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Abstract—Online optimization problems are well-understood
in the convex case, where algorithmic performance is typically
measured relative to the best fixed decision. In this paper, we
shed light on online nonconvex optimization problems in which
algorithms are evaluated against the optimal decision at each
time using the more useful notion of dynamic regret. The focus
is on loss functions which are arbitrarily nonconvex, but have
global solutions that are slowly time-varying. We address this
problem by first analyzing the region around the global solution
at each time to define time-varying target sets, which contain
the global solution and exhibit desirable properties under the
projected gradient descent algorithm. All points in a target set
satisfy the proximal Polyak-Łojasiewicz inequality, among other
conditions. Then, we introduce two algorithms and prove that the
dynamic regret for each algorithm is bounded by a function of the
temporal variation in the optimal decision. The first algorithm
assumes that the decision maker has some prior knowledge
about the initial objective function and may query the gradient
repeatedly at each time. This algorithm ensures that decisions are
within the target set at every time. The second algorithm makes
no assumption about prior knowledge. It instead relies on random
sampling and memory to find and then track the target sets over
time. In this case, the landscape of the loss functions determines
the likelihood that the dynamic regret will be small. Numerical
experiments validate these theoretical results and highlight the
impact of a single low-complexity problem early in the sequence.

I. INTRODUCTION

Nonconvex optimization is ubiquitous in real-world appli-
cations, such as the training of deep neural nets [1], matrix
sensing/completion [2], [3], state estimation of dynamic sys-
tems [4], and the optimal power flow problem [5]. Moreover,
most of these practical problems are solved sequentially over
time with time-varying input data, leading to online (real-time)
versions of the aforementioned examples [4], [6], [7].

In this paper, we study an online nonconvex optimization
(ONO) problem whose loss (objective) function changes over
discrete time periods, namely,

minimize
x∈S

ft(x) (1)

where t ∈ Z+ denotes the time and S ⊆ Rn is the time-
invariant convex feasible region. At each time t = 1, . . . , T
in this ONO framework, the decision maker first chooses an
action xt ∈ S while oblivious to the loss function ft : S → R.
Once the action is played, it is evaluated against ft, which may
be chosen by an adversary in response to the action. Then, the
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decision maker is granted access to the loss function and its
gradient.

The performance of a decision maker, or equivalently an
algorithm, in online settings is typically evaluated by a metric
called regret [8]. In this paper, we exclusively focus on the
strictest version of regret, dynamic regret, which is defined as

RegdT (x1, ...,xT ) :=

T∑
t=1

ft(xt)−
T∑

t=1

f∗
t , (2)

where f∗
t denotes the global optimal objective value of (1).

Dynamic regret (also called non-stationary regret) compares
the decision maker’s actions to an optimal action at each time
t. In comparison, static regret (also called stationary regret or
simply regret) compares the decision maker’s actions to the
best fixed action in hindsight:

Regs
T (x1, ...,xT ) =

T∑
t=1

ft(xt)−min
y∈S

T∑
t=1

ft(y). (3)

In general, nonconvex optimization problems are NP-hard.
Therefore, commonly used local search algorithms, such as
first-order and second-order descent algorithms, may converge
to a spurious local minimum (i.e., a local minimum that is
not globally optimal). As a result, dynamic regret can be
arbitrarily high in a general setting due to the inability to
efficiently find a near-optimal point xt. Existing works in
online optimization literature have derived regret bounds in
terms of various quantities, such as the temporal variation
in the loss functions [9]–[11], the temporal variation in the
gradients of the loss functions [10], [12], and the temporal
variation in a decision sequence (also called path length or
path variation) [10], [12]–[16]. Details on many of these
variation measures used to bound dynamic regret can be
found in [17], where the online convex optimization problem
is analyzed. The existing regret bounds for ONO typically
either focus on static regret [18]–[21] or require the loss
functions to be weakly pseudo-convex which is a restrictive
condition that excludes spurious local minima [22]. Dynamic
regret for unconstrained ONO is studied in [23], under the
assumptions that an initial point near the optimal solution
is known, the loss function is strongly convex around the
optimal solution, and the decision maker has access to second-
order information. In [24], the authors of this paper established
probabilistic nonconvexity regret bounds for a variation of the
ONO problem in which ft is known to the decision maker at
time t, future loss functions are unknown but fixed, the global
minima are “sufficiently superior” to all local minima, and
limit points of a continuous-time projected gradient algorithm
can be found precisely. Finally, [25] and [26] explored how



variability in the input data can help ONO solution trajectories
escape non-global local solutions over time, but they did not
study dynamic regret and focused on asymptotic regret.

The main goal of this paper is to analyze how the quality
of the obtained solutions evolves in ONO settings where the
global solution changes slowly over time. To this end, we first
develop mathematical tools for characterizing the landscape
of constrained nonconvex optimization problems and analyze
the behavior of the projected gradient descent algorithm on
such problems. There are many conditions in the literature
that guarantee linear convergence of local search algorithms. In
the unconstrained case when S = Rn, the Polyak-Łojasiewicz
(PL) condition has been proven to be weaker than other com-
mon assumptions (such as strong convexity, essential strong
convexity, weak convexity, and restricted secant inequality)
that guarantee linear convergence [27]. Despite its favorable
characteristics, requiring that a function satisfy the PL condi-
tion still significantly restricts the type of nonconvex functions
that one can study. For instance, functions satisfying the PL
condition cannot have local minima which are not globally
optimal.

We leverage the generalization of the PL condition for
constrained optimization, called the proximal-PL condition
(originally proposed in [27]), to study dynamic regret min-
imization in a nonconvex setting. The first contribution of
this paper is to establish a target set for each time instance
with the property that once the algorithm finds a point in the
corresponding target set at a given time, the global minimizers
of future problems can be found efficiently. These time-
varying target sets are defined with respect to the proximal-PL
condition and the global solution. We show several important
properties of these sets, including linear convergence to the
global minimizer and quadratic growth.

The design and regret analysis of two online algorithms
constitute the second contribution of this paper. Specifically,
we equip local search algorithms with memory, random explo-
ration, and multiple gradient queries and establish dynamic re-
gret bounds for each algorithm in terms of the path length and
squared path length of the optimal decision sequence, when
the difference between consecutive points in this sequence is
bounded appropriately. The first algorithm assumes that the
decision maker has some prior knowledge about the initial
function and can start at a point that is within its target set.
This algorithm ensures bounded dynamic regret by produc-
ing decisions which track the time-varying target sets. The
second algorithm obviates this initial condition assumption
by using random exploration. In this case, dynamic regret
depends on when the decision maker first finds a point within
the corresponding target set, as after that time all decisions
will track the time-varying target sets. Therefore, the relative
volume of the time-varying target sets with respect to the entire
feasible domain–a measure of how favorable the loss function
landscape is–influences the likelihood that the dynamic regret
will be small. In particular, a single low-complexity problem
in the sequence can have a large influence on the outcomes.

The remainder of this paper is organized as follows. In
Section II, we analyze the optimization problem for each fixed
time step, focusing on a neighborhood of the global solution.

In Section III, we introduce ONO algorithms, derive bounds on
their dynamic regret, and support the analysis with empirical
results. Finally, we conclude the paper in Section IV.

A. Notations

Let || · || indicate the ℓ2-norm of a vector and | · | represent
the cardinality of a set. The symbols Rn and Z+ denote the
space of n-dimensional real vectors and the set of positive
integers, respectively. The globally optimal objective value of
the optimization problem at time t is denoted by f∗

t . If there
is a unique global optimum at time t, it will be denoted as
x∗
t , in which case ft(x

∗
t ) = f∗

t . The indicator function IS(x)
returns zero if x belongs to the set S and infinity otherwise.
We define the projection operator as follows:

ΠS(x) := argmin
y∈S

∥x− y∥. (4)

The tangent cone of a convex set S at x is denoted as TS(x).
The sublevel set Lt is defined as Lt(α) := {x ∈ S|ft(x) <
α}. Finally, P[·] denotes the probability of the argument.

II. THEORETICAL RESULTS FOR A FIXED TIME STEP

A. Properties of the Problem Structure

Throughout this paper, we make the following assumptions
on the problem structure:

1) The time-invariant feasible region S ⊂ Rn is a compact,
convex set known to the decision maker.

2) ft is continuously differentiable on S, but potentially
nonconvex in x with many local minima, for all t ∈
{1, 2, . . . , T}.
– This assumption ensures that the magnitude of the gradi-

ent is bounded above by a positive constant M1 for all t ∈
{1, 2, . . . , T}. That is, supx∈S,1≤t≤T ||∇ft(x)|| ≤ M1.

3) ft has a unique global minimum x∗
t over S for all t ∈

{1, 2, . . . , T}.
4) The first derivative of ft is L-Lipschitz continuous on S for

all t ∈ {1, 2, . . . , T}, implying the following inequality for
some constant L:

ft(y)−ft(x)≤⟨∇ft(x),y−x⟩+
L

2
||y−x||2, ∀x,y∈S. (5)

B. Proximal Polyak-Łojasiewicz Regions

In the context of unconstrained optimization problems, a
differentiable function ft satisfies the Polyak-Łojasiewicz (PL)
condition [28] if the following condition holds for some
parameter µ > 0:

1

2
||∇ft(x)||2 ≥ µ(ft(x)− f∗

t )︸ ︷︷ ︸
PL inequality

, ∀x ∈ Rn. (6)

If a function satisfies the PL condition and the magnitude of
its gradient is small at some x, then the function value at x
will be close to the global minimum. This is the reason why
the PL condition is also referred to as the gradient domina-
tion condition [29]. For a general (unconstrained) nonconvex
optimization problem, first-order methods such as gradient
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Fig. 1: The top figure shows the nonconvex function
f1(x) = x2 + 3 sin2(x), which satisfies the PL inequality with
the parameter µ = 1/32 for all x ∈ R [27]. The bottom
figure shows an example of a nonconvex function that satisfies
the PL inequality with the parameter µ = 1/32 only for
x ∈ {[−55.9,−10.2]∪ [−5.4, 5.4]∪ [10.2, 55.9]}. The function
for the bottom figure is given below:

f2(x) =


− 1

3πx
3 − 5

2x
2 − 6πx− 17

6 π2, if x < −π

x2 + 3 sin2(x), if − π ≤ x ≤ π
1
3πx

3 − 5
2x

2 + 6πx− 17
6 π2, if π < x

descent may not converge to a global minimizer. However, if
a function ft satisfies the Polyak-Łojasiewicz condition, then
every stationary point is a global minimizer. Moreover, PL
is one of the most general conditions under which gradient
descent offers linear convergence to a global minimizer [27].
Note that, in general, functions satisfying the PL condition
may not have a unique global minimizer.

The top plot in Figure 1 shows an example of a nonconvex
function that satisfies the PL condition. On the other hand,
the function in the bottom plot of Figure 1 manifests spurious
local minima and therefore cannot satisfy the PL inequality for
all x for any µ > 0. However, for a given µ, we can identify
a subset of R that satisfies the PL inequality. The idea of
focusing on regions where the PL inequality is satisfied, rather
than only considering functions which satisfy the PL inequality
over Rn, leads to our definition of time-varying target sets in
Section II-C.

Next, we return to considering constrained optimization
problems. Constrained optimization can be cast in the frame-
work of unconstrained optimization by appending the objective
function with IS, an indicator function of a convex set S. This
indicator function is non-smooth and convex. Subsequently, a
natural generalization of gradient descent to the constrained
case is the proximal gradient method, whose iteration is
described by

xk+1
t = argmin

y

[
⟨∇ft(x

k
t ), y − xk

t ⟩+
∥y − xk

t ∥2

2s

+ IS(y)− IS(xk
t )
]

(7)

for every k ∈ Z+, where s is a positive constant. It can be
shown that the above algorithm is equivalent to the projected
gradient descent algorithm:

xk+1
t = ΠS(x

k
t − s∇ft(x

k
t )). (8)

A matching generalization of the PL inequality, namely the
proximal-PL inequality, was first proposed in [27].

Definition 1. (Proximal-PL inequality) For a function ft,
define the proximal-gradient norm with parameter β > 0 as

Dt(x, β) = (9)

− 2βmin
y

[
⟨∇ft(x),y − x⟩+ β∥y − x∥2

2
+ IS(y)− IS(x)

]
We say that a point x ∈ S satisfies the proximal-PL inequality
with the parameters µ > 0 and β > 0 if

1

2
Dt(x, β) ≥ µ(ft(x)− f∗

t ). (10)

Note that by virtue of the equivalence between equations
(7) and (8), the proximal-gradient norm can also be expressed
as follows:

Dt(x, β) = −2β

[
⟨∇ft(x),ΠS(x− 1

β
∇ft(x))− x⟩

+
β

2
∥ΠS(x− 1

β
∇ft(x))− x∥2

]
. (11)

While [27] considers functions that satisfy the proximal-
PL inequality at all points in S, in this work we instead
identify a subset of the entire space that satisfies the inequality.
Hereby, we define the time-varying proximal-PL region, de-
noted Pt(µ, β), as the set of all x ∈ S satisfying the proximal-
PL inequality with the parameters µ > 0 and β > 0. That is,

Pt(µ, β) :=

{
x ∈ S

∣∣∣ 1
2
Dt(x, β) ≥ µ(ft(x)− f∗

t )

}
. (12)

In the remainder of the paper, we assume that the parameters
µ and β are chosen to guarantee existence of an open set con-
taining x∗

t for each t ∈ {1, . . . , T} such that the intersection
of this set with S lies in the proximal-PL region. That is, there
exists an open set SP

t (µ, β) such that x∗
t ∈ (SP

t (µ, β)∩ S) ⊂
Pt(µ, β).

C. Time-Varying Regions of Attraction and Target Sets

A proximal-PL region can span over multiple regions of
attraction associated with different local minima. Also, note
that a region of attraction (RoA) is algorithm dependent. In this
paper, we define RoAs (with respect to the global minimizer)
that respect the proximal-PL inequality under the projected
gradient descent method and also under the projected gradient
flow system, a continuous version of the former.

Definition 2. Let RPD
t and RPC

t denote the subsets of the
discrete and continuous RoAs that are contained within the
proximal-PL region at time t:

RPD
t (µ, β, s) :=

{
x | xk+1

t = ΠS(x
k
t − s∇ft(x

k
t )),

x0
t = x, lim

k−→∞
xk
t = x∗

t and {xk
t }∞k=0 ⊂ Pt(µ, β)

}
(13)



RPC
t (µ, β) :=

{
x | ẋt = ΠTS(xt)(−∇ft(xt)),xt(0) = x,

lim
ℓ→∞

xt(ℓ) = x∗
t and xt(ℓ) ∈ Pt(µ, β) ∀ℓ ≥ 0

}
(14)

One can view the continuous-time RoA as the limit of the
discrete-time RoA as we take the step size towards zero. The
continuous-time RoA does not depend on any step-size, and
therefore is directly related to the properties of the function.
The discrete-time RoA is a function of the step size and
therefore is algorithm-dependent.

Next, we define a region that we call the target set. In sub-
sequent sections, we will show that if our proposed algorithm
enters the target set at any time t, then it is possible to approach
the global minimizer and track it at all subsequent times.

Definition 3. (Target set) We define our target set for time t
to be a subset of a sublevel set around the global minimizer
that belongs to both RPD

t (µ, β, s) and RPC
t (µ, β, s):

Tt(µ, β, s) := Lt(αt) ∩RPD
t (µ, β, s) (15)

where αt is the largest α satisfying the following condition:

Lt(α) ∩RPD
t (µ, β, s) ⊆ RPC

t (µ, β) (16)

All points in each target set are feasible, satisfy the
proximal-PL inequality, and lead to the global solution un-
der the continuous and discrete projected gradient descent
methods initialized at those points. Theorem 1 will show
that these target sets are invariant, and Lemma 1 will show
that their sizes are nonnegligible. The proofs of Theorem 1
and Lemma 1 highlight the importance of each of the three
sets (Lt(αt), RPD

t (µ, β, s) and RPC
t (µ, β)) which together

define a target set. One useful way to measure the size of a
target set is with respect to the global solution.

Definition 4. (Reach) Define the reach of a target set as the
maximum distance between the global minimizer and any point
in the target set:

ρt(µ, β, s) := max
x∈Tt(µ,β,s)

∥x∗
t − x∥. (17)

D. Properties of Target Sets

In [27], the authors showed the linear convergence of
the proximal-gradient algorithm when applied to functions
satisfying the proximal-PL condition. In this paper, we show
that initializing the proximal-gradient algorithm in the corre-
sponding target set ensures linear convergence to the global
minimum, regardless of whether the proximal-PL inequality
is satisfied for all feasible points. Additionally, there is an
open ball around the global solution whose intersection with
the feasible set S is also contained in the corresponding target
set.

Theorem 1. Given µ > 0, β ≥ L and a fixed instance of t,
consider the problem of minimizing ft over S (Problem (1))
via the projected gradient descent method (8) with the step
size s. If x0

t ∈ Tt(µ, β, s), then the projected gradient descent
method with 0 < s < min( 1µ ,

1
β ) converges linearly to the

optimal value f∗
t , i.e.,

ft(x
N
t )− f∗

t ≤ (1− µs)
N
[ft(x

0
t )− f∗

t ], (18)

and xN
t ∈ Tt(µ, β, s), where N ∈ {0, 1, 2, . . . } indicates the

number of iterations.

Proof. The proof is similar to that of Theorem 5 in [27]. Let
Ft(x) := ft(x) + IS(x). By using the Lipschitz continuity of
the gradient of ft, one can write:

Ft(x
1
t ) = ft(x

1
t ) + IS(x0

t ) + IS(x1
t )− IS(x0

t )

≤ ft(x
0
t ) + IS(x0

t ) + ⟨∇ft(x
0
t ),x

1
t − x0

t ⟩

+
L

2
||x1

t − x0
t ||2 + IS(x1

t )− IS(x0
t )

Then, noting that x0
t ∈ Tt(µ, β, s) ⊂ S and L ≤ 1/s, we

obtain an upper bound of the form:

Ft(x
1
t ) ≤ ft(x

0
t ) + ⟨∇ft(x

0
t ),x

1
t − x0

t ⟩+
1

2s
||x1

t − x0
t ||2

+ IS(x1
t )− IS(x0

t )

= ft(x
0
t )−

s

2
Dt(x

0
t , 1/s)

where the equality follows from the definition of xk+1
t and the

proximal-gradient norm. Finally, we upper bound the equation
above by using the facts that x0

t satisfies the proximal-PL
inequality with parameters µ and β and that Dt(x

0
t , 1/s) ≥

Dt(x
0
t , β) since 1

s ≥ β [27]:

Ft(x
1
t ) ≤ ft(x

0
t )− µs[ft(x

0
t )− f∗

t ].

Since x1
t is feasible by the definition of projection, we have

ft(x
1
t ) ≤ ft(x

0
t )− µs[ft(x

0
t )− f∗

t ],

which subsequently implies

ft(x
1
t )− f∗

t ≤ (1− µs) [ft(x
0
t )− f∗

t ]. (19)

Repeating the process for N steps, we have the final result:

ft(x
N
t )− f∗

t ≤ (1− µs)
N
[ft(x

0
t )− f∗

t ].

Further, by showing a non-increasing objective value in (19),
it holds that x1

t ∈ Lt(αt). The definition of RPD
t (µ, β, s)

in (13), paired with knowledge that x0
t ∈ RPD

t (µ, β, s),
guarantees that x1

t ∈ RPD
t (µ, β, s). Therefore, x1

t ∈ Lt(αt)∩
RPD

t (µ, β, s) = Tt(µ, β, s), proving that the target set is
invariant under the projected gradient descent method.
Theorem 1 also gives a lower bound on f∗

t after N iterations:

f∗
t ≥

ft(x
N
t )−

(
1− µs

)N
ft(x

0
t )

1−
(
1− µs

)N , ∀N ∈ Z+. (20)

For unconstrained problems, a function satisfying the PL
condition implies that it also satisfies the quadratic growth
condition [27]. Next, we prove a similar relationship between
the proximal-PL inequality and quadratic growth.

Theorem 2. (Quadratic growth) The following inequality
holds:√

ft(x)− f∗
t ≥

√
µ

2
∥x− x∗

t ∥, ∀x ∈ RPC
t (µ, β). (21)

Proof: See Appendix A.
While the proof of Theorem 2 relies on the continuous

version of the projected gradient flow algorithm, this paper



does not require implementing or solving this continuous
dynamical system. The algorithms in Section III use the
discrete-time projected gradient descent algorithm. The next
lemma establishes what we will refer to as the robustness
property of a target set.

Lemma 1. (Robustness of a target set) The target set
Tt(µ, β, s) includes a feasible ball of radius at least r around
the global solution for some r > 0. That is, ∃µ, β, s, r >
0 : Tt(µ, β, s) ⊇ (B(x∗

t , r) ∩ S) for all t ∈ {1, . . . , T}, where
B(x∗

t , r) := {y ∈ Rn | ∥x∗
t − y∥2 ≤ r}.

Proof: See Appendix B and Appendix C.

Assumption 1. There exists a constant M2 such that

ft(x)−f∗
t ≤ M2∥x−x∗

t ∥2, ∀x ∈ Tt(µ, β, s), t=1, . . . , T.
(22)

Note that if x∗
t is in the interior of S at every t=1, . . . , T ,

then this assumption is automatically satisfied due to the
assumption that ∇ft is L-Lipschitz. Specifically, it holds with
M2 = L/2, which can be derived by substituting x = x∗ and
∇ft(x

∗
t ) = 0 into (5). In the general case, this assumption

is similar to ft being 2-order calm at x∗
t relative to the set

Tt(µ, β, s) [30]–[32].

E. Visualization of a Proximal-PL Region and Target Set

To develop intuition about proximal-PL regions and target
sets, it is beneficial to visualize these sets in an example.
Consider the optimization problem

min f(x1, x2) = x4
1 − 4x3

1 + x2
1 + 2x1 +

3

2
sin(2πx1)

+ x4
2 − 4x3

2 + x2
2 + 2x2 +

3

2
sin(2πx2) + 28.87

s.t. − 1 ≤ x1 ≤ 3, −1 ≤ x2 ≤ 3 (23)

which is depicted in Figure 2a. This problem has the optimal
value of 0 at x∗ = (2.75, 2.75) and includes many spurious
local solutions.

The proximal-PL region and target set for this problem with
the parameters µ = 0.5, β = 250 > L and s = 1

2β are depicted
in Figure 2b and Figure 2c, respectively. The proximal-PL
region includes a neighborhood of the global solution, as well
as points far from the global solution. However, many points
in the feasible set do not satisfy the proximal-PL inequality,
in particular those near stationary points.

Observe that the target set is a subset of RPD,RPC and the
proximal-PL region. The symmetry in Figure 2b and Figure 2c
is a result of the symmetry in the loss function f .

III. ONLINE PROJECTED-GRADIENT DESCENT WITH
RANDOM EXPLORATION

In this section, we leverage the results developed in Sec-
tion II to study the ONO problem (1). We introduce and
analyze two algorithms for different scenarios:

1) Scenario 1: An initial point in the target region around
the global solution x∗

1 is known.
2) Scenario 2: No information about the loss functions or

their minimizers is known in advance.

(a) Topology of the objective function f over the feasible set. Observe
that this problem has many local minima.

(b) Points in the grey region satisfy the proximal-PL inequality for
the function f over the set S = [−1, 3] × [−1, 3] with parameters
µ = 0.5 and β = 250, while points in the white regions do not. The
unique optimal solution x∗ = (2.75, 2.75) is identified by a red star.

(c) Illustration of the target set and other sets critical to its definition,
where points are colored based on the most restrictive set to which
they belong. (Recall that Target Set ⊂ (RPD ∩RPC) ⊂ S.) The
red dashed circle demonstrates the robustness property established in
Lemma 1. The length of the black dashed line is the reach of the
target set.

Fig. 2: Visualization of the proximal-PL region and the target
set for the optimization problem (23).



A. Scenario 1 - Known desirable initial point

Algorithm 1 provides a natural approach to solving the
ONO problem (1) in the setting where a suitable initial point
is known. At each time t, the decision maker performs St

iterations of projected gradient descent on ft, with the final
iteration becoming the decision maker’s action at t + 1. The
assumption is that the decision maker has enough knowl-
edge about the problem at t = 1 to select an initial point
in the corresponding target set and that the change in the
global optimum between time steps is upper-bounded based
on parameters reflecting the functions’ landscapes. The latter
assumption restricts the adversary’s choice of loss function
and can be regarded as requiring the global solution sequence
to have steadiness. This assumption is formalized next.

Assumption 2. (Steadiness of global solution) The change in
the global optimum between consecutive time steps is upper-
bounded by r̄ < r, where r is as defined in Lemma 1. That is,
for t = 1, . . . , T − 1,

||x∗
t+1 − x∗

t || ≤ r̄, (24)

where µ, β, s, and r collectively satisfy the robustness property
in Lemma 1 and ρt(µ, β, s) is defined in (17). Furthermore,
assume that St is large enough to satisfy the inequalities:√

2M1 · ρt(µ, β, s) · (1− µs)St

µ
≤ r − r̄ (25a)

St >
log(µ)− log(4M2)

log(1−µs)
. (25b)

Note that this assumption only limits the change in the
global minimizer; the overall landscape of the function can
change arbitrarily. Under this assumption, we will establish a
deterministic dynamic regret bound for Algorithm 1. To aid
in establishing this bound, we first prove two lemmas:

i) one showing the convergence in terms of the variables x,
ii) another one proving that once the chosen action xt is

within the target region at time t, all successive actions
chosen by the algorithm will also lie within the target
region of their respective time.

Lemma 2. Consider a sequence {xt}Tt=1 generated by Algo-
rithm 1. Under Assumptions 1 and 2, if xt ∈ Tt(µ, β, s) for
any t ∈ {1, 2, . . . , T − 1}, then

∥xt+1 − x∗
t ∥ ≤ γ∥xt − x∗

t ∥ (26)

where

γ = max
t=1,...,T

√
2M2(1− µs)St

µ
<

1√
2
. (27)

Proof: From the convergence rate in Theorem 1 (specifically
equation (19)), we have

ft(xt+1)− f∗
t ≤ (1− µs)St

[
ft(xt)− f∗

t

]
Applying the quadratic growth inequality from Theorem 2 and
taking the square root of all sides, we obtain

∥xt+1−x∗
t ∥≤

√
ft(xt+1)−f∗

t

µ/2
≤

√
(1−µs)St

(
ft(xt)−f∗

t

)
µ/2

.

Algorithm 1 Online Projected Gradient Descent with Desir-
able Initialization
Require: x1 ∈ T1(µ, β, s), 0 < s < min{ 1

µ ,
1
β }

1: for t = 1, 2, . . . , T do
2: Play xt

3: Set z0 = xt

4: for i = 1, ..., St do
5: Query ∇ft(zi−1)
6: Perform projected gradient descent update:

zi = ΠS [zi−1 − s∇ft(zi−1)]
7: end for
8: Set xt+1 = zSt

9: end for

Then, using the definition of M2 (22), we arrive at

∥xt+1−x∗
t ∥≤

√
2M2(1− µs)St

µ︸ ︷︷ ︸
=γt

∥xt − x∗
t ∥. (28)

Then γt <
1√
2

since St > log(µ/(4M2))/ log(1−µs).
The above lemma proves that given a sufficiently large St,

we can make γ arbitrarily close to zero, implying that the
iterates can become arbitrarily close to the global minimizers
at different times. The trade-off is between accuracy and
computation time, which is driven by St. There is also an
intuitive trade-off between the step size s and computation
time: smaller step sizes require more algorithmic iterations.

Lemma 3. Consider a sequence {xt}Tt=1 generated by Algo-
rithm 1. Under Assumptions 1 and 2, if xt ∈ Tt(µ, β, s) for
any t ∈ {1, 2, . . . , T − 1}, then xt+1 ∈ Tt+1(µ, β, s).

Proof: It is desirable to show that ∥xt+1 − x∗
t+1∥ < r, which

ensures that xt+1 ∈ B(x∗
t+1, r). By Lemma 1 (the robustness

property of target sets), we have B(x∗
t+1, r) ⊂ Tt+1(µ, β, s).

One can write:

∥xt+1−x∗
t+1∥ ≤ ∥xt+1 − x∗

t ∥+ ∥x∗
t − x∗

t+1∥
≤∥xt+1−x∗

t ∥+ r̄

≤∥xt+1−x∗
t ∥+r−

√
2M1ρt(µ, β, s)(1−µs)St

µ

≤

√
2
(
ft(xt+1)− f∗

t

)
µ

+r−

√
2M1ρt(µ, β, s)(1− µs)St

µ

≤

√
2(1−µs)St

(
ft(xt)− f∗

t

)
µ

+ r −

√
2M1ρt(µ, β, s)(1−µs)St

µ

≤r +

√
2M1(1−µs)St

µ

(√
∥xt − x∗

t ∥ −
√

ρt(µ, β, s)
)

≤ r

where the second and third inequalities use Assumption 2,
the fourth inequality applies Theorem 2, the fifth inequality



is due to Theorem 1, the sixth inequality applies the bounded
gradient assumption from Section II-A, and the last inequality
is due to (17).

Now, we present a dynamic regret bound for Algorithm 1.

Corollary 1. Consider a sequence {xt}Tt=1 generated by
Algorithm 1. Under Assumptions 1 and 2, the dynamic regret
satisfies the following inequality for every constant η > 0:

Regd
T (x1,...,xT )≤ min{A(1, T ), B(1, T )}, (29)

where

A(t1, t2) :=
M1

1−γ

t2∑
t=t1+1

∥x∗
t −x∗

t−1∥+
M1ρt1(µ, β, s)

(1−γ)
(30a)

B(t1, t2) :=
L+η

1−2γ2

t2∑
t=t1+1

∥x∗
t −x∗

t−1∥2+
∑t2

t=t1
∥∇ft(x

∗
t )∥2

2η

+
(L+ η)ρt1(µ, β, s)

2

(2−4γ2)
(30b)

Proof: The proofs that A(1, T ) and B(1, T ) each upper-
bound the dynamic regret obtained by Algorithm 1 will follow
the same lines of reasoning as Theorem 1 and Corollary 1
of [17] and Theorem 2 of [16], respectively. In these works,
similar results are proved for strongly convex functions. In
the nonconvex setting considered in this paper, we will utilize
Lemma 2 and Lemma 3 in our proofs.

Proof of the inequality RegdT (x1,...,xT ) ≤ A(1, T ): By
the Intermediate Value Theorem, there exists y ∈ {z|z =
ωxt + (1 − ω)x∗

t , 0 ≤ ω ≤ 1} such that ft(x) − ft(x
∗
t ) =

∇ft(y)
T (xt − x∗

t ). Therefore, by applying the bounded gra-
dient assumption in Section II-A, we have

Regd
T (x1, ...,xT ) ≤ M1

T∑
t=1

∥xt − x∗
t ∥. (31)

Next we establish an upper bound on the summation in (31):
T∑

t=1

∥xt − x∗
t ∥ = ∥x1 − x∗

1∥+
T∑

t=2

∥xt − x∗
t ∥

≤ ∥x1 − x∗
1∥+

T∑
t=2

∥xt − x∗
t−1∥+

T∑
t=2

∥x∗
t − x∗

t−1∥

≤ ∥x1 − x∗
1∥ − γ∥xT − x∗

T ∥+ γ

T∑
t=1

∥xt − x∗
t ∥

+

T∑
t=2

∥x∗
t − x∗

t−1∥

=⇒
T∑

t=1

∥xt − x∗
t ∥ ≤ ∥x1 − x∗

1∥ − γ∥xT − x∗
T ∥

1− γ

+
1

1− γ

T∑
t=2

∥x∗
t − x∗

t−1∥ (32)

≤ ρ1(µ, β, s)

1− γ
+

1

1−γ

T∑
t=2

∥x∗
t − x∗

t−1∥ (33)

The first inequality invokes the triangle inequality. The second
inequality applies Lemma 2 for each t = 1, . . . , T and

re-indexes the summation. This application of Lemma 2 is
derived by recursively applying Lemma 3 to the requirement
that x1 ∈ T1(µ, β, s). We rearrange terms to arrive at (32)
and then apply the definition of the reach of the target set
(17) to achieve the final inequality. Combining (33) with (31)
completes the proof.

Proof of the inequality Regd
T (x1,...,xT ) ≤ B(1, T ): Begin-

ning with the L-Lipschitz continuity of ∇ft and basic fact that
(∥∇ft(x

∗
t )∥ − η∥xt − x∗

t ∥)2 ≥ 0, one can write:

T∑
t=1

ft(xt)− f∗
t ≤

T∑
t=1

∥∇ft(x
∗
t )∥∥xt − x∗

t ∥+
L

2
∥xt − x∗

t ∥2

≤ 1

2η

T∑
t=1

∥∇ft(x
∗
t )∥2 +

L+η

2

T∑
t=1

∥xt−x∗
t ∥2. (34)

Following similar steps to those used to bound
∑T

t=1 ∥xt−x∗
t ∥

above, we can establish the following bound:

T∑
t=1

∥xt−x∗
t ∥2 ≤ ∥x1−x∗

1∥2

1−2γ2
+

2
∑T

t=2 ∥x∗
t −x∗

t−1∥2

1−2γ2
. (35)

Combining (35) with (34) and using the definition of the reach
of the target set (17) completes the proof.

Observe that the dynamic regret is a function of the temporal
variation in the optimal decision, a common measure of
variation discussed in the introduction. A(1, T ) is a function
of the path length, while B(1, T ) depends on the squared path
length. The (squared) path length is weighted by a function of
γ that is large when γ is close to 1/

√
2 and is approximately

one when γ is close to 0. Again, this trade-off between the
strength of the dynamic regret bound and computation time is
driven by St. If some function ft does not have a unique global
minimum, as stated in Section II-A, but instead has multiple
disconnected global minimizers each satisfying Assumptions 1
and 2 for their associated target sets, Corollary 1 holds under
the updated criteria that x1 is in the union of target sets (each
target set corresponding to a global minimizer at t = 1).

B. Scenario 2 - Blind initialization

The initialization scenario described in Scenario 1 – that
a point in the target region is known at the initial time – is
difficult to satisfy in practice. The reason is that the decision
maker may have no information about how their adversary
will design f1. In this case, it is advantageous to explore the
landscape of ft before selecting decision xt+1. Algorithm 2
explores by running the projected gradient descent algorithm
from multiple initial points, which are sampled uniformly at
random from S and stored in the set Wt.

The goal of exploration is to find a point in a time-varying
target set. The decision maker cannot verify when this occurs,
however, since they do not have knowledge of the landscape
of the function. As a result, Algorithm 2 utilizes memory, in
the form of the set Mt, to make available at time t+1 points
which may be in the target set at time t. Once a point in a
time-varying target set is sampled, memory ensures that the
decision maker has at least one initial point (a point in the set
Yt) in the target set of each future time step. Specifically, if



Algorithm 2 Online Projected Gradient Descent with Random
Exploration

Require: x1 ∈ S, M1 = ∅, m1 = 0, 0 < s < min{ 1
µ ,

1
β }

1: for t = 1, 2, . . . , T do
2: • Play xt

3: • Create Wt = {w1
t , . . . ,wq

t} by uniformly sampling q
random points from S

4: • Set Yt = Wt

⋃
Mt

⋃
{xt} := {y1

t , ...,y
q+mt+1
t }

5: for k = 1, 2, . . . , q +mt + 1 do
6: • Initialize zk0 = yk

t , zk∗ = yk
t , ck = ∞, bk = −∞

7: • Set i = 1
8: while ck − bk > ϵ or i ≤ St do
9: • Query ∇ft(z

k
i−1)

10: • Compute zki = ΠS
[
zki−1 − s∇ft(z

k
i−1)

]
11: • Query cki = ft(z

k
i )

12: if cki < ck then
13: • zk∗ = zki , ck = cki
14: end if
15: • bki =

(
ft(z

k
i )−(1−µs)

i
ft(z

k
0)
)
/
(
1−(1−µs)i

)
16: • Update bk = max{bk, bki }
17: • Update i = i+ 1
18: end while
19: • Set Ikt = i
20: end for
21: • Let K = argmink ck, and set xt+1 = zK∗
22: • Store in memory all other points in {zk∗}

q+mt+1
k=1 which

could be in the proximal-PL region at time t:
Mt+1={zk∗ :ck≤cK + ϵ, k∈{1, ..., q+mt+1} \K}

23: mt+1 = |Mt+1| (Note: mt+1 ≤ qt)
24: end for

yk
t is in the target set for time t, the first while loop condition

(ck−bk > ϵ) paired with the construction of Mt+1 guarantees
that zk∗ is used as an initial point at time t+1, and the second
while loop condition (i ≤ St) ensures that zk∗ is in the target
set for time t+1. This tracking guarantee is formalized in the
following lemma.

Lemma 4. Consider sequences {xt}Tt=1 and {Yt}Tt=1 gen-
erated by Algorithm 2. Under Assumptions 1 and 2, if
zk0 ∈ (Tt(µ, β, s) ∩ Yt) for any t ∈ {1, 2, . . . , T − 1}, then
zk∗ ∈ (Tt+1(µ, β, s) ∩ Yt+1).

Proof: The number of iterations Ikt is at least as large as St.
Therefore, applying the same logic as the proof of Lemma 3,
we know that zk

Ik
t
∈ Tt+1(µ, β, s). By Theorem 1, we have

ft(z
k
0) ≥ ft(z

k
1) ≥ · · · ≥ ft(z

k
St
) ≥ ft(z

k
Ik
t
) with zki = zki+1

only if zki = x∗
t . This implies that zk∗ = zk

Ik
t

. It remains to show
that zk∗ ∈ Yt+1. If zk∗ = xt+1, then zk∗ ∈ Yt+1. Otherwise,
since zk0 ∈ Tt(µ, β, s), it holds that ck ≤ f∗

t + ϵ ≤ cK + ϵ,
which implies zk∗ ∈ Mt+1 ⊂ Yt+1. As a result, zk∗ ∈ Yt+1,
which completes the proof.

Since Algorithm 1 is a deterministic algorithm, the dynamic
regret bound established in Corollary 1 is deterministic too.
Algorithm 2 relies on sampling, and therefore its associated
regret bound should be probabilistic. In the following culmi-
nating theorem, we provide an upper bound on the dynamic

regret accrued using Algorithm 2 and a lower bound on the
probability with which this bound holds.

Theorem 3. Consider a sequence {xt}Tt=1 generated by Algo-
rithm 2. Under Assumptions 1 and 2, the dynamic regret satis-
fies the following probabilistic bound for all T̄ ∈ {1, . . . , T}:

P

[
RegdT (x1, . . . ,xT ) ≤ RegdT̄−1(x1, . . . ,xT̄−1)

+ min{A(T̄ , T ), B(T̄ , T )}

]
(36)

≥ 1−
T̄∏

t=1

(
1−Vol(Tt(µ, β, s))

Vol(S)

)q

,

where Vol(·) indicates the volume of the set. This theorem
relates the dynamic regret at time T to the dynamic regret at
an earlier time T̄ , the variation within the optimal decision
sequence after T̄ , and the relative sizes of the target sets
through T̄ .

Proof: The probability that a point located in the time-varying
target set Tt(µ, β, s) appears in Yt by time T̄ is related to the
volumes of Tt(µ, β, s) and S because, at each time step, q
initial points are selected from S uniformly at random. Hence,

P
[
Yt ∩ Tt(µ, β, s) ̸=∅ for some t∈{1, . . . , T̄}

]
(37)

≥ P
[
Wt ∩ Tt(µ, β, s) ̸=∅ for some t∈{1, . . . , T̄}

]
= P

 T̄⋃
t=1

q⋃
i=1

wi
t ∈ Tt(µ, β, s)


= 1−P

[
wi

t /∈Tt(µ, β, s) ∀t=1, . . . , T̄ ,∀i=1, . . . , q
]

= 1−
T̄∏

t=1

(
1− Vol(Tt(µ, β, s))

Vol(S)

)q

(38)

Now, we will show that if Yt ∩ Tt(µ, β, s) ̸= ∅ for some
t∈{1, . . . , T̄}, then the dynamic regret is upper bounded by
the expression in (36). Applying Lemma 4 and Corollary 1
yields that

Regd
T (x1, . . . ,xT ) =

T̄−1∑
t=1

(ft(xt)− f∗
t ) +

T∑
t=T̄

(ft(xt)− f∗
t )

=RegdT̄−1(x1, . . . ,xT̄−1) +

T∑
t=T̄

(ft(xt)− f∗
t )

≤RegdT̄−1(x1, . . . ,xT̄−1)+min{A(T̄ , T ), B(T̄ , T )} (39)

This completes the proof.
Observe that the strength of this probabilistic bound depends

on the landscape of loss functions around the global solution
through the volume of the target sets. In particular, one can
analyze the role that a “lower-complexity problem” at some
time T̄ plays in determining the complexity of the entire
online nonconvex optimization. As an extreme but important
case, suppose that there is a time T̄ ∈ {1, . . . , T} such that
fT̄ is convex. Then the dynamic regret bound (36) holds
with probability 1 since Tt(µ, β, s) = S. In other words, the



TABLE I: Parameter and constant values

S µ β s ϵ r
[−1, 3]2 0.5 289 0.0031 0.1 0.29

St(max) L M1 ∥x∗
t −x∗

t−1∥
7060 289 140 0.22

existence of a single convex problem, in between the sequence
of nonconvex problems, is enough to break down the NP-
hardness of solving nonconvex problems for all future times,
under the steadiness of the global solution assumption. On the
other hand, if the global solution is extremely “sharp” at all
times, it is unrealistic to expect any algorithm with limited
computation time to find the global solution. Thus, dynamic
regret could be arbitrarily large in this case. Indeed, the target
set of a sharp minima is small and therefore the probability of
satisfying the dynamic regret bound in (36) is low, as expected.
If some function ft does not have a unique global minimum, as
stated in Section II-A, but instead has multiple disconnected
global minimizers each satisfying Assumptions 1 and 2 for
their associated target sets, Theorem 3 holds with the union of
target sets (each target set corresponding to a global minimizer
at t) replacing the single target set Tt(µ, β, s).

Choices for the step size s, number of iterations St, and
number of samples q, represent trade-offs between regret
bound strength and computation time. As discussed in Section
III-A, a smaller step size requires more algorithmic iterations
to satisfy Assumption 2. Increasing the number of iterations
may increase the time to execute the while loop (line 8).
However, larger values of St improve the upper bound on
dynamic regret in (36) by reducing γ. Increasing the number
of random initial points improves the probability with which
(36) holds, but also increases computation time of in the inner
for loop, which is executed up to qt+ 1 times.

C. Empirical study of Algorithm 2

The objective of this section is to support the results of
Section III-B through numerical analysis. We will illustrate
the performance of Algorithm 2 on online function sequences
which satisfy the assumptions in Section II-A and Assump-
tions 1 and 2. To demonstrate the role that a single com-
paratively low-complexity problem can play in a sequence of
nonconvex problems, we will consider two cases:
A) “No low-complexity problem”: In this case,

{ft : R2 → R}40t=1 each have many local minima
over S = [−1, 3] × [−1, 3] and the target sets’ volumes
represent between 2.47% and 4.14% of the feasible space.
The geometry of f1, . . . , f6, which are representative of
the entire sequence, is shown in Figure 3.

B) “Lower-complexity problem at time 4”: In this case,
{f̄t : R2 → R}40t=1 is identical to Case A at every time
period except t = 4. The target set corresponding to f̄4
covers 20.7% of the feasible space. Meanwhile, x∗

4 is the
same in both scenarios.

The parameter choices and key problem constants for these
two online optimization problems are summarized in Table I.
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t=9Fig. 3: Contour plots of f1, . . . , f6 for Case A. The red star

marks the unique global minimum of each function.

We conducted 500 trials of Algorithm 2 on Case A and Case
B for 3 different sampling rates: q = 1, q = 2, and q = 5.
Figure 4 plots the empirical probability that Yt∩Tt(µ, β, s) ̸=∅
versus the theoretical lower bound provided in Theorem 3.
(Note that, by Lemma 4, this is the same as the probability
that Yt∩Tt(µ, β, s) ̸=∅ for some t̄∈{1, . . . , t}.) For the same
value of q, the two cases are identical for t = 1, 2, 3 and
diverge at t = 4 as a result of the “easy” problem in Case B.
These results support Theorem 3. A gap between the lower
bound and observed likelihood of initializing in the target
region is expected, since the lower bound does not account
for the possibility that xt or a memory point may be in the
subsequent target set. The dynamic regret and optimality gap
over time is shown in Figure 5. Regret accumulates quickly
until the target set is found and then accumulates slowly as
Algorithm 2 starts tracking the global solution.

IV. CONCLUSION

In this paper, we defined proximal-PL regions and target
sets, characterized their properties, and used this new knowl-
edge to propose and analyze algorithms for online nonconvex
optimization problems. Linear convergence to the global min-
imizer and quadratic growth are the two key properties of
the target sets that we established. Since dynamic regret can
be arbitrarily large when there are no restrictions on the loss
functions, we constrain consecutive functions to have global
solutions which are not too far apart, but do not limit the
variation in the loss functions otherwise. In this setting, we
propose two online algorithms. Algorithm 1 is relevant when
the decision maker has a good initial point, and it provides a
deterministic dynamic regret upper bound as a function of the
temporal variation in the optimal decision sequence. Algorithm
2 utilizes exploration and memory to be relevant regardless
of the initial point. It provides a probabilistic dynamic regret
upper bound, which is also a function of the temporal vari-
ation in the optimal decision sequence. The strength of this
probabilistic bound depends on the loss function landscapes.
For example, the bound holds with probability 1 in the special
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Fig. 4: Empirical validation of Theorem 3 probability bound
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Fig. 5: Regret resulting from Algorithm 2

case where one of the loss functions in the sequence is convex.
Empirical studies support these bounds.

APPENDIX

A. Proof of Theorem 2

Take the function f to be any ft, t ∈ {1, . . . , T}. Define
the function g(x) :=

√
f(x)− f∗ and

ẋ(ℓ) = ΠTS(x(ℓ))

(
− 1

β
∇f(x(ℓ))

)
, ∀ℓ ≥ 0 (40)

with x(0) = x. Then, by the fundamental theorem of calculus,
we have√

f(x)− f∗ = g(x)−g(x∗)

= −
∫ ∞

0

d
dℓ

g(x(ℓ)) dℓ = −
∫ ∞

0

∇f(x(ℓ))

2g(x(ℓ))
· ẋ(ℓ) dℓ (41)

The following lemma will be used to establish a lower
bound on the term inside the integral.

Lemma 5. Consider the projected gradient flow (40) with
x(0) ∈ S. There exists a unique solution x(ℓ) to this projected
dynamical system, and〈

∇f(x(ℓ)), ẋ(ℓ)
〉
=

−1

2β
· lim
h→∞

D(x(ℓ), h)− β ∥ẋ(ℓ)∥2

2
. (42)

Proof: The existence and uniqueness of the solution of the
projected dynamical system (40) is guaranteed by [33, Thm.
2.5] under the assumptions in Section II-A. Let {x(ℓ)}ℓ≥0

denote the unique solution to (40), and

xϵ(ℓ) := ΠS

(
x(ℓ)− ϵ

β
∇f(x(ℓ))

)
= argmin

y∈S

[
⟨y − x(ℓ),∇f(x(ℓ))⟩ϵ+ β∥y − x(ℓ)∥2

2

]
Then, it follows from [34, Sec III Prop. 5.3.5] that

lim
ϵ↓0

xϵ(ℓ)− x(ℓ)

ϵ
= ΠTS(x(ℓ))

(
− 1

β
∇f(x(ℓ))

)
,

where TS(x(ℓ)) is the tangent cone of S at x(ℓ) ∈ S. By the
definition of the proximal-gradient,

lim
h→∞

D(x(ℓ), h) = lim
ϵ↓0

D(x(ℓ), β/ϵ)

= lim
ϵ↓0

−2β

ϵ
·min
y∈S

[
⟨∇f(x(ℓ)),y−x(ℓ)⟩+ β

2ϵ
∥y−x(ℓ)∥2

]
= lim

ϵ↓0

−2β

ϵ2
·min
y∈S

[
⟨∇f(x(ℓ)),y−x(ℓ)⟩ϵ+ β

2
∥y−x(ℓ)∥2

]
= lim

ϵ↓0

−2β

ϵ2
[
⟨∇f(x(ℓ)),xϵ(ℓ)−x(ℓ)⟩ϵ+ β

2
∥xϵ(ℓ)−x(ℓ)∥2

]
= −2β

[
⟨∇f(x(ℓ)), ẋ(ℓ)⟩+ β

2
∥ẋ(ℓ)∥2

]
,

where the last equation is due to the continuity of ∥ · ∥2.
Rearranging the above equation yields the desired result.

Returning to the proof of Theorem 2, next we establish a
lower bound on the term inside the integral in (41).

− ∇f(x(ℓ))

2g(x(ℓ))
· ẋ(ℓ)



= − 1

2g(x(ℓ))

〈
∇f(x(ℓ)),ΠTS(x(ℓ))

(
− 1

β
∇f(x(ℓ))

)〉
=

1

2g(x(ℓ))

(
1

2β
lim
h→∞

D(x(ℓ), h)

+
β

2

∥∥∥∥ΠTS(x(ℓ))

(
− 1

β
∇f(x(ℓ))

)∥∥∥∥2
)

≥ 1

2g(x(ℓ))

(
D(x(ℓ), β)

2β
+

β

2

∥∥∥∥ΠTS(x(ℓ))

(
− 1

β
∇f(x(ℓ))

)∥∥∥∥2
)

≥ 1

2g(x(ℓ))

(
µ

β
g(x(ℓ))2 +

β

2

∥∥∥∥ΠTS(x(ℓ))

(
− 1

β
∇f(x(ℓ))

)∥∥∥∥2
)

≥
√

µ

2

∥∥∥∥ΠTS(x(ℓ))

(
− 1

β
∇f(x(ℓ))

)∥∥∥∥ .
The first equality follows from the definition of the gradient
flow system and the second equality is due to Lemma 5. The
first inequality holds because of Lemma 1 of [27]. The second
inequality applies the fact that x(t) satisfies the proximal-PL
inequality with the parameters µ and β. The third inequality is
the result of the arithmetic-geometric mean inequality. Finally,
substituting this lower bound into (41) gives√

f(x)− f∗ ≥
√

µ

2

∥∥∥∥∫ ∞

0

ΠTS(x(ℓ))

(
− 1

β
∇f(x(ℓ))

)
dℓ
∥∥∥∥

=

√
µ

2

∥∥∥∥∫ ∞

0

ẋ(ℓ) dℓ
∥∥∥∥ =

√
µ

2
∥x− x∗∥.

This completes the proof.

B. Proof of Lemma 1
In this proof, the dependency of the sets RPD

t and RPC
t on

the parameters (µ, β, s) has been omitted in order to simplify
notation. The assumption at the end of Section II-B establishes
the existence of r1 > 0 such that (B(x∗

t , r1)∩ S) ⊂ Pt(µ, β).
It can be concluded from Proposition 8.5 and Lemma 8.3
in [35], and the initial assumptions that ft is continuously
differentiable and S is compact, that the projected gradient
flow system described in (14) converges to the set of crit-
ical points of (1) and the sublevel sets of ft are invariant
under this system. Define l̄t as the second-lowest objective
value among all critical points of (1). Since f∗

t < l̄t, there
exists an r2 > 0 such that (B(x∗

t , r2) ∩ S) ⊂ Lt(l̄t) and
(B(x∗

t ,min{r1, r2})∩S) ⊂ RPC
t . Meanwhile, Lemma 6 (see

Appendix C) and its proof show that there exists an open set
SD
t ⊂ RAD

t such that x∗
t ∈ SD

t ⊂ (B(x∗
t , ϵ)∩S) for arbitrary

ϵ. Take ϵ = r1. Then SD
t ⊂ RPD

t and by definition of an
open set, SD

t ⊇ (B(x∗
t , r3) ∩ S) for some r3 > 0.

If αt > f∗
t , then Lt(αt) ⊇ (B(x∗

t , r4) ∩ S) for some
r4 > 0 and r = min{r1, r2, r3, r4} satisfies Lemma 1.
It remains to show that ∃ α′

t > f∗
t satisfying statement

(16), since αt ≥ α′
t. Define r̄ := min{r1, r2, r3} and take

α′
t = f∗

t + r̄µ/2. By Theorem 2, ∥y−x∗
t ∥2 ≤ r̄ ∀y ∈ Lt(α

′
t)

or, equivalently, Lt(α
′
t) ⊂ (B(x∗

t , r̄)∩S). Therefore, Lt(α
′
t) =

Lt(α
′
t) ∩RPD

t ⊂ RPC
t , completing the proof.

C. Capture property
Lemma 6. Let f be a continuously differentiable function on
a compact, convex set S. Let {xk} be a sequence of points

in S satisfying f(xk+1) ≤ f(xk) generated by the projected
gradient descent method xk+1 = ΠS(x

k−s∇f(xk)), which is
convergent in the sense that every limit point of such sequences
is a stationary point of f(x). Let x∗ be a local minimum of
minx∈S f(x), which is the only stationary point within some
open set. Then there exists an open set B containing x∗ such
that if xk̄ ∈ B for some k̄ ≥ 0, then xk ∈ B for all k ≥ k̄ and
{xk} → x∗.

Proof: Let ρ > 0 be a constant such that

f(x∗) < f(x), ∀x ̸= x∗ with ∥x− x∗∥ ≤ ρ.

For every δ ∈ [0, ρ], define

ϕ(δ) = min
{x|δ≤∥x−x∗∥≤ρ}

f(x)− f(x∗).

Note that ϕ(δ) is a monotonically non-decreasing function of
δ, and that ϕ(δ) > 0 for all δ ∈ (0, ρ]. Given any ϵ ∈ (0, ρ],
let r ∈ (0, ϵ] be such that

∥x− x∗∥ < r ⇒ ∥x− x∗∥+ 1

β
∥∇f(x)∥ < ϵ.

Consider the open set

B = {x ∈ S | ∥x− x∗∥ < ϵ, f(x) < f(x∗) + ϕ(r)}.

We claim that if xk ∈ B for some k, then xk+1 ∈ B. In order
to prove the claim, assume that xk ∈ B. Then,

ϕ(∥xk − x∗∥) ≤ f(xk)− f(x∗) < ϕ(r),

where the first inequality is due to ϕ(∥xk − x∗∥) =
min{x|∥xk−x∗∥≤∥x−x∗∥≤ρ} f(x)−f(x∗) ≤ f(xk)−f(x∗) and
the second inequality is due to the fact that xk ∈ B. Since ϕ(·)
is monotonically non-decreasing, the above statement implies
that ∥xk − x∗∥ < r, which means that

∥xk − x∗∥+ 1

β
∥∇f(xk)∥ < ϵ. (43)

We also know that

∥xk+1 − x∗∥ = ∥(xk+1 − xk) + (xk − x∗)∥
≤ ∥xk+1 − xk∥+ ∥xk − x∗∥

= ∥ΠS(x
k − 1

β
∇f(xk))−ΠS(x

k)∥+ ∥xk − x∗∥

≤ ∥
(
xk − 1

β
∇f(xk)

)
− xk∥+ ∥xk − x∗∥ (44)

= ∥ 1
β
∇f(xk)∥+ ∥xk − x∗∥ < ϵ

where equation (44) follows from the non-expansive property
of the projection operator (when projected onto convex sets)
and the final inequality follows from applying equation (43).
Therefore by induction, this implies that if xk̄ ∈ B for some
k̄, we have xk ∈ B for all k ≥ k̄. Let B be the closure of B.
Since B is compact, the sequence {xk} will have at least one
limit point, which by assumption must be a stationary point
of minx∈S f(x). The only stationary point of minx∈S f(x)
within B is x∗ since ∥x− x∗∥ < ϵ ≤ ρ for all x ∈ B. Hence,
xk → x∗.
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