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« Optimal MG dispatch with DR demonstrates 17.5% peak load reduction and 8.8% cost savings in the case study.
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In the face of unprecedented challenges of upcoming fossil fuel shortage and reliability and security of the
grid, there is an increasing interest in adopting distributed, renewable, energy resources, such as micro-
grids (MGs), and engaging flexible electric loads in power system operations to potentially drive a para-
digm shift in energy production and consumption patterns. Prior work on MG dispatch has leveraged
decentralized technologies like combined heat and power (CHP) and heat pumps to promote efficiency
and economic gains; however, the flexibility of demand has yet to be fully exploited in cooperation with
the grid to offer added benefits and ancillary services. The object of the study is to develop microgrid opti-
mal dispatch with demand response (MOD-DR), which fills in the gap by coordinating both the demand
and supply sides in a renewable-integrated, storage-augmented, DR-enabled MG to achieve economically
viable and system-wide resilient solutions. The key contribution of this paper is the formulation of a
multi-objective optimization with prevailing constraints and utility trade-off based on the model of a
large-scale MG with flexible loads, which leads to the derivation of strategies that incorporate uncer-
tainty in scheduling. Evaluation using real datasets is conducted to analyze the uncertainty effects and
demand response potentials, demonstrating in a campus prototype a 17.5% peak load reduction and
8.8% cost savings for MOD-DR compared to the non-trivial baseline, which is on par with the Oracle
for perfect predictions.
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1. Introduction grid reliability and security [1-4]. The synergistic potential, never-

theless, is yet to be fulfilled by taking up challenges like the utiliza-

The convergence and mutual strengthening of distributed gen-
eration (DG), storage, demand response, and the massive integra-
tion of sensing, communication, and control technology initiates
profound changes in the energy production and consumption pat-
terns, and opens up ample opportunities for addressing the issues
of upcoming fossil fuel shortages, environmental preservation, and
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tion of highly intermittent renewables [2], the operation of DG in
tandem with storage [5], and the transformation of domestic cus-
tomers from static consumers into active participants [6].

The envisioned solutions are multifaceted, but from the practi-
tioners’ point of view, they can be oriented towards the supply or
demand sides. The division of the grid into productive sub-systems
- so-called microgrids (MGs), which integrate DG and storage for
local demand - has been proposed to increase manageability and
reduce transportation losses [7-9]. A MG can be either connected
to other MGs and/or the main grid for energy exchange, or run in
island mode as circumstances or economics dictate [3,9-11,8].
The efficiency and environmental benefits also arise from the
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Nomenclature

ocfnf[‘]“g minimum supply electricity for curtailable load of
" building b, a5 € [0,1]

bR minimum load reduction in DR, PR € [0,1]

X; forecast features at time t

& set of uncertain variables at time ¢

chg dis

charge, discharge
.curt - shift oy reajlable, shiftable loads

dm_ s demand, supply
‘b building index b € [1, B]
« CHP type index k € [1,K]
‘t time index t € [0,T]
nh energy conversion efficiency of technology A
NMieay ~ heat storage standing decay factor, 77, € (0,1]
Autil utility-to-dollar conversion ratio
rﬁfhg minimum rate of charging for heat storage
o, utility parameters for heating
B number of buildings in the microgrid
DPR binary DR state at time t, D*{0,1}
E electric power/energy
fi() forecast function at time ¢t
H heating power/energy
K number of CHP types
cooling power/energy
PR fixed DR incentive at time t

T time horizon

Xt binary state variable at time ¢, X; € {0,1}

Ve ground truth variable at time t

ANN artificial neural network

CHP combined heat and power

CLS[c] constrained least squares forecast combination
cop coefficient-of-performance

GP Gaussian process forecaster

HER heat-to-electricity ratio
KNN K-nearest neighbors
MG microgrid

MG-C  microgrid coordinator

MILP mixed integer linear programming

MLP multilayer perceptron

NG natural gas

OLS[c] ordinary least squares forecast combination
rat rated capacity/power

RMSE  root mean squared error

Robust[c] robust forecast combination
S-ARIMA seasonal autoregressive integrated moving average

forecaster
SoC state of charge
SVR support vector regression

adoption of combined heat and power (CHP) by reusing the gener-
ator’s waste heat to simultaneously provide electrical and thermal
energy [9,12,13]. On the other hand, active demand response (DR),
defined as “changes in electric usage implemented directly or indi-
rectly by end-use customers/prosumers from their current con-
sumption/injection patterns in response to certain signals” [6],
has been put forward and implemented to lower peak energy
usage and utility bills, and, at the same time, bring higher capacity
factor and security of distribution grids [14,15]. The paradigm shift
can be further driven by the offer of incentive-based DR contracts
[6,16], and the institution of time-differentiated pricing, e.g., time-
of-use (TOU) and real-time pricing (RTP), which reflect fluctuating
wholesale prices to the end users and encourage responsive load
shifting and curtailment [3].

While the flexibility and value brought by DR to energy systems
have been widely recognized, they have not been fully captured in
the operation of MG. Despite the challenges of a comprehensive
treatment of DR together with the uncertainty inherent in renew-
ables and wholesale market prices, the potential social and eco-
nomic impacts are substantial and worthwhile of further
investigation [6,2,1].

It is, therefore, the object of the study to develop microgrid opti-
mal dispatch with demand response (MOD-DR), which fills in the
gap by simultaneously exploiting both the demand and supply
sides in a renewable-integrated, storage-augmented, DR-enabled
MG to achieve economically viable and system-wide resilient opera-
tional solutions.

The rest of the paper is organized as follows. Previous works are
surveyed in Section 2, with an emphasis on modeling, and dispatch
and DR under uncertainty. Section 3 discusses the modeling of MG
with flexible demands, including the problem formulation, the MG
coordinator and DR mechanism, typical DG technologies and load
profiles of buildings connected to a pipeline network. Section 4
deals with planning under uncertainty, which includes the fore-
casting methodology, and the day-ahead and adaptive dispatch
strategies. The dataset and implementation are discussed in Sec-

tion 5, followed by cost analysis (Section 6) and a case study for
the day-ahead and adaptive strategies in a practically-oriented set-
ting (Section 7). Conclusions are drawn in Section 8.

2. Related work

Previous work has been undertaken on modeling high-level sys-
tem design for MG to study its profitability and optimal technology
selection [17,15,12,5,18,13,9]. The average long-run operational
and real options valuation have been incorporated in [19,18,13]
to examine the economics of MG with a diverse combination of
CHP, boilers, chillers, electric batteries, thermal storage, solar pan-
els, and wind turbines. Though this work lent insight into the mod-
eling of MG, the simplicity of the treatment of the uncertain
variables, such as electricity price and renewables, becomes a dis-
advantage for daily operational planning.

The dispatch of MG is, in essence, a unit commitment (UC)
problem, which refers to optimizing generation resources over a
short time horizon to satisfy load demand at minimum operational
cost while satisfying prevailing constraints [20,17]. Diverse
approaches have been pursued based on linear programming (LP)
[21], mixed integer linear programming (MILP) [22,10,23],
dynamic programming [24,12,13], simulated annealing [3], artifi-
cial neural networks [25], particle swarm optimization [ 18], hybrid
methods [26] and evolutionary algorithms [27,5], as well as game
theoretic agent-based formulations [7]. Mohamed and Koivo [28]
presented a generalized multi-objective optimization for mainte-
nance cost and emission reduction of a MG based on game theory.
Chaouachi et al. [21] proposed a MG energy management approach
using LP with predicted renewable energy resources and load
demand. Kriett and Salani [23] targeted a residential MG with
energy storage for operating cost minimization using MILP, which
achieved an annual operating cost saving between 3.1% and 7.6%.
Dynamic programming (DP) has been employed by Kitapbayev
et al. [12] and Diaz and Moreno [13] to explore different modes
of operation to maximize the total payoff, yet DP relies on the
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discretization of states and is susceptible to computational and
memory limitations. Ommen et al. [29] conducted an empirical
comparison of LP, MILP, and non-linear programming (NLP), and
concluded that MILP is most appropriate from the viewpoint of
accuracy and runtime, with the added capability of dealing with
the part-load region as in CHP. In light of their findings, and the
growing interest in MILP driven by the enhancement of the perfor-
mance of MILP solvers such as CPLEX and Gurobi [30,20], we lever-
age the accuracy and scalability of MILP in our formulation, with the
added benefit of enabling the incorporation of DR that has been
missing in previous MG operation studies.

The uncertainty that arises from penetration of renewables and
volatility of pool prices also exerts an impact on MG dispatch. Also,
due to the intermittent renewable generation and the limit of
power transmission and distribution systems, renewables are often
curtailed in many places of the world [31]; thus, it makes DR more
useful by helping renewables be locally consumed. The effects of
forecasting errors on the economic value of dispatch have been
analyzed for the prediction of electricity price [22,32], loads
[33,34], and weather [10], and there is consensus that the optimal-
ity of dispatch and the accuracy of forecasts are concomitant.
Uncertain variables can be systematically considered in dispatch
planning through prediction [1,35-37,33] or stochastic program-
ming (SP) [38,5,18]. Park et al. [36] studied a UC algorithm antici-
pating a given load-uncertainty. Delarue and Dhaeseleer [33]
developed an adaptive MILP UC strategy to determine the value
of forecasting. Compared to the present study, they have more sim-
plistic assumptions on load and generators. Baziar and Kavousi
[18] employed the 2 m point estimate method, which conducts
2 m runs of the deterministic framework for each of the m uncer-
tain variables in terms of the first three moments of the relevant
probability density function, and the optimal solutions are aggre-
gated to find the expected value of the objective function. Morales
et al. [38] and Niknam et al. [5] account for stochasticity by gener-
ating a large number of scenarios, i.e., realizations of the random
variables throughout the horizon, and aggregate the solutions to
obtain the dispatch plan. The main concerns about SP include the
reliability of the distribution approximation to the true underlying
process, and the scalability and computational issues that arise
from the augmented problems. In terms of methodology, we find
similarity with the work by Molderink et al. [1], who proposed
the three-step control methodology of prediction, planning, and
real-time control, though their approach is iterative dynamic pro-
gramming with agent-based load scheduling, and their test case is
conducted in a single house as compared to district level planning
in the present study.

As for DR that pursues changes in consumption patterns
through incentive payments or price of electricity [39], there are
several solution groupings, which focus on direct load control
[40,41,15], price elasticity [42,43], utility maximization [44], and
integrated operational models [45]. De Jonghe et al. [42] developed
an elasticity-based operational and investment model to deter-
mine the optimal generation mix; however, their model is based
on LP and has not included technologies like CHP, storage, or
renewables. Patteeuw et al. [45] proposed an integrated modeling
of active demand response with electric heating systems coupled
to thermal energy storage systems, where both the demand side
and the supply side are represented by physical models. Kim and
Giannakis [44] considered a DR problem entailing a set of devices/-
subscribers whose operating conditions are modeled using mixed-
integer constraints. MILP is employed to obtain optimized device
operational periods and power consumption levels in response to
dynamic pricing information to balance user utility and energy
cost.

Our key proposal, MOD-DR, in comparison, is aimed at giving
guidance on optimal MG dispatch on a district level with DR-

enabled loads. It leverages the versatility and efficiency of dis-
tributed generation and storage, and the flexibility of DR-enabled
demand, to provide a cost-effective and grid-cooperative solution
in an uncertain environment.

3. The model of MG with flexible demand

The problem of optimal MG dispatch with DR is formulated
within an optimization framework. The models of the key compo-
nents, including the MG coordinator, building loads, and generator
and storage technologies, are elaborated in subsequent sections.

3.1. Problem formulation

The key problem to tackle is: “How do we coordinate load and
generation under demand response on a district energy level to
ensure economic viability of the microgrid and system-wide
resilience?”, where two prominent factors are involved:

e Elasticity of loads for individual buildings under the MG
management

e Uncertainty and fluctuation of energy demands, electricity tariffs,
and weather conditions

The elasticity aspect, crucial yet under-exploited in previous
work, can unlock the potential of substantial peak demand reduc-
tions through either load shaving or shifting, which can benefit the
MG by lowering the energy bill, and the grid in the form of ancil-
lary services. It entails a trade-off among the operation costs, the
utility (i.e., the satisfaction derived from energy consumption) for
each building, and the DR incentives offered by the grid. Section 3
introduces the modeling of both the supply and demand sides of
the MG as is shown in Fig. 1. The uncertainty part, inherent for
all dispatch planners, is dealt with by the forecasting module of
MG-Coordinator (MG-C); several methods are presented in
Section 4.1.

The basic optimal dispatch problem can be formulated by:

T
min Y f X &)+ o (R 26, &) — R — duathe ()
C (PO)

S.t. X € Xe(2,&,), 2t € Z¢(21,%), Vt=1,....T

where x; is the dispatch proposal at time ¢, which includes variables
within four categories: generation, e.g., power from CHP and PV;
storage, e.g., charging/discharging with the cooling storage; grid
import/export; and supply for buildings. The state variable, z;, cap-
tures the state-of-charge (SOC) of the storage as governed by the
previous state and action: z; = ¢(z;_1, ;). The uncertain quantities,
e.g., solar irradiation Irr, and electricity price c&™, are summarized
in &,.

Objective function. fO*(x;,&,) is the expenditure on electricity,
heat, and gas to operate the generation facility, net of any electric-
ity or heat sold back. The maintenance cost f/"" (x;, 2, &,) refers to
the expense for facilities with on-site personnel; it is proportional
to the amount of power that has been generated. Natural gas-
fueled devices are usually more costly to maintain than their elec-
tric counterparts; the marginal price also decreases as capacity
expands.

On top of the former commonly adopted conditions [12,29,10],
the DR incentive, R?%, and building utility, u,(x;), are incorporated
in order to reveal the effect of demand response. MG-C, as a result,
is able to offer guidance for load shaping based on individual build-
ing profiles, as enforced by financial contracts or service agree-
ments, where Ay = 0 acts as the trade-off parameter for
building satisfaction.
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Fig. 1. System overview. The MG owns a generation facility, and can exchange energy with the grid to meet the building demands. Additionally, the uncertain variables and

DR incentives are incorporated during planning.

Building utility. As the MG-C assesses the potential dispatch
strategies, individual buildings are able to manifest their propen-
sity to consume by the specification of:

e Demand profiles, consisting of critical, curtailable, and shiftable
loads

o Utility functions to express the rigidity with respect to load shav-
ing and shifting

While the former indicates the amount of loads that are DR-
enabled/disabled, the latter depicts a continuum of satisfaction
mappings, generally employed in game-theoretic scheduling [46]
and agent-based controls [44,14]. In particular, u,(x;) comprises
of utility functions for curtailable and shiftable loads, which are
piece-wise linear, non-decreasing, and concave,

E, Sl‘llfl’ sp,shift
=2 " UER™, L)

b<B
+ug(Q)

+ ug curt (E;pb.curt) + UE (H:[[’;)

(1)

where E%*"™ and E%“" represent the shiftable and curtailable loads
supplied at time t for building b, and H{, and Q;', denote the heating
and cooling supply.

The shiftable load utility u; ™" ({Ef;""}, _,) promotes early com-
pletion of shiftable tasks and penalizes deferred loads. We define

i - S
Zr’ <T tb

isfied at time t; then u}*""({E, Sh‘“}t,g)
decreasing slopes.! Intuitively, the no-complaint scenario unfolds
when all the jobs up to the current time are completed, while the
diminishing marginal return brings flexibility to load shifting

The curtailable utility, uy ™ (E}5“™), ul! (H%), and ug (Q), share
the property of discouraging unfulfilled demands at any time. For
heating, as an example, the proportion of heat demand satisfied

as the percentage of total shiftable demands sat-

is piece-wise linear with

E shift

T The value of uESh‘“({ES"Sh‘"} ), which has slopes vj on segments

[HEshlft HEShlft]' with yEShIft > > 7;NEs:‘|‘t’"‘t 0 and 0 = 9Esh|ft << 9;5\,::‘1‘2: =1, is
given by the linear program (LP).
ST
E.shift / ¢ sp,shift _ E shift
w (ES ) = me%Zf“k ; vy (2)
E.shift _
where 0 < '//n < ()E.shlft UE shlft fOl' n= -l ..... NE shift and Zg X l//n _ Eshlﬂ

Sp dm
o minn b

H dm
a- ~min, h)H

is pff, = €[0,1), where of, < (0,1] is the minimum
requirement.” Parameter A, therefore, is regarded as the utility-
to-dollar conversion ratio, in the light of the multi-objective formula-
tion that tailors the treatment of (PO) with varying DR commitment.

Power constraints and system resilience. Above all, it is crucial to
maintain the balance between load and generation at all times
[47,5,10]. For electricity (and heat), we enable purchasing/selling
electricity (and heat) from/to the grid (industry heat network)
(see Appendix A for thermal balances),

<E%rid.pur _ E%rid.sal) + ZEEZ[P + EFV + (Elfat.from _ E?at,sto)

k<K
_ tech sp,shift sp,critic sp,curt
= D BT+ (Et,b +Ep T +Ey ) 4)
techeSg gy b<B

where Spqnm is the set of technologies that consume electricity,
including the electric chiller and boiler, and heat pump.

The dispatch variables are confined to the feasible set X;(z:, &)
delineated by the power balances, the generation and storage tech-
nologies, e.g., CHP partial loads, PV outputs, and charge/discharge
rate limit for storage, DR and load stipulations (Section 3). The states
z, are constrained to Z,(z,_1,%;) defined by the dynamic charging
behaviors and the capacity limits. System resilience can be pre-
scribed in either the cap on the total import power from the grid
[44,47,5,10], or the spinning reserve limits on the storage resources
[47,5].

The MG can exchange energy with the grid and dispatch gener-
ators to meet the demands of buildings, as operated through the
MG coordinator (Fig. 2).

3.2. The MG coordinator and DR

The MG coordinator (MG-C) is a software-defined entity that
serves the MG by managing the energy balance between demand
and supply, and the risks of exposure to spot market volatility.
For the particular MG under study, like university campuses [48],

2 The functlon value of uf! (HS") with marginal utility 2}/ on segments [0} |, 0] with
> > 0M >0and0=06f < <6 =1is given by the LP:

ull(H?) = max Z”Hl//n

(w)y, 1n=1

®3)

H _
where 0 <y, <O — 0% | forn=1,...,N", and 3V, v, = Bl
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Fig. 2. Illustration of the flow of payment, energy, and information among buildings, MG coordinator, and the grid under DR.

where the main object is energy provision rather than retailing, the
MG-C is concerned about the operating costs of its generation facil-
ity and the expenditure on gas and electricity in the wholesale
market, as illustrated in Fig. 2.

Apart from billing the MG on the actual electricity consumption,
the network operator can provide DR signals based on market
mechanisms [49,16], DP® e {0,1}, up to 24-h ahead notice for par-
ticipants to consider reducing peak demands. For MG-C, the deci-
sion of engagement, XtDR € {0,1}, depends on the predicted high
electricity price events, on top of the incentive contracts agreed
upon with the grid. To be more specific, the MG-C will be rewarded
with a fixed amount, PR > 0, for partaking in DR (and potentially
offering ancillary services), i.e., D’® = XP® = 1:

RY® = rPRDPRXYR, (5)

with the minimum requirement of op¥ -percentage building load

shedding®

XI[)RZ(Ei%curt + Ef%smﬁ) < Z(l _ ag‘i{n) (E?r’;\,curt + ES;"‘Shift) (6)
b<B b<B

which is estimated in accordance with the utility’s baseline
methodology [14,16].

The involvement of individual buildings in DR is voluntary, with
the extent of commitment delineated by the diverse load profiles
and the utility functions (1). As part of the electricity agreement,
they can be encouraged to take part in DR through incentive reim-
bursement. Generation is dispatched based on demand, which is
set depending on the predicted pool price facilitated by the MG-
C, as elucidated in Fig. 2 on information flow.

3.3. Building loads

The community of buildings a MG serves, including residential
and commercial buildings, hospitals, and public service stations,
exhibit various load profiles for heating, cooling, and electricity,
as depicted in Fig. 5. Three salient types of loads are considered
to facilitate planning.

3 We use the big-M method to convert the constraint to the equivalent linear form:
Z(Eiiwn + E:;;shll()
b<B

< M,(l 7X:JR) + (1 _ xﬁ[y(n)(h([hbncun +E([1215h|ﬂ)

where M, can be set with a large value, e.g., B- E™™ + Y, jEdnut

Critical load. For electricity usage in data centers and ICUs of
hospitals, for example, it is of utmost importance that the loads
are satisfied, i.e.,

sp.critic __ pdm,critic
En =E (7)

where b € {1,...,B} represents building b among the cluster, and
sp .dm are used to denote supply and demand. Throughout the
paper we use t to denote the time step at hourly resolution.
Curtailable load. Demands of this type, such as ventilation and
lighting, have limited ability to be deferred to a later time, but
can be traded off with users’ satisfaction in the case of demand

response (DR) commitment, i.e., X{X = 1:

(«1 7XPR) («1 _ OCE.cun) Egzi,curt + aE.culTEdm.curt < Eipb.curt

'min,b 'min,b~t,b
m,curt
<E} 8)
where of"F € (0,1) identifies the minimum requirement for cur-

tailable electricity for each building. Heating and cooling loads,

Hfﬂ‘, f;," are considered within this category mainly because (1)

users typically respond to DR signal by reducing the heating/cooling
consumption at the current moment, without necessarily recover-
ing it in the future, (2) even though thermal energy has been treated
as thermal storage in a sub-hour time frame [40,45], it is rare to see
shifting among several hours; as the time step in the study is an
hour, the DR behavior is predominantly curtailment.

Shiftable load. Loads of this type, like electric vehicle battery
charging, can be shifted in time, as long as the specified amount
of total energy is expanded, which is characterized by the follow-
ing relations on each day:

(1 7XtDR)Eltjm,Shift < Eip.shifl’ < Emax (9)
STEPSICNTE™M . vTe,...,24 (10)
t<T t<T
ZEip.shlft _ ZE(ttlm,shlft (1 1 )
t<24 t<24

where (9) indicates that without DR commitment, i.e., X°® = 0, the
hourly posted shiftable load must be fully satisfied, yet with DR the
supply can span a wider range from 0 to E™. As stipulated in (10),
we cannot satisfy shiftable loads before they occur; or rather, we
can only meet demands up to the current point. By the end of the
day, all shiftable loads that have been postponed should be satis-
fied, as in (11). We do not further differentiate between interrupt-
ible and non-interruptible loads as in [44], inasmuch as our
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decision is made at an aggregated building scale, rather than on an
individual device level.

While neglected in previous MG models [12,29], thermal losses
through pipelines are pertinent to evaluate the environmental
impact and dispatch optimality [50]. We consider a pre-installed
pipeline system for heat and cooling energy transfer, with the
assumption that no thermal exchange exists among buildings, as
illustrated in Fig. 3 for some probable topologies. Two forms of
thermal losses are examined, namely, length follow and load fol-
low modes (see Appendix A.2).

3.4. Generator and storage technology

The next sections provide an overview of the technology com-
ponents and requirements, with the implementation detailed in
the appendix.

Combined Heating and Power (CHP). The coupling of power and
heat production in CHP makes it an option for MGs to reduce fuel
imports, lower carbon dioxide emissions and tackle fuel poverty by
increasing efficiency; for instance, more than 99.7% of electricity in
the Danish energy system originates from CHP and renewables
[29]. The MG model allows the consideration of several CHP sys-
tems of different capacities (see Appendix A.3).

Electric, natural gas, and absorption chillers/boilers. Heat from a
liquid is removed in a chiller via a vapor-compression or absorp-
tion refrigeration cycle, where the input energy can be electricity
(electric chiller), natural gas (NG chillers), or heat from steam or
hot water (absorption chiller). The coefficient-of-performance
(COP) is typically used to depict the conversion efficiency as the
ratio between output cooling to input power. As for the boilers,
that thermal energy is generated from natural gas combustion
(NG boiler) or electric resistance heating (electric boiler).

Heat pump (HP). In a MG, a heat pump, which transports ther-
mal energy from the source to the destination, can decouple the
production constraints of the coproduced products, while main-
taining high energy efficiency [51]. The HP is often more efficient
than its alternatives, especially in heating mode (different types
of HP, such as air sourced HP, ground sourced HP, water sourced
HP, differ in the COPs, which also depend on climate conditions),
notwithstanding that the installed cost is significantly higher [29].

Solar thermal and photovoltaics (PV). The increasing tendency for
using renewables to reduce carbon footprints has brought about
widespread adoption of solar thermal and PV technology [5]. For
PV, the electric power is proportional to the solar irradiation,
which is often the source of volatility. Strategies introduced in Sec-
tion 4 are aimed at coping with the uncertainty.

Storage technology. Storage is conducive to smoothing variable
generation and system-wide reliability. The taxonomy proposed
by [52] classifies the storage types into sensible, latent, and ther-
mochemical storage, of which the first category is most common
because it does not involve phase change. We build a generic stor-
age prototype for heating, cooling, and electricity with dynamic
charging/discharging behaviors and standing loss, as illustrated
below for the heat storage (see Appendix A.4). Maintaining a min-
imum amount of stored energy, typically 5% of the total capacity,
i.e., state-of-charge (SOC), is commonly referred to as the spinning
reserve requirement [47,5].

In summary, the modeling of various technologies enables the
user to tailor the treatment of individual cases by selecting the
available generators or storage. Additionally, building loads are
modeled with a varying degree of flexibility to be responsive to
DR. The following section discusses the coordination of the supply
and demand sides to inform optimal dispatch of MG.

4. Dispatch under uncertainty

MOD-DR uses state-of-the-art forecasting models to design the
operation plan. It is the aim of this section to introduce two dis-
patch strategies, namely, day-ahead and adaptive methods, which
have different emphases on the convenience of implementation or
the responsiveness to unexpected changes.

4.1. Forecasting methodology

The primary aim of forecasting is uncertainty reduction. For
MOD-DR, accurate prediction of electricity price and solar irradia-
tion can reduce the risks of spot market/renewable volatility
through arbitrage opportunities.

Methods for solar forecasting can be grouped into time series
models and numerical weather prediction (NWP) [53]. Weron
[54] recently conducted a comprehensive review of spot price pre-

(A) Tree topology

(B) Star topology

Fig. 3. Illustrations of two possible topologies of pipeline network for thermal energy transportation.
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diction approaches, which fit into six categories: multi-agent in a
game-theoretic framework, fundamental methods that incorporate
physical and economic factors, reduced-form that characterizes sta-
tistical properties over time, as well as statistical approaches and
computational intelligence. While reduced-form models, like the
mean-reverting Orstein-Uhlenbeck process, excel at derivatives
valuation and risk analytics and have been employed in previous
works [12,13], their simplicity and analytical tractability are no
longer an advantage for prediction; in contrast, methods in the lat-
ter two classes, like autoregressive (AR)-type models, support vec-
tor regression (SVR), and artificial neural networks (ANN), can
handle complexity and non-linearity, and thus will be considered
in this research. Additionally, forecast combinations, such as ordi-
nary least squares (OLS|[c]), constrained least squares (CLS[c]),
and variance-based scheme, pointed as future directions in [54],
are evaluated. These methods are also applicable to solar irradia-
tion. For load prediction, the methods can be grouped into either
data-driven methods, which resort to regression on indicators like
occupancy and weather, or model-based methods, which consider
the operation of building components like lighting and HVAC sys-
tems, occupancy and their behaviors [55-58]. Nevertheless, in this
study, we assume the loads to be given, though in practice they can
be predicted using the methods outlined below.

Baselines. The baseload price model (BPM) predicts the next day
price using the median of electricity prices in the past month, due
to its robustness to outliers. The 24 hourly prices of the current day
can also be used, as in the Naive model, a standard reference
estimator.

Statistical approaches. The seasonal autoregressive integrated
moving average (S-ARIMA) is a stochastic process coupling the
AR and MA components, after differencing at appropriate time
steps to remove any trends. Formally, it is given by
ARIMA(p,d, q) x (P,D,Q)s:

W(B)¥s(B’) A'BA°(B) y = D(B)Ds(B’) w
—_——
AR (non-)seasonal difference (non-)seasonal MA

where y, is the electricity price at time t, w; is the white noise pro-
cess, B and A are the backward shift and difference operators, i.e.,
ABY,=(1-B)y, =¥ — Y1, ¥, Vs, ,Ds are polynomials of order
p,P,q,Q in the model specification. The seasonal lag S = 24 is used
to capture daily patterns, and the orders of MA and AR are informed
by the autocorrelation and partial autocorrelation graphs. Ordinary
least squares (OLS) represents linear regression-type models [54],
despite its autoregressive nature, as is also the case for computa-
tional intelligence methods, due to the exclusive reliance on histor-
ical prices, though exogenous variables like weather and power
supply and demands can be integrated once available.

Computational intelligence (CI). A succinct summary of a broad
category of CI methods is based on the empirical risk minimizer
(ERM) framework [59]:

min U7 x).) (12

which finds a function f € F of features x; to minimize the loss eval-
uated on the training set {(x;,¥;)}I,. It can be regarded that variants
within the ERM differ by the choices of function class F and loss
I(-,-). Support vector regression (SVR) “lifts” the original features
into higher dimensions, and optimizes I(-,-) as the hinge loss [59].
Ridge, Lasso, and Elastic Net have been widely applied in prediction
tasks and compressed sensing [59], which assume a linear form of

predictor, f(x) =w'x; in addition to the L, norm |z|, =, /ijj2
for the loss function as in OLS, combinations of L;, i.e.,
[zll; = >-;lzil, and L, are imposed on @ for regularization to induce
sparsity and avoid overfitting. Nonparametric models like K-

nearest neighbors (KNN) and Gaussian Process (GP) predict by
either K nearest points or smoothing among available data based
on affinity. Multilayer perceptron (MLP) is a popular choice of
ANN for power, tariff, and solar predictions [54,53], which consists
of a hidden layer with nonlinear activation functions. It can capture
fairly complex scenarios given sufficient data to learn. We refer the
readers to [59] for a comprehensive introduction to CI methods, and
the accompanying material of this paper for implementation
examples.

Forecast combinations. The advantage of combining, according to
Hibon and Evgeniou [60], is not “that the best possible combina-
tions perform better than the best possible individual forecasts”
(i.e., ex-post), but that “it is less risky in practice to combine fore-
casts than to select an individual forecasting method” (i.e., ex-
ante). Given M forecasts from a committee of predictors,

{j/m[}l,\n/':], the simple scheme averages them with equal weights 1.
The OLS combination is based on

M
y?LS = CoLs + Zij’mt (13)

m=1

where the constant co s and weights {wm}%:1 are learned from past
performances of the forecasts. Other schemes, such as the robust
regression, which is less sensitive to outliers, the constrained least
squares (CLS[c]), which restricts the weights sum up to 1, and the-
variance-based combination, which weights the forecasts according
to their accuracy measured by the mean squared error (MSE) [60],
are also examined in the study.

Above all, in an online adaptive mode, the methods can be rees-
timated at every time step using a rolling or expanding window, or
with more sophisticated adaptive approaches [61,62].

4.2. Dispatch strategies

The dispatch plan, as has been previously outlined, is developed
by solving the mixed-integer program (PO) using the forecasts of
uncertain variables, subject to power and resilience constraints.
Two dispatch strategies, illustrated in Fig. 4, have been imple-
mented in MOD-DR, which are evaluated in Sections 6 and 7.

Day-ahead dispatch. Like with electricity market bidding, upon
receiving predictions of spot prices and solar irradiation, as well
as buildings’ projected demands and DR signals from the grid on
Day 0, MG-C performs (P0O) to prepares a day-ahead dispatch plan
and sends it to the generation facility and buildings for review.
Iteration of revisions is conceivable until concurrence among the
results. The original proposal is amended for actual execution on
Day 1. The repair strategy exploits the cheapest sources/destina-
tions of energy immediately available, e.g., storage (if any) or grid,
to maintain the power balance. The extent of repair, clearly, is con-
tingent on the intermittency of renewables and forecast errors.

4.2.1. Adaptive dispatch

The access to real-time information enables the adaptive strat-
egy, which resorts to the receding-horizon, future-discounted variant
of (PO):

T
min Vg (R, 20, E)
L, Z aonte (P1)

St Xt S Xf(zt,ft)7 Zt < Zr(zt_‘hxt), Vl’ = ]7 .- .,T

where g,(%:,2:, &) = f (X, &) + 1" (Re, 20, &) — RP® — Jusitie(%;) i
the original objective term, further discounted by 7y € [0,1], and
T < T denotes the receding horizon. To be specific, at the start of
Hour 1 of Day 1, (P1) is carried out with T = 23, using the current
observation ¢, and the forecasts of {£,}2*, for the rest of the day.
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Fig. 4. lllustration of the (A) day-ahead, and (B) adaptive dispatch strategies. For the day-ahead scheme, the plan is devised on Day 0, and implemented on Day 1 with proper
recourse. The adaptive method dynamically plans for the following hours, and updates the proposal as more observations are available.

Then, assuming no abrupt changes during Hour 1, the plan is exe-
cuted. The procedure is reiterated for the subsequent hours, while

receding the planning horizon T and only operating the part of
the strategy for the current point, as clarified in Fig. 4, till the end
of the working day. As uncertainty over renewables is resolved by
observation for the current hour, the need for repair is obviated.
The mechanism of y resembles that of the dynamic programming
[63]: for (PO), y =1, and the planner becomes increasingly near-
sighted as y shrinks.*

While the adaptive strategy maintains more frequent commu-
nication with the generation facility and DR loads compared with
the day-ahead scheme, it delivers the benefits of improved accu-
racy of forecasts, cost effectiveness of dispatch, and responsiveness
to the grid. Depending on additional constraints like the computa-
tional capability in solving large-scale MILP and inter-temporal
parameters of generators, e.g., minimum run time and notification
time, both are viable for practical deployment [20,33,37,29,64].

5. Experimental setup

The study focuses on the district level heating and cooling,
where the thermal and electric energy is supplied by the microgrid
for a cluster of buildings. We give an overview of the publicly avail-
able datasets and our implementation of MOD-DR.

5.1. Dataset

Building loads. In practice, buildings with compatible and sym-
pathetic load profiles serve to level the aggregated energy demand,
thus improving both the operating efficiency and the overall MG
economics. The load data are retrieved from the Open Energy Infor-
mation (OpenEl), for a research facility (Bld:1),> a large hotel
(Bld:2), and a commercial building (Bld:3),° though more buildings
can be readily incorporated. For the electricity loads, as is shown
in Fig. 5, the load types are inferred primarily from descriptions,
e.g., demands for the data center are critical, ventilation and lighting
are curtailable, and plug-loads are shiftable. During the period of

4 At the limit of 7y = 0, we keep to the convention that 0° = 1, in which case the
planner only cares about the cost for the current hour, disregarding any future risks or
arbitrage events.

5 NREL RSF Measured Data 2011, accessed: 10/2016.

5 OpenEl Load Profiles, accessed: 10/2016.

study, i.e., January and February, the thermal loads are predomi-
nantly for heating (Fig. 5). Throughout the paper, it is assumed that
the loads are given, though in practice a forecasting module can be
employed based on Section 4.1 (especially the forecast combination
method which is often used for load prediction [54]).

Electricity and gas prices. The electricity spot price is accessed
from the National Grid Online Database’ for the period of Jan. 1
to Jul. 24, 2016 in New York, adapted to be similar to the California
wholesale market, whose daily fluctuation is exhibited in Fig. 6. The
natural gas price, obtained from the U.S. Energy Information Admin-
istration® is assumed to be at a constant level of 0.02 $/kWh
throughout the month. The difference between the electricity and
gas price, a.k.a., the “spark spread”, has an underlying daily cycle dri-
ven by variations in the average electricity price, which can be
potentially exploited through the incorporation of heat storage.

Solar irradiation. The TMY3 dataset is derived from the National
Solar Radiation Data Base (NSRDB) archives for 1020 locations
from 1961 to 1990 and 1991 to 2005 [65]. We query the data for
Oakland, California in the year 2005, and use the Global Horizontal
Irradiance (GHI) index® to determine the PV outputs [53], as is plot-
ted in Fig. 7 for several days.

5.2. Implementation

The implementation of MOD-DR is based on our previous work
[19] on MG long-term capital investment, which modeled genera-
tor and storage technologies. The platform is realized in Python, an
object-oriented programming language with cross-platform com-
patibility and extensibility to hardware actuators and databases
like MySQL and Cassandra for real-time controllability. The core
MILP programs (P0) and (P1) for dispatch are built and solved by
Gurobi [30]. The experiments are performed on a MacBook with
a 2.8 GHz Intel Core i7 CPU and 16 GB RAM memory.

6. Scenario analysis

The objective of this section is to analyze the effects of uncer-
tainty on dispatch and the DR potential for load shaping. Four sce-

7 National Grid Online Database, accessed: 10/2016.

8 U.S. Energy Information Administration, accessed: 10/2016.

9 GHI, measured in 1 kWh/m?, is the total amount of direct and diffuse solar
radiation received on a horizontal surface during the 60-min period.
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Fig. 6. Electricity and natural gas tariffs for industrial customers on several days,
where the spark spread is mainly driven by the daily fluctuation of electricity prices.
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Fig. 7. Solar irradiation measured by the GHI index (kWh/m?) on several days of the
study period, which clearly exhibits diurnal patterns.

narios are designed, which focus on (1) the spot price and (2)
renewable energy prediction, (3) the integration of energy storage,
and (4) the operation of the DR program.

Throughout the discussions, the concept of additional opera-
tional costs is applied to refer to the added costs compared to the
minimum among the set of candidates, which often corresponds
to the oracle with perfect predictions and optimal combination of
DG and storage. The specifications of technologies, listed in Table 1
(c.f., [9]), are employed in both the current section and the subse-
quent case study. For the following four studies, the day-ahead dis-
patch strategy PO is adopted for analysis. The adaptive strategy is
employed in Section 7 for comparison.

6.1. The effect of uncertainty on dispatch optimality

The pool price exposure and renewable volatility give rise to the
increased variability in real-time resource commitment and dis-
patch. The object of the controlled experiment is to assess the fore-
casting approach of MOD-DR, as well as the practical implications
of storage in the presence of uncertainty.

Study 1: The effect of electricity price uncertainty

To begin with, we study the multiple predictors in Section 4.1,
which are trained and tested on two subsequent months of data.
The results for day-ahead prediction (Fig. 8 and Table 2) are
reported in root mean squared error (RMSE), given by

\/ﬁzf:] () —y,)>, which compares the estimation f,(x,) with
the true price y, throughout the day [54]. For CI and forecast com-
binations, separate estimators for each hour of the day have been
learned, using x; as the prices for the previous two days. As can
be seen, forecast combinations, i.e., OLS [c], CLS [c], and Robust
[c] are significantly better than the baseline methods, and also con-
sistently outperform the individual models.
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Table 1

Specification of parameters for distributed generators and storage used in the
experiments, which also includes thermal efficiency of pipelines in load follow mode,
where the indices are circled in Fig. 3(A).

Technology Parameter: value

PV Solar efficiency n*V: 0.15 Unit out ratio ely: 0.15

Solar thermal Solar efficiency #5°IThem: Unit out ratio e39/™em: 0.1
0.69
CHP EXE (MW): 1.5, 2,3, 4 Partial loads L{HP: 0.1

HER;: 1.2, 145,15, 1.5
Charging efficiency 75: 0.9

Standing loss ngat,,: 0.001

ngHP: 0.4, 0.45, 045, 0.5
Electric battery Discharging eff. #8: 0.9

Max charge rate t8;: 0.25

Max discharge rate 8 Min SOC SOCE : 0.1
0.25

Heat tank Charging efficiency 7fj},: 0.9  Discharging eff. ni{: 0.9
Standing loss 77k, : 0.01 Max charge rate TH),: 0.25
Max discharge rate t}{: 0.25 Min SOC SOCHT : 0

Cool tank Charging efficiency 7,: 0.9  Discharging eff. ngi: 0.9

Max charge rate t§y,: 0.25
Max discharge rate 51 0.25 Min SOC SOCSL.,: 0
Coefficient-of-performance COPEER!l: 5.0

Thermal efficiency nNGBeil: 0.82
Coefficient-of-performance COPFEChill: 5 47

Standing loss 1§l,,: 0.01

Electric boiler
NG boiler

Electric chiller

NG chiller Thermal efficiency nFEchil: 0.65
Absorption Coefficient-of-performance COPABS!: 1.0
chiller
Pipelines Heating efficiency {n}d-““f}; :.99,.98,988,977,977
Cooling efficiency {1 }; :.985,.986,.987,.984,.979
Electricity Price Prediction Error

12,
10

RMSE (¢/kWh)
[}

Fig. 8. Boxplots of the spot price forecast RMSE (¢/kWh) for multiple methods. The
box shows the quartiles, and the whiskers extend to show the rest of the
distribution, while the black dots indicate outliers.

The integration of each forecaster with MOD-DR is examined
under the prototype, MG1, which consists of a NG boiler (1 MW),
an electric boiler (1 MW), an assembly of CHPs (0.5, 1, 1.5, 2 MW
capacities), a heat tank (2 MWh) and a electric battery (4 MWh),
whose parameters are listed in Table 1. The operational surcharge
is derived for each candidate by collating with the oracle, which
is able to dispatch based on the true spot price (Fig. 10 and Table 2).
The daily dispatch plan is shown in Fig. 9, which demonstrates that
even though there is a mismatch between prediction and true spot
prices, CLS [c] can capture the two peaks, and thus schedule the
electric storage to exploit the time-differentiated prices.

Further, the effect of forecasting error on operational cost is
demonstrated in Fig. 11. The positive correlation is consolidated
by the Pearson coefficient of.82. The p-value of the test is less than
1le-5, which indicates that the probability of observing a phe-
nomenon as extreme as the current case under the non-

Table 2

Cost analysis statistics for Study 1 and 2, including the RMSE of the forecast, and the
corresponding additional operation cost (one standard deviation is enclosed in
parentheses). Models incorporated in forecast combinations include KNN, Ridge, SVR,
MLP, and Naive methods. The monthly costs for the Oracle with perfect prediction are
$36.8 K and $25.2 K in Study 1 and 2, respectively. In Study 2, the monthly cost for the
case without PV is $37.7 K.

Forecaster S1: Electricity price S2: Solar GHI
RMSE Add. cost RMSE Add. cost
(¢/kWh) (k$/month) (kWh/m?) (k$/month)
Naive 7.9 (2.3) 5(.5) 31 (.09) 2.5(2.8)
Ridge 1.0 (.5) 7 (.6) 09 (.04) 3.1(3.1)
KNN .7 (.5) .5 (.6) 09 (.03) 3.0 (2.6)
MLP 1.5 (.7) 1.3 (.6) 09 (.03) 3.0 (3.0)
SVR 2.0 (.6) 1.4 (.7) 09 (.03) 3.0 (3.0)
OLS [c] .7 (.5) 5 (.5) 09 (.02) 2.5(2.2)
CLS [c] .6(.4) 4(4) .09 (.03) 3.0(2.8)
Robust [c] .6 (.5) .5 (.6) .09 (.03) 24 (2.3)

Top performances in each test are marked with boldface.

correlation condition is exceedingly small; in other words, the
null-hypothesis of non-correlation is rejected with statistical
significance.'®

Our conclusion is that the fluctuation of electricity spot price
exposes MG to operational suboptimality and financial risk, inasmuch
as the variable can be predicted with accuracy. This result is in align-
ment with the findings from [22,32]; however, their studies incor-
porated the situation with only electricity loads and no distributed
generation capacity, and the forecasting errors were simulated
from a noise model. Our result, in comparison, applies to MG with
both electric and thermal loads, and the electricity price is fore-
casted based on historical data with current predictors.

Study 2: The effect of renewable uncertainty

It can be observed in Fig. 7 that solar irradiation exhibits strong
diurnal patterns. As in Study 1, day-ahead predictors are assessed
(Table 2), among which forecast combinations consistently outper-
form other candidates. Additionally, prediction reliability, as is
reflected in the lowered standard deviation, is enhanced by encom-
passing all possible traces.

The evaluation of forecasting methods is conducted for system
MG?2, which additionally equip MG1 with PV (0.05 km? installation
area) and solar thermal (0.01 km?). We assume the access to the
next-day electricity price and do not engage in load shaping to
limit the coupling effect. Clearly, a repair strategy, as detailed in
Section 4.2, is in place to maintain power balance. The integration
of renewables during the planning stage with proper forecasts can
drive down the cost by $8 K per month under the current solar pro-
file (Table 2), which can also be verified from the daily dispatch
plans in Fig. 12 that make full use of solar energy to meet the
MG loads.

Forecasting accuracy, furthermore, directly contributes to the
efficiency of production planning (Fig. 13), as verified by the Pear-
son test with a correlation coefficient of 0.17 and p-value 5e-3
indicating statistical significance. If ensuring that the solution
can survive a certain degree of variability is of concern, a common
strategy adopted in unit commitment [20] is to systematically
underestimate the solar power, which can be readily accomplished
in forecast combinations by considering the no-PV situation.

In summary, the intermittent renewables can be effectively har-
nessed by forecasting to improve the economy. Morais et al. [10]
demonstrates the dispatch with forecasted solar profile of a MG

10 The Pearson coefficient between two variables y; (t) and y,(t) is given by:
10 =31)0a(0) ~ V) o1
VI 010 3200 =327

where y; and y, are the sample mean of y, and y,, respectively.
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Fig. 9. Electricity and heat balances for day-ahead dispatch based on CLS forecasts (left) and true (right) electricity price for S1 under Study 1. The effect of forecast errors can
be seen, for instance, at hour 9, when CHP is turned on in the face of predicted higher spot price.
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Fig. 10. Boxplots of the additional operational cost of MG1 when different
electricity price forecasters are integrated.

in Budapest Tech, which includes, among others, PV panels (peak
power 150 W) and an electric battery (max charging/discharging

power 200 W/50 W). While they only examined the effect of fore-
casting error on operations, such as the battery charging of excess
power due to under-prediction, our results (Fig. 13, Table 2) report
statistical evidence of the economic impacts.

Study 3: The integration of energy storage

With the growing penetration of renewable energy resources
and a shift to a much more dynamic electric infrastructure, the
benefits that storage can deliver, as suggested in [66], range from
electricity supply and ancillary services, to transmission support
and renewables capacity firming. It is evident thus far (Figs. 9
and 12) that the ability of storage to make cost reductions depends
in large part on:

e Time-of-use (TOU) management: storage is charged during off-
peak hours and discharged during times when on-peak TOU
energy prices apply.

e Renewables time-shift: storage operates in conjunction with
renewable generation to enable the use of low-value energy
generated during off-peak times to offset other purchases when
it is more valuable.
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Fig. 12. Electricity and heat balances for day-ahead dispatch based on CLS forecasts (left) and true (right) solar energy, when the electricity price is assumed to be known a
priori. The effect of forecast errors can be inspected at hour 11 (over-forecasting) and 12 (under-forecasting). In the former case, more electricity needs to be purchased from

the grid, while in the latter case the renewable is under-utilized.
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Fig. 13. Scatter plots of the additional operational costs (compared with the Oracle) vs. the forecast errors for different methods.

Importantly, the object is to study the amount of benefits that
storage can reap in the face of uncertainty. The system MG2 from
the previous test is supplied with different sizes of electric battery
and/or heat tank, which are dispatched for a month when both the
electricity price and the solar irradiation are forecasted during day-
ahead planning. According to the result, the lowest operational cost
is achieved when both the heat and electricity storage are present
(Case A) with capacity 4.5 MWHh, for perfect forecasts, i.e., oracle. It
is then compared with other situations when only the heat tank
(Case B) or the electric battery (Case C) is present for the Naive
and CLS forecasters to evaluate the costs (Fig. 14 and Table 3).

As it can be seen, increasing the capacity of storage can bring
greater savings in all cases (A, B, C), though with marginal dimin-
ishing returns. Interestingly, while the storage for electricity (case
C) seems more favorable than heat (case B) under perfect predic-
tion, likely because the potential of TOU management for the elec-
tricity is higher, the effect is not as pronounced when both the
electricity price and solar are forecasted, especially for the Naive
method, which tends to perform poorly (Table 2). Indeed, with bet-
ter predictions like CLS, further reductions can be achieved.

Prior work [45,15,19] tackled the capacity planning of storage
based on long-term valuation, where uncertainty in variables are

not considered. Out results indicate that the fulfillment of the poten-
tials is contingent on uncertainty inherent in practical dispatch. Diaz
and Moreno [13] investigated the valuation of CHP and thermal
storage under uncertain energy prices, and reported the link
between the economic scales of CHP and thermal storage. Our
study, in addition, presented the influence of forecasting model
and accuracy on storage-augmented system operation.

6.2. The effect of DR for load shaping

The value and necessity of DR as a flexibility means has been
widely recognized among stakeholders and policy makers, whose
objectives can be divided into two categories, i.e., energy adjust-
ments (e.g., strategic conservation and strategic load growth) and
power adjustments (e.g., peak clipping, valley filling, load shifting
and flexible load shape) [41,43,42,67,6]. The latter, in particular,
requires the active participation of consumers, who are rather pas-
sive nowadays [6]. The object is, therefore, to investigate the
engagement of DR facilitated by MOD-DR based on real-time
pricing.

Study 4: DR-enabled MG Dispatch
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Additional Operational Cost vs. Storage
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Fig. 14. Additional operational cost for day-ahead dispatch based on oracle, CLS[c] and Naive forecasters of solar and electricity prices. Each point represents 30-day average,
where the colors indicate dispatch strategies and shapes correspond to different cases (A, B, C). (For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)

Table 3

Operational charge for several schemes as the storage capacity varies, when both heat and electricity storage (case A), or only one (B for heat and C for electricity) is present. The
cost is compared with the Oracle with 4.5 MWh heat and electricity storage, i.e., case A, whose daily cost is averaged at $791.3. For instance, the average daily cost for CLS[c] when
both electricity and heat storage have capacities of 2 MWh is $791.3 + $84 = $875.3. Both the 30-day average and standard deviation (in parenthesis) are shown.

Capacity (MWh)

0 1 2 3 4
Naive 146 (18.4) 126 (16.0) 117 (14.8) 112 (14.1) 107 (13.5)
A CLS[c] 115 (14.5) 88 (11.2) 84 (10.6) 73 (9.3) 68 (8.6)
Oracle 83 (10.5) 51 (6.4) 30 (3.8) 15 (1.8) 4(0.5)
Naive 146 (18.4) 135 (17.0) 129 (16.2) 125 (15.8) 120 (15.2)
B CLS[c] 109 (13.7) 101 (12.8) 96 (12.1) 95 (12.0) 90 (11.4)
Oracle 83 (10.5) 70 (8.9) 63 (8.0) 58 (7.4) 54 (6.8)
Naive 146 (18.5) 137 (17.4) 134 (16.9) 132 (16.7) 129 (16.4)
C CLS[c] 115 (14.5) 97 (12.3) 97 (12.2) 85 (10.7) 74 (9.3)
Oracle 83 (10.5) 64 (8.0) 49 (6.2) 37 (4.6) 28 (3.5)

The consumption preferences of individual buildings can be
revealed to MG-C through both the utility function and the load
mix, as depicted in Fig. 5. From the control perspective, the shifta-
ble load needs some planning and thus benefits from static signals
notified well in advance, while the curtailable load can respond to
dynamic signals more swiftly. The utility parameters, for simplic-
ity, are shared among all three buildings for heating, cooling, and
electricity loads, with 6y,0,,0, = 0,0.5,1, and vy, v, = 1,0.2. Both
systems under study, MG4.1 and MG4.2, are electricity-only, i.e.,
no thermal loads, equipped with four types of CHP (0.5, 1, 1.5,
2 MW), and MG4.2, in addition, has an electric battery (2 MWh).
As in [41], perfect prediction is assumed, which is the best case sce-
nario for DR, and hence ideal for impact studies.

During the one month of the experiment, DR is called when the
wholesale price is above the strike price, i.e., the price at which the
customer has agreed to provide demand response [16], which is
chosen as the third quartile of history data. On a particular day,
upon gathering of information from buildings, generators, and
the grid, MG-C performs MOD-DR to come up with a dispatch pro-
posal to be implemented on the next day. A viable solution is
exemplified in Fig. 15, which represents 70.6% peak load reduction
from the original 5.8MWh peak hour demand.

Compared with dispatching without the engagement with DR,
MOD-DR explores the feasibility of seeking trade-offs between
building satisfaction and operational savings. Indeed, the flexibility
is realized by consciously tuning the parameter /., as is shown in
Fig. 16, which unveils a smooth spectrum of optimal resolutions
gauged by the loss of satisfaction, measured by the percentage of
utility loss compared to the case without load shaping, and the

additional operational cost. It is up to the MG-C committee to
decide upon the level of DR commitment, by potentially taking
advantage of the fact that substantial cost saving can be achieved
without sacrificing customer contentment. Additionally, system
MG4.2 with the electric battery stands on the Pareto frontier,
though the business case also relies on the capital investment [9].

Taking into account demand elasticity, consumption patterns,
as well as grid signals and generation profiles, MOD-DR is able to
maintain customer’s satisfaction and coincidentally produce the
desired changes in the district loads through an optimal utility-cost
trade-off. Compared to the study by Kim and Giannakis [44], we
consider the demand on the buildings level rather than device
level, and include thermal loads in addition to electricity loads sat-
isfied by CHP and other DGs. Further, the proposed utility cost
trade-off curve (Fig. 16) is useful to choose between DR strategies.

7. Microgrid case study

The objective is to undertake an assessment of MOD-DR for the
capability of demand response utility trade-off and operational
cost savings, with greater renewable penetration and price uncer-
tainty in a practical-oriented setting.

The prototype system, derived from the University of California,
San Diego (UCSD) microgrid for the capacities of generators and
renewables [68], as well as the British Columbia Institute of Tech-
nology (BCIT) campus for the DR-enabled load control [69], is com-
prised of CHP plants (1.5, 2, 3, 4 MW) that work in conjunction
with an absorption chiller (10 MW), a NG boiler (5 MW) and chiller
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(10 MW), an electric boiler (10 MW) and chiller (10 MW), storage
for electricity (4 MWh), heat (4 MWh), and cooling (4 MWh), in
addition to a PV site (.05 km?), for the provision of electric and
thermal energy. While the solar profile is maintained, other data
from the previous section are adapted to comply with the require-
ments, e.g., electricity and cooling loads are scaled up by a factor of
5 and 10 (Fig. 18). The evaluation spans the month of April, when
both heating and cooling demands are present.

Uncertainty in both electricity price and solar irradiation are
assumed. The dispatch strategies under analysis include day-
ahead Oracle, i.e., perfect predictions, with and without load shap-

Table 4

Utility Cost Trade-Off
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Fig. 17. Loss of satisfaction and additional operational cost trade-off. The loss of
satisfaction, which results from load shaping, is compared with the DR-disabled
schemes (oracle without DR, load following). The additional operational cost is the
extra expenditure relative to the Oracle with the most intensive DR (red dot on the
top left). Each point is a 30-day average, interpolated by the dashed line for
smoothness. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

ing DR, day-ahead (PO) and adaptive schemes (P1) based on CLS
forecasts. The baseline model performs optimized load following,
which resorts to the cheapest sources of energy available to meet
the immediate loads (i.e., equivalent to a system without CHP,
absorption chiller, and storage, in contrast to [37] for a rule-
based operation that is price-insensitive). As the focus is on the
use of existing infrastructure, fixed costs are considered sunk
[68,29].

The flexibility of DR can be utilized to optimize the operations,
as depicted in Fig. 17, where each point represents a 30-day aver-
age corresponding to a particular value of utility trade-off param-

Peak load reduction and daily operational cost for each dispatch strategy in a 30-day evaluation period, where the standard deviation is shown along with the average. Peak hour
is defined whenever the price signal rises above the third quartile of history pool prices, triggering DR signals. In the case study, as there is sufficient supply of heat and cooling
from CHPs, which are turned on during peak hours for economy, there is less need for thermal deductions compared with electricity.

Method Peak reduction (%) Cost (k$)
Shiftable Curtailable Heat Cool

Load Follow 0(0) 0(0) 0(0) 0(0) 5.7 (0.5)

Oracle w/o DR 0(0) 0(0) 0(0) 0(0) 5.4(0.2)

CLS[c] Day 83.4 (20.2) 25.5(11.2) 0.0 (0.0) 2.9 (5.5) 53 (1.5)

CLS[c] Adapt 77.6 (31.9) 39.7 (8.3) 0.0 (0.0) 6.8 (3.0) 5.2 (1.5)

Oracle w/DR 88.7 (14.2) 29.4 (12.4) 0.0 (0.0) 4.0 (5.6) 5.1 (1.5)
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eter /. The DR-enabled candidates, compared with the more rigid
Oracle without DR and baseline, can achieve substantial savings by
balancing the utility trade-off. Even though the decision is based
on forecasts, the adaptive scheme based on CLS outperforms its
day-ahead counterpart, and is on a par with the DR-enabled oracle.
It is attributed to the full utilization of PV (by dispatching in accord
with the current observation of solar availability, the uncertainty
for every hour is sequentially eliminated) and the dynamic adjust-
ment of price predictions.
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Importantly, peak load shedding and expenditure cutback can
be made with a pragmatic compromise of building utilities (Table 4
and Fig. 18). The adaptive strategy achieved overall 17.5% peak
load reduction, which is calculated based on the actual curtailable,
shiftable, and critical loads for the building clusters, and 8.8% cost
savings compared to the baseline and is on par with the Oracle.
Close inspection of Fig. 18 reveals that the dispatch plan by adap-
tive CLS resembles that of the Oracle, which is remarkable, partic-
ularly in light of the fluctuation of prices and the need to dynamically
manage the shiftable and curtailable loads.
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Fig. 18. Power balances and load shaping for DR-enabled adaptive CLS and oracle dispatch. The predicted price for the adaptive CLS is one-hour ahead estimation, except for
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8. Conclusion

The MOD-DR proposed in the study engages consumers, dis-
tributed generators, and the grid in a multi-objective trade-off to
derive mutual benefits, and facilitates future work on the economic
analysis of real-time pricing mechanism, DR contracts, and MG
valuations.

While previous work on storage capacity planning often assume
deterministic renewables and electricity price for simplicity, the
study indicates that the uncertainty plays a critical role in deter-
mining the operational savings. The diminishing return effect as
the capacity scales up is particularly marked under real time pric-
ing schemes, where the price exhibits fluctuations.

Day-ahead dispatch, based on the expectance of the electricity
tariff and availability of renewables, can exploit the spark spread
and the time-shifting capability of storage, thus achieving more
efficient operations. The adaptive strategy, additionally, can lower
the cost further by making adjustments to account for current and
past information, which reduces the need for PV firming and makes
the MG responsive to DR called on short notice; nevertheless, the
implementation relies on robust communication and control
infrastructure, which might not be readily available for some users.

From the results of the optimal dispatch plans (Figs. 9 and 18),
CHPs are operated more often as the spark spread increases. On the
other hand, an electric battery is charged at night when the elec-
tricity price is low, and discharged later in the day to satisfy
demands, as long as the price prediction captures the peak and val-
ley hours. Renewables can be also harvested with accurate fore-
casting to complement grid imports, which is conducive to
lowering both the electricity bill and carbon dioxide emissions.

By inspection of the utility-cost trade-off curves (Figs. 16 and
17), as the loss of satisfaction increases, there is initially a substan-
tial drop in the operational cost, which then diminishes as we enter
into the deep DR region. The transition can be often exploited by
initiating the right amount of DR on a district level to achieve con-
siderable savings while maintaining relatively low levels of
dissatisfaction.

More specifically, our main contributions and results are as
follows:

e Modeling of a large-scale MG with intermittent renewables and
flexible building demands under a DR scheme with real-time
pricing.

e Formulation of multi-objective optimization with prevailing

constraints and utility trade-off, which leads to the derivation

of day-ahead and adaptive dispatch strategies.

Corroboration of potential cost savings with accurate forecast-

ers when dealing with the uncertainty in electricity price and

renewables.

o Analysis of the benefits of electrical and thermal storage on the
operational economy of MG, indicating diminishing returns
under uncertain conditions.

e Demonstration of the DR potential and utility-cost trade-off,
showing the 17.5% peak load reduction and 8.8% cost savings
with MOD-DR for a campus prototype.

One interesting aspect to explore is the dispatch at a sub-hourly
resolution, where not only the shiftability of thermal loads is rele-
vant, it is also possible to provide high frequency ancillary services
to the grid. As the DR at the sub-hourly scale is often called on
short notice, the adaptive strategy is of particular interest, which
can adjust the dispatch with more agility.

Further, by leveraging the natural gas fired, electricity powered
devices, and renewable sources within a MG, MOD-DR can be
employed to perform fuel switching as circumstances dictate. For

instance, it can effectively tackle the problem of curtailed electric
energy [31], when some of the renewable energy generation must
be wasted to keep real-time power balance, by optimally coordi-
nating the load and generation sides.

Above all, the study shows the capability of the MG to serve as a
flexible energy prosumer on a district level, while gaining eco-
nomic efficiency and offering ancillary services to the grid. As it
can be envisioned, the ongoing research of sensing, communica-
tion, and control infrastructure and deployment of MOD-DR are
enablers towards an energy efficient and system-wide resilient
smart power system.
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Appendix A
A.1. Thermal balances

The heat balance is given by:

(Hitnd‘puriHitnd‘sal) +ZHE-?P+ Z H:ech

k<K techeSy sp

+ (E?T‘from . Ei—lT‘sto)

_ Hi\BSchlll + Hl[oss + ZHi%

b<B

(A1)

where Sy, is comprised of electric and natural gas boilers, heat
pump, and solar thermal. For cooling, the power balance is mani-
fested as:

Z Qgech + (EICT‘from _ EfClZsto) _ ltoss + ZQ?Z

techeSq sp b<B

(A2)

where S 5, include electric, natural gas, and absorption chillers. We
adopt a modular approach to selecting the available technologies to
tailor the treatment of each case.

A.2. Thermal pipeline network

We consider a pre-installed pipeline system for heat and cool-
ing energy transfer, with the assumption that no thermal exchange
exists among buildings, as illustrated in Fig. 3 for some prospective
topologies. With the pipe segment treated as edge in the graph, the
network topology can be represented using the adjacency matrix
A € {0,1}", which assigns 1 to the entry [A],; if pipe segment j is
employed to transport thermal energy to building b; for example,
the adjacency matrix for topology A in Fig. 3 is given by:

1 00 01
01011
00111

We examine two cases of heat loss, as similar for cooling.

len,heat

Length follow. Let L € R® denote the length profile, and n;
be the per mile loss of heat for pipe j; then, the total heat trans-
ferred from the energy station, H;'“, and the corresponding loss,

H°%, are given by:
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1
Hirc — ZH?IZ + Htoss
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N

(A3)

(A4)

which indicates that the total loss is the sum of individual pipe’s
loss proportional to the length, regardless of the actual loads on
the pipe.

Load follow. With the premise that the actual loss is contingent
on the loads on the pipe, we can derive:

=3 {H;‘z H(n}“"““)““‘”} (AS)
b<B INJ
Hos = gt ZH?IJJ (A.6)

b<B

where the heat transfer coefficient nj'.d’he‘“ € (0,1) should, in prac-

tice, account for the length of the pipe and outside temperature
effect [50].

A.3. Modeling of generator technology

Combined Heating and Power (CHP). The MG model allows the
consideration of several CHPs of diverse capacities, with each plant
indexed by k € {1,...,K} in the following. Thermal energy from
burning natural gas in micro-turbines is converted to electricity,
Eti’ = NGy - i (A7)
where the efficiency #{HP is assumed constant for simplicity [13], in
light of the fact that it generally degrades at lower loads [70]. The
remaining power, according to the heat-to-electricity ratio (HER),
is recovered in part in heat recovery steam generators,
HOP = E" - HERy

tk

(A8)

The partial load constraint is imposed in addition to the maxi-
mum capacity to comply with desirable operating conditions
[70,13,29]:

CHP ; CHPyCHP _ CHP _ [:CHP yCHP
Enolde Xep <Eqpe < EqeXex

(A9)
where L™ € (0,1) specifies the minimum partial load.

Electric, natural gas, and absorption chillers/boilers. For electric
chiller, the process is governed by:

fLEChill _ COPELEChill .E[ELEChill (AlO)
subject to the rated capacity constraints:
il il i
0 g QltELEChl g QE;EChl XfLEChlll (All)

The models for NG chiller and absorption chiller follow (A.10)
and (A.11), with the replacement of electricity input EFEM! in

(A.10) to natural gas, NG and heat, H**®! suggesting the
capability of lowering on-peak electricity demands and potentially
operating costs when the latter resources are more economical.
Whereas the absorption chiller typically has lower coefficient-of-
performance (COP) than its counterparts, it is feasible to deliver
value by working in conjunction with CHP to reuse the waste heat
in MG.

Electric and natural gas boilers. The technology is modeled simi-
larly as chillers, that thermal energy is generated from sources of
natural gas combustion (NG boiler) or electric resistance heating
(electric boiler). The production of electric boiler is determined by

FELEBoil _ pELEBoil _ELEBoil (A12)

under the capacity constraints:

ELEBoil ELEBoil y/ELEBoil
0< H[ < Hrat Xt

(A13)

The efficiency parameter #FE8il which is usually high for elec-
tric boilers, is chosen as a constant to induce linearity, though the
value can decrease nonlinearly at low loads [13]. The template is
very much alike for natural gas boiler, except for the input source
being natural gas, NGN“®", instead of electricity, 2!, which typ-
ically gives rise to higher fuel economy but also maintenance
expenses.

Heat pump (HP). The HP can be engaged in either heating or
cooling mode, but not both, i.e.,

0 gXlt-lP.,heat +Xlt-lP.cool <1 (A]4)

In the respective mode, the operation is described by:
H" =E" - 0" COPye,., (A15)
HP — g pHP . coPiY (A.16)

cool?

where n' represents the electricity energy conversion efficiency.

Additionally, the rated capacity and partial loads requirements are
enforced:

HP i HP heat

HiatLip X

H
HP y min y/HP,cool HP
QratLHP Xt < Qt

(A17)
(A18)

rat

QHP XHP,cool
t

P HP y/HP heat
< H Xt ’
g rat

with Li* € (0, 1). The effect of temperature difference between the
source and destination, or “lift”, on COP also needs to be assessed in
practice.

Solar thermal and photovoltaics (PV). Both technologies share the
same model of operation, with the only difference in the output as
either heat, H;*™™, or electricity, E{*.

For PV, the electric power is proportional to the solar irradiation
and limited by the production capacity:

0<EY <A™ Irr, - ™Y

OgE{"’ <A™ PV

rat

(A.19)
(A.20)

where 7™V € (0,1) is the efficiency factor, ety € (0, 1) is the unit out
ratio that determines the rated capacity of PV, and Irr; is the solar
irradiation and also the cause of volatility, that the PV or solar ther-

mal cannot be dispatched at will.
A.4. Modeling of storage technology

The heat inventory at time t, H™, is given by:

HET = (1 L, T, + TP T (a21)

with
HT,in _ pyHT.sto, HT
Ht =H t ”Chg
HT,from __ pyHT,out, HT
H; = H " i

where 7T € (0, 1) is the standing decay factor, and we make a dis-

decay

HHT,s[o , HHT,ou[ HHT,in , HHT,from

tinction between and as the charging/
discharging energy before and after thermal losses. We also set
the limits on minimum and maximum allowed rates of change

[47,5] as described by tiT<he gHlche pHldis pHTdis o (q 1)

min maxX > *min  “max
HT,.HT,chg v HT,chg HT,in HT _HT,chg yHT,chg
Hratfmin Xt g H[ < Hratfmax Xt (Azz)
HT -HT.dis y/HT.dis HT.out HT .HT,dis yHT,dis
Hratrmin Xt < Ht < HratTmax Xt (A23)

We further disallow simultaneous charging and discharging,
0 < X[Tehe 4 TS 1 (A.24)

and
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SOCHT HHT < Hl[-lT < HHT

min” ‘rat X rat

(A25)

where the lower bound specified by SOC' < (0,1) is commonly

referred to as the spinning reserve requirement, with a typical
SOCHT of 5% [47,5].

‘min
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