked immunosorbent assay (ELISA) and
polymerase chain reaction (PCR), or for (in)organic
pollutants, such as chromatography-based and mass spectrom-
etry (MS)-based techniques, have long been staples of
environmental analysis.6−8 While these methods are recog-
nized for their accuracy and sensitivity, they often come with
high costs and are challenging to adapt to resource-limited

settings.9 Additionally, diverse types of contaminants neces-
sitate different detection techniques and often require
specialized personnel and resource-intensive methods, thus
limiting their universal application.
Surface-enhanced Raman spectroscopy (SERS) has emerged

as an alternative approach with the capacity to detect a wide
range of analytes from biological pathogens to emerging
contaminants such as PFAS, and microplastics.10,11 SERS
enhances the intrinsic Raman scattering of molecules that are
associated with noble-metal nanoparticles or nanostructures.12

This enhancement facilitates the detection and identification of
trace quantities of analytes at concentrations that can approach
the single-molecule level.13 With rapid advances in nano-
fabrication and synthesis, SERS has gained increasing attention
for environmental analysis.14−16 SERS stands out as a valuable
tool for advancing environmental monitoring due to its
capacity to offer cost-effective, highly sensitive, and adaptable
approaches that are suitable under challenging environmental
conditions.17−19
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However, as the technology has evolved, SERS analysis has
exhibited certain challenges, such as managing vast volumes of
spectral data, addressing overlapping Raman peaks, and dealing
with spectral artifacts.20−22 The acquisition speed and the
information density contained with SERS spectra are notable.
SERS measurements can rapidly accumulate substantial
amounts of spectral data (ranging from megabytes to
gigabytes) from a single sample within minutes and this can
challenge data handling and limit comprehensive analysis.
Traditionally, researchers have primarily focused on individual
high-intensity SERS peaks, thereby constraining the compre-
hensive and impartial interpretation of the data.23 Moreover,
the complexity of environmental matrices, replete with various
impurities and molecules that may share similar or closely
overlapped SERS peaks, presents challenges in distinguishing
and interpreting the data.19 To tackle these complexities and
make full use of the information obtained through SERS,
researchers are turning to data analysis and machine learning
(ML). While there have been several excellent review papers
on the application of ML in SERS,24−27 there remains a
significant gap in the literature specifically addressing the
fusion of these techniques for environmental pollutant analysis.
Despite substantial advancements in SERS and ML, integrating
these fields as standardized tools for environmental monitoring
requires further exploration and review.
To bridge this gap, we review recent studies that used SERS

in combination with ML (SERS-ML) methods, including
multivariate analysis within environmental settings. We begin
by providing an overview of SERS and ML and outlining
detailed steps to consider when employing ML for SERS
analysis. We aim to offer a comprehensive and comparative
analysis of different ML techniques applied to enhance the use
of SERS for the detection of pathogens−bacteria, viruses, or
their nucleic acids; organic pollutants−polyaromatic hydro-
carbons (PAHs), organophosphorus pesticides (OPPs); and
inorganic pollutants−anions and heavy metals and an emerging
pollutant: microplastics. Finally, we outline prospective
advancements for using SERS with ML in environmental
settings. We discuss future scope, limitations, and key
considerations for deploying SERS-based sensors in real-
world applications.

2. INTRODUCTION TO SERS
SERS is a powerful analytical technique for chemical and
biochemical detection, with the potential for single-molecule
sensitivity.28 SERS enhances the intrinsic Raman signal of
target molecules by several orders of magnitude using metallic
nanoparticles or nanostructures. The mechanisms responsible
for SERS include electromagnetic field amplification and
charge transfer processes and a detailed discussion can be
found elsewhere.29,30 The combined effect of these enhance-
ment mechanisms underscores SERS’ remarkable capability to
detect molecules with ultrahigh sensitivity.31,32 SERS provides
distinct molecular vibration fingerprinting patterns associated
with molecular constituents, chemical bonds, and macro-
molecular configurations.12 As a molecule-specific approach for
analyte detection, SERS enables the identification of diverse
targets without requiring extensive sample pretreatment.
SERS approaches for molecule detection can be classified as

label-free or labeled.28 In label-free SERS, the target molecule
directly interacts with the SERS-active substrate and results in
production of unique Raman spectra. Premasiri et al.
demonstrated the advantages of SERS over bulk Raman in

differentiating Gram-positive Bacillus strains and Gram-
negative bacteria such as Escherichia coli and Salmonella
typhimurium.33 Using a gold nanoparticle-covered SiO2
substrate, they achieved a ∼104 enhancement factor, enabling
species and strain distinction at the single-cell level. Addition-
ally, SERS effectively minimizes fluorescence interference, a
major issue in bulk Raman spectra, particularly for biological
samples. The fluorescence quenching effect occurs due to the
energy transfer from the excited chromophores to the metal
surface that shortens the fluorescence lifetime, allowing the
Raman signal to dominate and resulting in cleaner, more
accurate spectral data.34,35 Numerous studies have explored
label-free SERS detection of molecules, encompassing a broad
range from biological entities to emerging pollutants such as
PFAS, microplastics, illicit drugs, and more.36−38 However, the
major limitation is multiple peaks overlapping in SERS spectra,
which complicates the identification of specific molecules.
Table S1 summarizes the peak assignments for various
environmental contaminants. Since multiple groups often
share overlapping Raman bands, distinguishing them for
multianalyte identification can be challenging. Additionally,
SERS enhancement mechanisms are highly distance- and
orientation-dependent, with only molecular components
within ∼10 nm of the substrate being preferentially
enhanced.32,39 This spatial sensitivity leads to variability in
SERS spectra across different substrates, further complicating
standardization of the technique.
Although label-free detection has several advantages, it is

also limited in its ability to identify molecules that exhibit weak
or negligible Raman signals, such as viruses and heavy metals.
In these instances, SERS tags have been developed by
attaching intrinsically strong Raman scattering molecules
(also known as Raman reporters) to the surfaces of
nanoparticles, creating a distinct SERS spectrum of the
Raman reporter.40 The incorporation of biorecognition
elements, such as antibodies or aptamers, into the SERS tags
enables them to bind specifically to targeted molecules. This is
called labeled SERS and is particularly effective for
biomolecular identification and quantification, including
viruses and their antigens, pathogenic bacteria, and bio-
molecules.41−43

3. DECODING MACHINE LEARNING:
UNDERSTANDING THE ESSENTIALS

ML is a subset of artificial intelligence that concentrates on
developing algorithms and statistical models.44 These models
empower computers to learn and enhance their performance
based on data or experiences, thus enabling them to make
predictions, classifications, and decisions.45 Within the domain
of ML, we work with both training and test data sets. The
training data set is instrumental in instructing the model, as
algorithms generate a model that minimizes errors and
provides an optimal fit.44 Subsequently, the model undergoes
testing with test data to evaluate its accuracy. In this context,
data sets can be classified into supervised and unsupervised
learning. In supervised learning, algorithms learn to make
predictions based on prelabeled data.46 These training data sets
consist of input features along with their corresponding output
features. The primary goal is for the algorithm to discern
robust relationships between the input features and the target
outputs, thereby enabling accurate predictions on new, unseen
data. Prominent examples of supervised learning algorithms are
regression, decision trees, and neural networks. In contrast,
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unsupervised learning represents an alternative approach
within ML.47 Here, algorithms are designed to uncover
patterns within unlabeled data. The training data comprises
input features and lacks corresponding target outputs. The
algorithm’s main goal is to unveil inherent patterns and
relationships within the data, which can be leveraged to cluster
similar data points together. An extensive overview of
multivariate analysis techniques, ML, and deep learning
methods, along with examples of their application in SERS is
provided in Table 1.
3.1. Building and Evaluating ML Models in SERS

Analysis. Following the collection of SERS data, the process
of constructing an ML model encompasses three major steps:
data preprocessing, model development, and performance
analysis. Figure 1 outlines a step-by-step process to develop a
ML model for SERS data. Data preprocessing and cleaning is a
fundamental step for SERS-ML models. Raw SERS spectra
require cosmic ray removal, graph smoothening, and back-
ground subtraction of fluorescence or electromagnetic
interference, substrate impurities, or electronic noise.93

Preprocessing also includes handling outliers and addressing
inconsistencies or errors in the data set. Normalization or
standardization is crucial for SERS data to eliminate variability
and ensure accurate comparison. Additionally, feature selection
or dimensionality reduction using PCA or latent vectors
improves model efficiency and interpretability.
After preprocessing the data, the next step in supervised ML

model development involves dividing the data set into training,
validation, and test sets. Hundreds to thousands of SERS
spectra can be obtained from replicates and through large-area
scans in SERS. These data can be used for training and testing.
Following this step, an appropriate ML algorithm or model
architecture is selected based on factors such as the nature of

the problem (e.g., classification, regression), the characteristics
of the data (e.g., structured, unstructured), and the desired
outcome (e.g., accuracy, interpretability). Although there is no
definitive method for selecting a specific algorithm over others,
exploring various approaches is appropriate for selecting the
best fit. Using the selected algorithm, the model undergoes
training on the training set, iteratively adjusting parameters to
minimize a specified loss function, commonly achieved
through gradient descent optimization.94 Model performance
is evaluated on the validation set using metrics such as
accuracy, precision, recall, F1 score, or mean squared error to
gauge generalization to unseen data. Hyperparameters are
adjusted, or alternative models are explored to improve results.
Final performance is tested on the test set for an unbiased real-
world estimate, with iterative refinements based on validation
and test outcomes.
Choosing a machine learning model for large, complex data

sets involves more than performance metrics. For real-life
applications, researchers should also consider algorithm
efficiency, balancing accuracy with the time and space needed
for training and deployment. It is also essential to evaluate the
complexity of data relationships (whether linear or nonlinear)
and the size of the data set to prevent overfitting or
underfitting. This can be achieved through bias-variance
analysis and by examining learning curves.95 Effective hyper-
parameter tuning, using techniques such as GridSearchCV or
RandomSearchCV, ensures optimal performance without
excessive computation.96 Finally, interpretability is crucial for
understanding how models make decisions, particularly when
detecting environmental contaminants. Tools for feature
importance analysis such as Partial Dependence Plots, and
SHAP (SHapely Additive exPlanations) values can help clarify

Figure 1. Step-by-step guide for harnessing SERS-ML analysis model from SERS data collection to preprocessing and further ML model
development and performance analysis.

Environmental Science & Technology pubs.acs.org/est Critical Review

https://doi.org/10.1021/acs.est.4c06737
Environ. Sci. Technol. XXXX, XXX, XXX−XXX

E

https://pubs.acs.org/doi/10.1021/acs.est.4c06737?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c06737?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c06737?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.est.4c06737?fig=fig1&ref=pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.4c06737?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


each feature’s contribution, ensuring greater transparency in
the decision-making process.97

3.2. Why ML for SERS Analysis? SERS generates
abundant data, posing substantial challenges in terms of
comprehension and analysis. Within the span of a few seconds
to minutes, comprehensive SERS data sets can be collected for
individual molecules. Additionally, multicapture SERS plat-
forms excel at identifying the unique vibrational fingerprints
associated with target molecules, offering detailed spectral
information.98 However, when employed for real environ-
mental matrices, SERS encounters significant challenges. The

presence of contaminants in environmental samples is
characterized by extremely low concentrations, thus posing
challenges for detection through analytical methods alone.
Another major issue arises from the diverse array of coexisting
compounds in real samples, potentially masking the signals of
target molecules and making it difficult to discern subtle
changes through visual inspection. This necessitates a robust
analytical tool capable of not only handling voluminous data
but also conducting multiplex analysis with high sensitivity and
identifying complex relationships. Another significant advance-
ment in SERS-ML analysis lies in considering multiple peaks

Figure 2. Machine Learning tools for the classification of bacteria using SERS. A. Schematic of the Experimental Setup for Label-Free SERS
Detection of Bacterial Strains Using Gold Nanoparticles. B. Average SERS spectra for 19 bacterial strains, normalized using the peak at 1326 cm−1.
C. Confusion matrix for 19 bacterial strains. Diagonal entries indicate class accuracies (out of 400 spectra), while off-diagonal entries represent
misclassifications for each strain. Adapted with permission from ref 73. Copyright 2022 American Chemical Society. D. Three-dimensional PCA
plot using first three PCs for classification of five Gram-positive Bacillus spores (B. atrophaeus, B. anthracis sterne, B. thuringiensis, B. anthracis sterne
killed, and B. anthracis ames killed) and Pantoea agglomerans based on their SERS spectra. Adapted with permission from ref 56. Copyright 2008
Optica Publishing Group.
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for multiplex data sets. Whether labeled or label-free, SERS
requires the comparison of spectral intensities against target
concentration for subsequent analysis and quantification. The
conventional method for analyzing SERS data often focuses
solely on a univariate assessment of a single vibrational mode
peak intensity and examining its trend across varying target
concentrations. In cases with multiple targets or reporter
molecules, peaks corresponding to each molecule are selected.
Although this approach is effective in simple conditions with
minimal background interference, it may be insufficient when
multiple targets are present, as variations in peak intensity may
no longer be solely influenced by changes in concentration.
Choosing multiple peaks for the same molecule allows for
more robust quantification compared to relying on a single
peak.92,99 The multiple peaks assignment requires multivariate
analysis and paves the way for employing ML for more
comprehensive analysis.
Conventional methods often focus solely on a univariate

assessment of a single vibrational mode, examining intensity
changes that correlate with alterations in concentration. While
this approach demonstrates effectiveness in simple scenarios
involving one or two analytes, its limitations become evident in
complex systems. ML enables analysis using multiple or entire
spectra, thereby providing a more accurate and robust
analysis.100 Furthermore, the integration of ML into a data
analysis flow may aid in uncovering hidden trends. As such,
ML is a promising method for extracting previously
undisclosed patterns from acquired data, a task that is
impossible manually. Additionally, ML can extract peak
features crucial for developing models that effectively
discriminate between contaminants, thereby expanding the
analytical capabilities of SERS in environmental monitoring
and beyond. Monitoring pathogens or contaminants in various
environmental matrices, such as drinking water and waste-
water, using SERS creates opportunities for prompt prevention
and enables real-time decision-making for appropriate treat-
ment. When detecting target analytes within environmental
matrices, SERS intensities from the background or other
molecules can interfere with target spectra, making it difficult
to detect the target. The use of ML has shown potential to
tackle all these problems, making it versatile and applicable to
SERS under complex environmental conditions. Herein, we
focus on the detection of biological contamination such as
bacteria, viruses, emerging (in)organic contaminants, and
microplastics using SERS in combination with ML methods.

4. SERS-ML IN THE DETECTION OF BIOLOGICAL
CONTAMINANTS

This section delves into the application of SERS-ML for the
detection and characterization of biological contaminants in
water and wastewater, encompassing (1) bacteria, (2) viruses,
and (3) their nucleic acids (DNA/RNA). Through the synergy
of SERS’s unique spectral fingerprints and the analytical power
of ML algorithms, researchers have made significant progress
in augmenting the speed, accuracy, and sensitivity of microbial
detection, thereby advancing our understanding of environ-
mental health and safety.
4.1. Bacteria. SERS has emerged as a rapid and reliable

approach for bacteria detection that leverages its capability to
provide unique spectral fingerprints attributed to the cellular
components of bacteria, including nucleic acids, cellular walls,
and membranes (Table S1). However, the similarity of the
collected SERS spectra makes it difficult for effective

differentiation. For example, Rahman et al. reported SERS
spectra for 19 different bacteria strains by mixing them with
gold nanoparticles. (Figure 2A,B).73 The prominent peaks
associated with bacteria typically arise from the ring vibrations
of adenine and guanine, occurring at 600−735 and 1325
cm−1.73 The variations in peak ratios, intensities, and shifts in
wavenumbers are too subtle to discern manually. Hence, the
complexities of SERS spectra necessitate the application of
machine learning for thorough and accurate analysis.
By harnessing the power of ML models, we can unravel

subtle nuances in SERS spectra, enabling us to not only
distinguish between different bacteria but also quantify their
presence more accurately. Over the years, SERS-ML has
become popular in the identification of bacteria at the species
and strain level. Classification ML models such as PCA, SVM,
and HCA have been extensively used for the diagnosis and
differentiation of biological samples. Several studies have used
PCA for classifying closely related strains such as cereus group
Bacillus strains,55 anthracis sterne live or killed,56 serotypes of
salmonella,101 and many more. In a recent study, Arslan et al.
discriminated Cryptosporidium parvum oocysts, E. coli, and
Staphylococcus aureus using PCA and HCA.58 By using medium
Gaussian SVM model with 10-fold cross-validation, Rahman et
al. were able to predict bacterial strains with 87.7% accuracy as
shown in the confusion matrix (Figure 2C).73 Guicheteau et al.
classified Bacillus spores using three PCs, which accounted for
greater than 90% of the variance in the SERS spectra as shown
in Figure 2D.56 Gram-negative bacterium Pantoea agglomerans
showed good separation from Gram-positive Bacillus spores.
However, among Gram-positive Bacillus spores, there is an
overlap between the three strains of Anthracis as they share the
same exosporium layer.56 It is interesting to note from above-
mentioned studies that PCA was effective in the classification
of Gram-positive and Gram-negative bacteria. The reason is
the large variance in their SERS spectra because of different
cell wall structures. Gram-negative bacteria such as E. coli
possess a lipid-rich outer cell well and a thin peptidoglycan
layer. However, Gram-positive bacteria such as S. aureus have
thicker peptidoglycan cell walls than Gram-positive bacteria.56

Parasites such as C. parvum oocysts have much different cell
structures than bacteria58 and contain high carbohydrate
components within the wall structure. Here, PCA and HCA
are effective in classification since the linear combination of
spectra features differentiates the targets. However, while the
differentiation of two bacteria from the same categories has
very similar spectral features, PCA does not do a good job of
classifying complex and nonlinear data. Most of the time, PCA
is used for dimension reduction, and the PCs are then used as
inputs for advanced machine learning techniques such as SVM.
Wang et al. used multiplexing to detect waterborne

pathogens using labeled SERS with SVM.102 Three bio-
conjugated gold nanoparticles were used to specifically bind E.
coli O157:H7 cells at different epitopes. To differentiate
between positive signals and negative signals, SVM was
employed using the input of the first 58 PCs. A linear kernel
was used in the SVM and showed clear differentiation between
positive and negative spectra with a limit of detection of 10
CFU/mL. Another study classified three antibiotic resistance
isolates of E. coli ATCC25922, E. coli ST131:O75, and E. coli
ST1193:O25 following direct deposition on a gold nano-
particle substrate. Despite having very similar SERS spectra,
the SVM-PCA-assisted model showed excellent performance in
classifying these strains.103
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SERS-ML promises to revolutionize the field of bacterial
detection, offering a faster, more cost-effective, and more
precise alternative to traditional methods, thereby advancing
our ability to understand and combat microbial threats in
diverse environmental samples.
4.2. Virus. Wastewater monitoring for virus detection has

been done since the outbreak of poliovirus.104 Viruses shed in
the fluids of symptomatic or asymptomatic patients enter
wastewater systems and may remain infectious for up to 30
days.105 To prevent the outbreak of viral disease, it is crucial to
detect viruses early and take preventive actions. Moreover,
since late 2019, the coronavirus SARS-CoV-2 has spread
quickly worldwide thus demanding rapid point-of-care testing
(POCT) methods to facilitate early diagnosis outside the
laboratory. Conventional methods such as ELISA and reverse
transcription PCR (RT-PCR) analysis have been used to
diagnose viruses, and typically have high sensitivity (for SARS-
CoV-2 RT-PCR can achieve 500−1000 copies/mL of viral
RNA).106 Alternatively, without compromising high specificity
and sensitivity, SERS has been used for detecting viruses at
concentrations as low as 80 copies/mL within an hour.107

Zhang et al. employed bromide-coated silver nanoparticles and
Ca(II) ions as aggregates to enhance hotspot formation, ideal
for detecting viruses of 100 nm diameter.59 SARS-CoV-2,
Human Adenovirus 3, and H1N1 Influenza virus exhibited
similar SERS spectra and were more challenging to differ-
entiate in complex media such as serum and saliva, the authors
utilized PCA to facilitate effective discrimination. By using
PCA, they successfully detected viruses at a concentration of
100 copies per test, within 2 min. While PCA captures
maximum variance in the data, it does not consider class labels
unlike supervised ML models, and may not be very effective in
maximizing separation between different classes.48 A similar
study led by Garg et al. used a supervised PCA-LDA model to
differentiate different enveloped viruses.108 Their approach
involved utilizing PCA for feature extraction and dimension
reduction, followed by LDA to identify a subspace that
optimally separates different classes within the data. They were
able to differentiate SARS-CoV-2, Zika, and Influenza A viruses
within an environmental dust background with 86% accuracy.
While these models demonstrated satisfactory performance,
their limitations include their capability to detect viruses at

Figure 3. Detection of DNA using SERS A. Illustration of iodide-modified silver nanoparticles along with MgSO4 to enhance DNA binding. B.
SERS spectra of a series of oligonucleotides containing varying proportions of adenine (A) and cytosine (C), where A% = A/(A + C). All spectra
are normalized to the peak intensity at 1087 cm−1, corresponding to PO2

−. C. Plot of relative peak intensity ratio of 723 cm−1 to 1087 cm−1 as a
function of A% in the oligonucleotides. Adapted with permission from ref 116. Copyright 2015 American Chemical Society. D. Schematic
illustration of the core−satellite SERS sensor for detection of multiple eARGs (extracellular antibiotic resistance genes). E. SERS spectra of multiple
eARGs in the range from 1 aM to 1 pM. F. Comparison of sul1 concentration for actual vs predicted. Black dots represent the calibration set (80%
of the data set) and red dots represent the test set, comprising the remaining 20%. Adapted with permission from ref 68. Copyright 2022 Elsevier.
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very low concentrations (<100 copies) and the absence of
cross-validation.
To detect extremely low concentrations of viruses, Yang et

al. developed a hierarchical array of gold nanoneedles (GNAs)
functionalized with angiotensin-converting enzyme 2
(ACE2).107 ACE2, known for its high specificity to SARS-
CoV-2, effectively captured and enriched the viruses near the
GNA hotspot region. By incorporating PC-discriminant
analysis of SERS signals, they achieved the detection of viral
loads as low as 80 copies/mL in under 5 min. While the ACE2-
based method demonstrates high specificity for SARS-CoV-2 it
exhibits limitations in detecting viral variants. A study led by
Moitra et al. developed a set of DNA probes, specifically an
antisense oligonucleotide (ASO) capable of interacting with
genetic sequences of SARS-CoV-2 regardless of its mutations.
Thiolated ASOs targeting the N gene of SARS-CoV-2 were
attached to gold nanoparticles, allowing for the examination of
viral RNA attachment to ASOs and producing strong SERS
signals. With the combination of SERS with the PCA-SVM
model, they were able to predict positive samples with 100%
sensitivity and 90% specificity at concentrations up to 63
copies/mL of RNA. This demonstrates that utilizing the
indigenous design of SERS probes alongside ML techniques
enables real-time detection of viral variants without the need
for sophisticated instrumentation.
An alternative method for virus or bacteriophage detection

involves analyzing alterations in SERS signals emitted by
bacteria or their metabolites postinfection. In a study led by
Wang et al., they determined that dimethyl disulfide (DMDS),
a volatile sulfide metabolite, accumulated in the headspace of a
sealed Petri dish.72 Accumulation of DMDS was monitored
using silver nanoparticle-based SERS tape affixed to the dish
cover, and subsequent SERS spectra were obtained. Notably,
during virus infection (Phi6) of P. syringae, changes in the
SERS intensity of the DMDS peak were observed. To discern
the statistical distinction between infected and noninfected
bacteria, a PCA-SVM classification model was employed,
utilizing a quadratic kernel and the first nine principal
components (accounting for 95% variance). The classification
confusion matrix revealed an overall accuracy of 93%, with
sensitivity and specificity exceeding 92%. These findings
suggest that instead of solely examining virus-specific SERS
peaks, bacterial peaks or metabolites can serve as indicators of
viral presence. Despite subtle changes, ML models offer
improved classification capabilities.
4.3. Nucleic Acids. Extensive research has been conducted

in the identification of nucleic acids to characterize microbial
communities in drinking water, wastewater, and soil both as a
means to understand the impact of environmental parameters
on microbial communities109 as well as to detect pathogenic
DNA/RNA110 and antimicrobial resistance genes.111,112 Non-
enzymatic methods, including DNA microarrays, nanopores,
and mass spectrometry, have emerged as rapid and effective
tools, enhancing the sensitivity and specificity of DNA
sequence detection. However, the noninvasive detection of
SERS surpasses these methods in terms of sensitivity, speed,
and simplicity.
Nucleic acids exhibit distinctive fingerprint information that

reflects their breathing and ring skeleton vibration modes and
they are well-suited for label-free SERS detection.113 The Bell
group114,115 has successfully detected DNA and RNA using
silver nanoparticles and MgSO4. The presence of MgSO4 as
the aggregation agent induces the formation of nanoparticle/

nucleotide aggregates, resulting in an increased number of
hotspots. Consequently, such natural trapping of nucleic acids
significantly enhances the signal strength. Xu et al. used iodide-
modified silver nanoparticles and MgSO4 to neutralize the
surface charge and enhance DNA binding as shown in Figure
3A.116 The authors demonstrated the effectiveness of using the
phosphate backbone (PO2

−) as an internal standard for single-
base DNA analysis through SERS. By synthesizing oligonu-
cleotides with varying adenine (A) and cytosine (C) ratios,
they normalized the SERS spectra based on the intensity of
PO2

− (Figure 3B). This revealed a clear, linear trend in the
characteristic adenine band intensity against increasing
concentration. Moreover, plotting the relative SERS intensity
of the adenine peak (723 cm−1) to the PO2

− peak (1087 cm−1)
against the A/(A + C) ratio resulted in a remarkably linear
relationship (Figure 3C). This method demonstrates high
precision and sensitivity for single-base discrimination.
However, label-free detection encounters a significant
challenge stemming from the similarity of the collected SERS
spectra that can be attributed to the common phosphate/sugar
backbone shared among nucleic acids. Raman peaks derived
from phosphate, notably those at 815/860, 1087, and 1230
cm−1 represent the symmetric bend, symmetric stretch, and
asymmetric stretch modes of PO2

− and contribute to the
overall spectral resemblance of numerous nucleic acids.116

Typically the only readily detectable difference lies in the
relative intensities of various nucleobases. Consequently,
distinguishing between nucleotides is challenging, especially
at lower concentrations. One effective approach to overcome
this challenge is to employ multivariate analysis. PCA in
combination with DA has been used to classify different
nucleic acids.117 Furthermore, achieving single-base sensitivity
or distinguishing mismatches poses a challenge with SERS
alone. Kang et al.99 addressed this issue by employing tree-
based multiclass support vector machine (Tr-SVM) classifiers
to differentiate SERS spectra of gene sequences with 2−10
base mismatches. A tree-based decision rule was utilized to
group correlated classes, offering multiple classifiers based on
one of two decision levels. SVM was applied to maximize the
margin between different classes using an optimal hyperplane.
Through 10-fold cross-validation, this adaptable discriminatory
tool accurately identified antibiotic resistance genes with a
prediction accuracy of 90%.
Alternative to label-free detection, an indirect method that

consists of the hybridization of nucleic acids can also be used
to detect DNA/RNA. In this approach, SERS probes
containing a complementary strand and a Raman reporter
hybridize with a target, increasing the Raman reporter’s
intensity.118 Research employing such a hybridization
technique with a SERS probe can identify the presence of
nucleic acids at concentrations in the picomolar119 to the
femtomolar range.120 However, concentrating solely on a
change in the intensity of a single peak in the presence of a
target gene may be affected by background interference,
particularly in complex matrices. Lu et al. identified
extracellular antibiotic resistance genes (eARGs) including
sul1, tetA, and blaTEM through a hybridization approach using
the Raman reporters 4-mercaptobenzoic acid (4-MBA), 2-
mercaptopyrimidine (4-MPY), and 4-nitro blue tetrazolium
chloride (4-NBT) in environmental samples (Figure 3D).68

Figure 3E illustrates SERS spectra for eARGs across
concentrations ranging from 1 aM to 1 pM. The sensitivity
of this method was compromised by the complexity and signal
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attenuation induced within environmental samples such as
wastewater treatment plant effluent, aquaculture water from
cattle farms, and groundwater. To reduce noise interference,
unsupervised ML for multivariate analysis was used by
selecting multiple characteristic peaks of Raman reporters
from the total SERS spectra hence, increasing robustness
compared to univariable analysis. Among SVM, RF, PLS, and
multilayer perceptron (MLP), RF was most suitable with the
lowest root-mean-square error (RMSE) and highest regression
coefficient (R2) shown in Figure 3F for sul1. The concentration
of eARGs in environmental samples, determined through RF,
was comparable to that of ddPCR with no statistically
significant difference (p-value > 0.05).

5. SERS-ML FOR THE DETECTION OF ORGANIC
POLLUTANTS

This section explores the application of SERS-ML for detecting
and characterizing organic pollutants, with an exclusive focus
on PAHs and OPPs. Both classes of compounds are toxic,
carcinogenic, and persistent in various ecosystems, making
their detection critical for environmental monitoring. Given
the complexity of environmental matrices, detecting PAHs and
OPPs at the trace level presents significant analytical
challenges. By focusing on these pollutants, we aim to
highlight the effectiveness of SERS coupled with ML in
overcoming these challenges and provide precise classification
and concentration of pollutants.
5.1. PAHs. PAHs are a hazardous class of chemicals whose

structure consists of multiple fused benzene rings.121 PAHs
have sparked significant environmental concern due to their
carcinogenic and mutagenic characteristics, and their propen-
sity to readily pollute essential natural resources such as
drinking and river water.122,123 These compounds arise
through the incomplete combustion of coals and fuels,124,125

resulting in their existence not as isolated chemicals, but as

complex mixtures. This complexity poses a challenge for the
on-site identification of PAHs. The detection of PAHs using
SERS poses several challenges. One of them is that the
hydrophobic nature of PAHs inhibits their adsorption to
citrate-stabilized Au or Ag colloids due to their incompatibility
with the surface chemistry.126 Attempts have been made to
overcome this limitation by modifying the substrate surface
with colloidal hydrophobic films.127,128 Surface modifications
such as thiol-modified and oleate-modified Fe3O4@Ag micro-
spheres resulted in a 10−8 mol/L limit of detection (LOD).126

Another challenge lies in accurately quantifying trace
concentrations of PAHs, as spectra often contain multiple
analytes with overlapping peaks, varying signal-to-noise ratios,
and significant background interference. Incorporating ML
methods with SERS has shown the possibility of detecting
PAHs as low as 5 nmol/L in PAH mixtures because of its
ability to handle the nonlinear relationship between concen-
tration and spectrum intensity.129 Atta et al. employed two
one-dimensional CNNs for the multiclass classification and
regression analysis of SERS spectra.85 The CNN models,
optimized through training on a calculated data set,
demonstrate high precision (97%), F1 score (94%), and
accuracy (90%) in classifying pollutants. The CNN regression
model effectively predicted pollutant concentrations, achieving
a combined RMSEspectrum of 5.92 × 10−2 and RMSEconc of 1.07 ×
10−1 (μM). In complex scenarios, where spectral data from the
same class varies over time and overlapping peaks (as seen
here), more sophisticated algorithms such as CNNs are more
effective than basic algorithms. The effectiveness arises from
their ability to not only extract features, but also capture
various patterns and possibilities, resulting in improved
performance in complex analyses.25 In addressing the challenge
of overlapping spectra arising from structurally similar benzene
structures in PAHs, a recent investigation led by Bajomo et al.
introduced an innovative unsupervised machine learning

Figure 4. Detection of organophosphorus pesticides (OPPs) in water using a deep-learning-based multicapture SERS platform. A. Schematic
diagram of PVP, MBA, and Cys stabilized Ag nanocubes at the air/water interface and B. their corresponding SERS spectra for each OPPs (MAP,
DMT, GLA, EPN, PT, and Pho). C. PCA plot showing cluster separation with multicapturer Ag-PVP + Ag-MBA + Ag-Cys. D. A schematic
illustrating the detection of OPPs in environmental water samples, combining SERS spectra collection with a developed deep learning model. E.
Confusion matrix showing the regression results for OPP concentration predictions in environmental samples. Adapted from ref 92. Copyright
2022 American Chemical Society.
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method named Characteristic Peak Extraction (CaPE)
algorithm for dimension reduction to extract distinctive
SERS peaks of PAH mixtures.130 By analyzing SERS spectra
from complex mixtures, particularly for varying concentration
ratios, CaPE efficiently identified and extracted spectra of
individual components, subsequently matching them against
an SERS spectral library for identification. By integrating
chemical sensing with the CaPE algorithm, they were able to
effectively address challenges such as incomplete libraries and
frequency shifts in SERS peaks. The SERS-ML tandem
methodology exhibits significant potential for rapid, on-the-
field identification and detection of chemicals based on
molecular structures, outperforming conventional demixing
algorithms.
5.2. OPPs. Another emerging contaminant class in

environmental systems, primarily sourced from agricultural
runoff, are OPPs such as methamidophos (MAP), dimethoate
(DMT), parathion, diazinon, and others. The potential toxicity
of OPPs poses serious health risks, including acute and chronic
neuropathy, reproductive toxicity, and endocrinopathy, high-
lighting the need for vigilant environmental monitoring.
Several studies have been done on the detection of OPPs
using SERS -ML either using a label-free strategy131−133 or by
leveraging the interaction between OPPs and reporter
molecules (e.g., 4-MBA, L-cysteine) attached to nanoparticles,
leading to a change in SERS spectra. Li et al. conducted a study
using plasmonic nanocube metasurfaces (NCMs) to detect
various OPPs, including MAP, DMT, glufosinate ammonium
(GLA), ethyl para-nitro-phenyl (EPN), parathion (PT), and
phosmet (Pho), achieving multiplex determination (Figure
4).92 Potential affinity agents for OPPs consist of poly-
(vinylpyrrolidone), 4-MBA, and L-cysteine assembled on Ag
nanocubes self-assembled at liquid/liquid interface (Figure
4A). The combined SERS spectra of OPPs were reconstructed
(Figure 4B), enhancing the spectral variations for each OPP.
SERS spectral variances before and after the capture of OPPs
on the modified NCMs were complex and could not be
distinguished manually. Hence, PCA was used to extract the
spectral variances (Figure 4C) and as an input for a ResNet-
deep learning model. The model demonstrated a classification
accuracy exceeding 96% and a regression accuracy surpassing
92%. Furthermore, the model successfully identified all six
OPPs spiked in environmental water samples (farm, river, and
fishpond water), highlighting the capability to exclude
interference from other matrices in real environmental samples
(Figure 4D). The regression confusion matrix for concen-
tration predictions demonstrated an accuracy exceeding 92%
(Figure 4E).

6. SERS-ML IN THE DETECTION OF INORGANIC
POLLUTANTS

In this section, we explore the intersection of water quality
monitoring and advanced analytical techniques, focusing on
the detection of inorganic anions and cations.
6.1. Anions. Regular monitoring of water systems is

essential due to the occurrence of problematic inorganic
nitrogen and sulfur species, such as nitrates, nitrites, and
sulfates. When these compounds are present in elevated
concentrations, they can pose substantial risks to aquatic life
and other organisms. For instance, nitrates and nitrites can
induce eutrophication and disturb aquatic ecosystems, whereas
sulfates may aid in the creation of sulfuric acid, leading to pH
declines in water bodies and subsequent disruptions.134

Anthropogenic sources of nitrates in water and wastewater
primarily reflect agricultural discharge coming from pesticides
resulting in eutrophication135 and elevated concentrations of
nitrite can cause blue baby syndrome in infants.136 SERS being
a less destructive and noninvasive technique can help with the
in situ detection of these anions. The inherent negative charge
of anions elicits charge−charge repulsion, however, limiting the
application of SERS. To address this, cation-coated nano-
particles and SERS substrates have proven effective in
mitigating the repulsive forces and enhancing SERS
capabilities. Moiser-Boss et al. employed a cationic silver
substrate to detect nitrates and sulfates via solid-phase
extraction.137 They successfully detected nitrates at concen-
trations below 100 ppm. Kuster utilized nanostructured gold
substrates without surface functionalization for the in situ
detection of nitrate.138 PCA was employed to time-averaged
SERS spectra over the range of 1000 cm−1 to 1350 cm−1 to
distinguish varying concentrations of nitrates in water through
SERS. This method proved effective in achieving improved
differentiation, considering the spectral noise measure-
ments.139 Gajaraj and colleagues identified the presence of
nitrate in water and wastewater at a low concentration of 1
mg/L.140 However, when analyzing actual wastewater samples,
the absorption of nitrates in the “hotspot” region was impeded
due to the interference of other ions, namely chloride and
phosphate. This interference resulted from the competitive
interaction among these ions due to their identical charge and
ionic radii.137 To eliminate chloride adsorption, one method
involves applying a coating to the SERS substrate with
enhanced selectivity toward nitrates and sulfates.141

Until now, limited research has combined ML with SERS for
inorganic pollutant detection. While SERS has successfully
achieved low limits of detection with single peak observation
for anions, addressing complex samples with diverse anions
requires more than manual differentiation based on a single
peak. Integrating ML holds promise for facilitating multiplex
detection of ionic anions in water and wastewater within
minutes, streamlining procedures, and significantly improving
time efficiency.
6.2. Heavy Metal Cations. Expanded industrial activities

have led to widespread heavy metal pollution in both water
and soil.142 Accumulation of heavy metals in water and crops
poses a significant threat since these materials are potentially
toxic to living organisms.143 The need to detect metal ions in
water has driven advancements in analytical techniques. Direct
detection of monatomic metal ions using SERS is challenging
due to their small Raman scattering cross-section and the trace
concentrations present in water.144 To overcome this
limitation, metal ions can be detected through chemical
binding to organic receptor ligands that induce perturbations
in SERS intensities upon the formation of a coordination
complex.145−147 Chelating agents such as Schiff base,148

cyanide,147 terpyridine derivatives146 have been used for the
detection of Co(II),146 Cd,149 Hg(II),150 As(III),151 and
Cu(II)145 with LODs (μg/L) lower than the WHO defined
limits. Docherty et al.148 identified toxic metal ions including
Ni(II), Cu(II), Mn(II), and Co(II) through SERS using [O,
N, N, O] tetradentate bis-Schiff (salen) base ligand. The
interaction between the salen ligand and various metal ions led
to modifications in the intensity and frequency of several bands
that was influenced by the size, mass, and coordination bond
strength of the metal ions.152 Notably, alterations in the C�N
stretch peak around 1600 cm−1 of the salen ligand were
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observed introducing different metal ions. It is essential to
highlight that although subtle changes are discernible, the
identification of peak shifts and intensity changes in complex
sample matrices is challenging. The application of PCA proved
effective in distinguishing between different metal ions, where
each metal ion formed distinct clusters, facilitating clear
differentiation. However, it is worth noting that predicting low
concentrations of metal ions in real samples posed difficulties
due to interfering signals from organic matter.153 To overcome
the interference from the background signal, Fang et al.154

integrated CNN with SERS for predicting the As(V)
concentration in water using the chelating agent L-cysteine as
shown in Figure 5A,B. PCA was applied to highlight the
spectral differences, revealing clear clustering of the spectral
data, with the first two PCs accounting for 99% of the variance
(Figure 5C). However, significant overlap in clusters was
observed at lower concentrations of As(V). When PCA−PLS
was used for prediction, the low coefficient of determination
(R2 = 0.884) and high RMSE of 18.34 indicated poor
prediction accuracy, likely due to the complex variables in the
SERS spectra. In contrast, combining CNN with SERS
provided rapid and accurate predictions of As(V) ions down
to 1 ppm, achieving an R2 of 0.991 and a much lower RMSE of
3.36. The superior performance of CNNs compared to PCA−
PLS may be attributed to the ability of CNNs to handle
complex patterns and nonlinear relationships within high-
dimensional SERS data.83 It is noteworthy that traditional
methods like ICP-MS for detecting metal ions can achieve
detection levels in the ng/L range,155 making them superior to
SERS in terms of sensitivity, given that SERS typically has a
limit of detection around μg/L. Nevertheless, the SERS
method provides a much cheaper and simpler alternative
capable of detecting the metal ions at μg/L levels and with ML
rapid analysis within a few seconds.

Another compelling study to detect the presence of heavy
metals in drinking and wastewater led by Wei et al.,156 used
bacterial metabolic response transduced by heavy metals into
chemical (metabolite) signals using SERS with ML algorithms
(Figure 5D). Changes in the SERS spectra of metabolites,
specifically the nucleotides ATP, uracil, and adenine, were
observed in E. coli cultures upon exposure to Cr(VI) and
As(III) (Figure 5E). The integration of SERS with the SVM
model demonstrated a detection limit of 6.8 pM for Cr(VI)
and 0.5 pM for As(III), achieving sensitivities and specificities
exceeding 97% (Figure 5F). Notably, this approach achieved a
LOD 6 orders of magnitude lower than traditional growth
inhibition methods relying on optical density. Moreover, the
CNN model successfully detected the concentration of heavy
metal ions in tap water and wastewater samples, exhibiting the
same LOD as the SVM model. This demonstrates that the
reliable performance of the SERS model, aided by machine
learning, remained stable irrespective of the impurities present
in the samples.
In essence, ensuring the quality of drinking water and

discharged water necessitates portable, rapid, and highly
sensitive detection techniques, a need well-addressed by the
combination of SERS with ML.

7. SERS-ML IN THE DETECTION OF MICROPLASTICS
Microplastics, tiny plastic particles less than 5 mm in size,
typically originating from the breakdown of larger plastic
containing items have emerged as a new type of pollutant, and
have been detected in air, tap water, river, and sea-
water.37,157−159 The ubiquitous nature of microplastics has
raised concern due to their pervasive presence and their
potential ecological and human health risks. As these tiny
particles infiltrate aquatic ecosystems, soils, and air, detection
techniques must adapt to the complexity of plastic sources,

Figure 5. A. Schematic illustration of an AuNP/L-cysteine SERS substrate used for detecting As(V). B. SERS spectra of As(V) solutions at varying
concentrations on the AuNP/L-cysteine substrate. C. PCA scatter plot showing the first two principal components for different concentrations of
As(V). Adapted from ref 154. Copyright from 2023 American Chemical Society. D. Schematic diagram illustrating heavy metal detection using
SERS spectra of key metabolites of E. coli. E. Averaged SERS spectra obtained from E. coli cultured in media with K2Cr2O7 and NaAsO2, varying in
concentration. F. SVM model used to classify between Cr(VI) and As(III) for concentration range 0.68 pM to 0.68 μM and 0.5 pM to 0.5 μM
respectively and tSNE clustering analysis for different concentrations of Cr(VI) and As(III) in red and blue, respectively. Adapted from ref 156.
Copyright from 2023 Proceedings of the National Academy of Science.
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their varying sizes, and their concentrations. Several SERS-
based direct and indirect-based microplastics detection
methods have been published that were able to detect
microplastics in concentration ranges from 0.97 ng/mL to
6.5 μg/mL.160−162 The similarity in SERS profiles among
different microplastics has led to the use of ML methods with
the potential to significantly expedite experimental analysis and
computation. Luo et al.163 introduced an innovative approach
combining CNN with SERS for the rapid identification and
classification of microplastic mixtures. Six types of micro-
plastics were dispersed in water, creating 6300 sets of SERS
spectra for training and testing. The confusion matrix results of
each MP of the trained CNN model show that polycarbonate,
polystyrene, and polyethylene terephthalate were all identified
correctly. The CNN model achieved a remarkable identi-
fication accuracy of 99.54% without extensive spectral
preprocessing, demonstrating its robustness in handling
unprocessed SERS spectra for rapid and accurate identification
of complex MP mixtures.
Recently, Kim et al. developed 3D-plasmonic gold nano-

pocket (3D-PGNP) nanostructures integrated with a syringe
filter to filter and detect polystyrene (PS) and polyethylene
(PE) microplastics as shown in Figure 6A.79 Using SERS
spectra of microplastics along with background noise, a logistic
regression model was trained to convert map data into a digital
format by classifying pixels as MP-positive or MP-negative
(Figure 6B,C). By using digital counts, they were able to detect
PS at a concentration of 2.5 μg/mL. When quantifying positive
pixels in the digital data, a logarithmic trend is observed
between the digital count and the concentration of PS (Figure
6D). Additionally, they applied the developed model to
complex environmental samples by spiking microplastics into
tap water, river water, and seawater, successfully detecting low
concentrations of PS with a high recovery rate, even in the
presence of interferences.

8. FUTURE SCOPE: TRANSLATING SERS-ML
POTENTIAL INTO REAL-WORLD SOLUTIONS

The integration of SERS with ML holds exceptional promise to
revolutionize various fields by offering rapid, sensitive, and
robust analytical methods. In environmental monitoring,
SERS-ML platforms integrated with sensor networks have
the potential to transform pollution monitoring with source
tracing, thus enabling targeted mitigation and remediation
strategies. Similarly, in biothreat detection, healthcare biosens-
ing, and food safety, SERS-ML technologies offer significant
potential. Despite such potential, the widespread adoption of
SERS-based sensors as a standard recognition tool faces several
challenges, necessitating concerted efforts to address these
limitations and unlock future opportunities.
One of the primary hurdles is the lack of standardized

protocols for SERS-ML applications. SERS spectra can be
influenced by various factors such as substrate morphology,
experimental conditions, and complex backgrounds, leading to
challenges in interpretation and reproducibility. To address
this issue, the development of standardized data sets and
protocols, along with incorporation of internal standards or the
establishment of calibration curves, is crucial. Identifying
relevant spectral features and designing effective feature
extraction methods can further improve SERS-ML models.
Addressing fundamental challenges in ML is also pivotal for

advancing SERS-ML capabilities. Generalizability remains a
significant concern, as models trained on lab-generated data
sets may stumble when applied to real-world samples due to
complex matrix effects and variations in background
interference. Techniques such as meta-learning, adversarial
robust ML, and domain transfer can enhance model robustness
and out-of-distribution generalization.164 Furthermore, the
interpretability of ML models is essential for understanding
the underlying chemical and physical processes captured in
SERS spectra. While complex models such as deep neural

Figure 6. Detection of microplastics using SERS-based logistic regression model. A. Schematic illustration of a 3D-PGNP system integrated with a
syringe filter for microplastic filtration. B. SERS maps for PS at concentrations ranging from 0 to 250 μg/mL, along with the corresponding digital
SERS maps after applying ML model. Black pixels represent the absence (0) of PS, while blue pixels indicate its presence (1). C. Schematic
illustration of microplastic classification using the logistic regression method, including data training, data input, and quantification. D. Quantitative
digital counts and the sum of positive Raman intensities (PRI) alongside the corresponding calibration curve. Adapted from ref 79. Copyright from
2023 Wiley Online Library.
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networks offer high predictive power, their black-box nature
poses interpretability challenges. Leveraging techniques such as
explainable artificial intelligence, and visualization tools can
help both ML practitioners and domain experts extract
meaningful insights from complex spectra, further enhancing
trustworthiness. Moreover, transitioning from a model-centric
to a data-centric AI approach in SERS-ML is key to tackling
real-world challenges more effectively. While conventional
methods prioritize models, they often stumble in real-world
scenarios due to data complexities. A data-centric focus
prioritizes data quality, preprocessing tailored to SERS
specifics, and robust validation. This ensures models are
trained on top-notch data sets, boosting performance and
adaptability. Embracing this shift not only deepens our
understanding of data but also equips us with more resilient
ML algorithms for practical SERS applications.
While resource-intensive, another hurdle is the requirement

for rigorous validation against established analytical techniques
on large sample sets as a means to validate the reliability and
robustness of SERS-ML methods. Exploring synergies between
SERS and other analytical techniques such as mass spectros-
copy, infrared spectroscopy, and PCR can enrich chemical
analysis and increase the reliability of SERS analysis.
Integrating multimodal data fusion approaches can enhance
the robustness and accuracy of SERS-based chemical sensing
platforms. Collaborative interdisciplinary efforts are key to
realizing the transformative impact of SERS-ML technologies
on pressing societal and environmental issues.
Finally, the transformation of SERS-ML into a portable,

field-ready tool necessitates comprehensive technological
advancements at the system level. This entails the creation of
compact SERS devices that seamlessly integrate with portable
Raman spectroscopy tools and streamlined sample collection
and handling systems. The development of efficient ML
algorithms, along with optimized distributed controller-
computing-communication systems tailored for resource-con-
strained environments, and the exploration of hardware
acceleration solutions, are pivotal needs for enabling on-site,
real-time detection and decision-making driven by SERS-ML
technology.

9. REFLECTING ON THE POTENTIAL: A CALL TO
CONTEMPLATE SERS-ML INTEGRATION

While the authors acknowledge the significant potential of
SERS-ML and foresee a promising future for integration, we
present key considerations regarding the application of SERS-
ML in real-time scenarios. Additionally, we offer a grand vision
for transforming the field through the collaborative integration
of SERS with ML. The first aspect to contemplate is
democratized sensing and decision-making. Advancements in
robust AI and hyperspectral analytics stand at the forefront of
revolutionizing water quality monitoring. These advancements
will enable the deployment of multiparameter aerial and
autonomous aquatic robotic systems, equipped with SERS
technology, across diverse geographical regions. By incorporat-
ing SERS-ML integration, these systems will have the capacity
to efficiently detect and analyze water contaminants in real
time, offering comprehensive insights into water quality. Cost-
effective, miniaturized sensors coupled with interpretable ML
software can provide decentralized, real-time insights into
water quality for local communities and municipalities.
Continuous scientific discoveries are also anticipated. The

integration of vast data sets from distributed monitoring, along

with online deep learning and explainable models, may unveil
new interdependencies and biogeochemical mechanisms. This
continuous enhancement of process and fate knowledge
regarding emerging pollutants is crucial for sustaining usable
resources and has the potential to establish a feedback loop for
diagnostics and future solutions. Moreover, evidence-based
interventions and adaptations are envisioned. By combining
spatiotemporal high-resolution contaminant predictions with
human and ecological risk models, dynamic and cost-
optimizing policy interventions can be customized for local
contexts. This approach aims to improve human and
environmental health equitably through adaptive and targeted
safeguards. In summary, the synergistic integration of spatial
analytics, real-time AI, and systems modeling is envisaged to
democratize, discover, and decide, thereby securing water
futures effectively.
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(111) Hiller, C. X.; Hübner, U.; Fajnorova, S.; Schwartz, T.; Drewes,
J. E. Antibiotic Microbial Resistance (AMR) Removal Efficiencies by
Conventional and Advanced Wastewater Treatment Processes: A
Review. Sci. Total Environ. 2019, 685, 596−608.
(112) Pazda, M.; Kumirska, J.; Stepnowski, P.; Mulkiewicz, E.
Antibiotic Resistance Genes Identified in Wastewater Treatment
Plant Systems − A Review. Sci. Total Environ. 2019, 697, No. 134023.
(113) Garcia-Rico, E.; Alvarez-Puebla, R. A.; Guerrini, L. Direct
Surface-Enhanced Raman Scattering (SERS) Spectroscopy of Nucleic
Acids: From Fundamental Studies to Real-Life Applications. Chem.
Soc. Rev. 2018, 47 (13), 4909−4923.
(114) Papadopoulou, E.; Bell, S. E. J. Label-Free Detection of Single-
Base Mismatches in DNA by Surface-Enhanced Raman Spectroscopy.
Angew. Chemie - Int. Ed. 2011, 50 (39), 9058−9061.
(115) Bell, S. E. J.; Sirimuthu, N. M. S. Surface-Enhanced Raman
Spectroscopy (SERS) for Sub-Micromolar Detection of DNA/RNA
Mononucleotides. J. Am. Chem. Soc. 2006, 128, 15580−15581.
(116) Xu, L. J.; Lei, Z. C.; Li, J.; Zong, C.; Yang, C. J.; Ren, B. Label-
Free Surface-Enhanced Raman Spectroscopy Detection of DNA with
Single-Base Sensitivity. J. Am. Chem. Soc. 2015, 137 (15), 5149−5154.
(117) Czaplicka, M.; Kowalska, A. A.; Nowicka, A. B.; Kurzydłowski,
D.; Gronkiewicz, Z.; Machulak, A.; Kukwa, W.; Kaminśka, A. Raman
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