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ABSTRACT
We present an initial study of off-policy evaluation (OPE), a problem
prerequisite to real-world reinforcement learning (RL), in the con-
text of building control. OPE is the problem of estimating a policy’s
performance without running it on the actual system, using histor-
ical data generated by the existing controller. It enables the control
engineers to ensure a new, pretrained policy satisfies the minimal
performance requirements and safety constraints of a real-world
system, prior to interacting with it. While many methods have been
developed for OPE, no study has evaluated which ones are suitable
for natural building operational data, which are generated by de-
terministic policies and have limited coverage of the state-action
space. After reviewing existing works and their assumptions, we
adopted the approximate model (AM) method. Furthermore, we
used bootstrapping to quantify uncertainty and correct for bias.
In a simulation study, we evaluated the proposed approach on 10
policies pretrained with imitation learning. On average, the AM
method estimated the energy and comfort costs with 1.84% and
14.1% error, respectively.
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1 INTRODUCTION
Imitation learning is a promising approach to warm-start a policy
with historical data from existing building controllers [1, 6]. In fact,
it was demonstrated in [1] that a policy pretrained on historical
data could match the performance of the existing controller, prior
to any interaction with the environment. Such approach enables
real-world deployment of reinforcement learning (RL) agents, with
minimal disruption to normal building operations. However, mini-
mizing the imitation loss does not directly translate to improved
control performance. Furthermore, before deploying a RL agent in
a real building, one should be able to address confidently concerns
from building stakeholders, such as how well the comfort would
be maintained, or whether equipment damage could occur.

This motivates us to study the problem of off-policy evaluation
(OPE), i.e. estimating a policy’s performance without running it
on the actual system, an open challenge for real-world RL [4]. In
addition to enabling a control engineer to evaluate if a policy satisfy
minimal performance requirements and safety constraints, OPE
allows one to select the best-performing policy, under different
combinations of network architectures and hyperparameters. Fi-
nally, OPE is closely related to the topic of safe RL [5]. For instance,
OPE is used as a subroutine for safe policy improvement in [7].

In this paper, we examine the potential applications and chal-
lenges for OPE in the context of building control. While many
methods have been developed for OPE [13], no study has evaluated
which of these methods are appropriate given the characteristics of
building operational data. The majority of buildings are operated
by highly-deterministic polices, i.e. rule-based ones, such as hys-
teresis and proportional–integral–derivative control. As a result
of that, building operational data typically cover a limited portion
of the state-action space. Such characteristics violate the minimal
requirement of some of the OPE methods, as elaborated in Section
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2. Given that some state-action pairs may never be observed in the
historical data, we explored the use of the approximate model (AM)
method, which could extrapolate to unseen state-action space. We
also used the bootstrap method to quantify uncertainty and correct
for bias (Section 3). We evaluated this approach on 10 different
policies, and found that it estimated the the energy and comfort
cost with 1.8% and 14.1% error on average (Section 4).

2 RELATEDWORK
OPE, proposed in [9], is the problem of evaluating a policy’s perfor-
mance without running it on the actual system, using historical data
generated by the existing control. Using the terminology in the OPE
literature, we also call the existing building control the behaviour
policy, 𝜋𝑏 , and the policy to be evaluated the target policy, 𝜋𝑒 . OPE
methods can be classified as importance sampling (IS) methods,
direct methods (DM), and hybrid methods [13]. IS methods use IS
to account for the distribution mismatch between the target and
behaviour policies [9]. The minimal requirement of the IS methods
[9] is that the behaviour policy has a non-zero probability over
the state-action space. This requirement is easy to understand: the
probability of the behaviour policy is on the denominator of the
importance weights, and thus has to be non-zero. This presents
an obstacle for applying IS methods to building control, i.e. some
state-action pairs may never be observed in operational data. DM
directly estimate the value function of the target policy using re-
gression, with or without a model of the environment [13]. AM is
a model-based DM, which learns a model of the environment on
historical data, and uses it as a proxy for the actual environment.
Alternatively, one may fit the value function directly with data.
While IS estimators are unbiased, they suffer from large variance.
On the other hand, model-based methods have small variance, but
produce biased estimates. Hybrid methods, such as doubly robust
estimator [7] and MAGIC [12], combine the strength of both IS
methods and model-based methods to trade off bias and variance.
Note that hybrid estimators contain importance weights, and thus
the non-zero probability requirement of IS methods carries over,
albeit being phrased differently (e.g. stochastic behaviour policy in
[7] or bounded importance weights in [12]). For a comprehensive
review and comparison, we refer interested readers to [13].

3 APPROACH
We formulate OPE in the context of building control in Section 3.1,
and introduce the AMmethod in Section 3.2. We also use bootstrap-
ping to quantify uncertainty and correct for bias (Section 3.3).

3.1 Problem Formulation
A RL problem is commonly formulated as a Markov Decision Pro-
cess (MDP). At each time step 𝑡 , the agent selects an action𝑢𝑡 based
on its policy 𝜋 given the current state 𝑥𝑡 , i.e. 𝑢𝑡 ∼ 𝜋 (·|𝑥𝑡 ). When
the agent takes the action 𝑢𝑡 , the state changes based on the system
dynamics, i.e. 𝑥𝑡+1 ∼ 𝑃 (·|𝑥𝑡 , 𝑢𝑡 ), and the agent receives a reward
𝑟𝑡+1 ∼ 𝑅(𝑥𝑡+1, 𝑢𝑡 ).

In an OPE problem, one wants to evaluate the performance of a
target policy, 𝜋𝑒 , based on historical data generated by a behaviour
policy, 𝜋𝑏 . We denote the historical data set as 𝐷 = {𝜏𝑖 }𝑁

𝑖=𝑖
, which

is composed of N trajectories, each denoted as 𝜏𝑖 . Each trajectory

consists of state-action pairs over an episode, i.e. 𝜏𝑖 = {𝑥𝑡 , 𝑢𝑡 }1:𝑇 .
The objective of OPE is to estimate the value function of the target
policy as given in Eq. 1, where 𝛾 is a discount factor and 𝑑0 is the
initial state distribution [13].

𝑉 (𝜋𝑒 ) = E𝑥∼𝑑0

[
𝑇∑
𝑡=1

𝛾𝑡−1𝑟𝑡 |𝑥0 = 𝑥

]
(1)

In the context of building controls, the behaviour policy would be
the existing control, and the target policy would be the new control
strategy to be evaluated. We assume historical operational data are
readily available in existing buildings. We also assume the reward
function is specified by the control engineers, and thus is known to
us. In this work, the reward is simply the negative of the cost, and
so we use these two terms interchangeably. We define each episode
as one natural day, starting at midnight.

3.2 Approximate Model Method
As mentioned in Section 2, AM uses a model learned from historical
data as a proxy for the actual environment, and evaluates the target
policy through simulation in it [7]. More concretely, we summarize
the AM method in Algorithm 1, where 𝑃 denotes the AM learned
from historical data, 𝐷 . As there are numerous works on building
modeling [10], one may refer to those to make informed decisions
on modeling procedures and model forms. The initial state distribu-
tion, 𝑑0, could be implemented as the empirical distribution from
data.

Algorithm 1: Approximate Model Method

Input: The target policy, 𝜋𝑒 ; An AM of the environment 𝑃 ;
for i = 1, . . . , N do

𝑥0 ∼ 𝑑0;
for t = 0, . . . , T-1 do

𝑢𝑡 = 𝜋𝑒 (𝑥𝑡 );
𝑥𝑡+1 = 𝑃 (𝑥𝑡 , 𝑢𝑡 );
𝑟𝑡+1 = 𝑅(𝑥𝑡+1, 𝑢𝑡 );

end
end
Output: 𝑉 (𝜋𝑒 ) = 1

𝑁

∑𝑁
𝑖=1

[∑𝑇
𝑡=1 𝛾

𝑡−1𝑟𝑡 |𝑥0 = 𝑥
]
;

3.3 Bootstrap Bias Estimation and Confidence
Interval

Aside from the point estimate, i.e. 𝑉 (𝜋𝑒 ), it is also important to
quantify uncertainty. Practically, the building stakeholders may be
more interested in an agent that performs well in the worst case
scenario, rather than one that performswell on average.While there
are theoretical ways to derive confidence intervals, they generally
require an impractical amount of data before they are tight enough
to be useful [12]. Thus, we adopt the bootstrap method instead. We
are also inspired by [3], which used bootstrapping to quantify the
parameter uncertainty in identifying linear systems.

Bootstrapping uses random sampling with replacement to esti-
mate properties of an estimator, such as bias, variance, or confidence
intervals. We refer readers unfamiliar with this classical technique
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to [14] for details. Specifically, we take 𝐵 bootstrap samples from
𝐷 , and fit a new AM for each bootstrap sample. Then, we calculate
bootstrap estimates of performance, denoted by 𝑉 ∗

𝑖
(𝜋𝑒 ), following

the same procedures in Algorithm 1.We use the bootstrap percentile
interval following [12]. Furthermore, we use the bootstrap method
to estimate and correct for bias [11]. The bias could be estimated as
1
𝐵

∑𝐵
𝑖=1𝑉

∗
𝑖
(𝜋𝑒 ) −𝑉 (𝜋𝑒 )Thus, the bias-corrected estimator could be

calculated as 𝑉 𝐵𝐶 (𝜋𝑒 ) = 𝑉 (𝜋𝑒 ) − bias = 2𝑉 (𝜋𝑒 ) − 1
𝐵

∑𝐵
𝑖=1𝑉

∗
𝑖
(𝜋𝑒 ).

4 EXPERIMENT AND RESULTS
We generated a "historical" dataset from a simulation testbed, as
described in Section 4.1. We pretrained multiple target policies
through imitation learning on the dataset (Section 4.2). We devel-
oped an AM (Section 4.3), with which we evaluated the performance
of the target policies. We summarized the results with comparison
to ground truth performance in Section 4.4.

4.1 Simulation Testbed
The simulation testbed, as shown in Figure 1a, wasmodeled after the
Intelligent Workspace (IW) on Carnegie Mellon University (CMU)
campus. The IW is an EnergyPlus (E+) [2] model of a 600m2 multi-
functional space, including a classroom, a common area, and offices.
We control the water-based radiant heating system, illustrated in
Figure 1b. Specifically, we control the supply water temperature, so
as to maintain the state variable, i.e. the zone temperature, close to
its setpoint. In the existing control, the supply water (SW) is main-
tained at a constant flow rate, and its temperature is managed by a
proportional (P) controller. For more information on the simulation
test, refer to [15].

We generated a "historical" dataset from the simulation testbed
using a baseline P-controller that was calibrated against data traces
from the real system. The dataset was based on typical meteorolog-
ical year 3 (TMY3) weather sequence from Jan. 1st to Mar. 31st.

The cost at each time-step is a weighted sum of two terms that
are proxies for energy and comfort (Eq. 2), where 𝑥𝑠𝑝,𝑡 is the zone
temperature setpoint, and 𝜂𝑡 is a hyperparameter balancing com-
fort and energy, at time t. This cost function is justified because
the heating demand of the system is linear to the supply water
temperature, and the predicted percentage dissatisfied (PPD) is ap-
proximately quadratic to the deviation of the zone temperature from
its setpoint, when the deviation is small. We used 𝜂 = 3 when the
space is occupied and 𝜂 = 0.1 when it is not. Later analyses on
energy and comfort performance is based on the cost defined here.
We report averaged daily energy and comfort cost using 𝛾 = 1. The
cost function here may be replaced by any performance metrics of
interest to the building stakeholders.

𝐶 (𝑥𝑡+1, 𝑎𝑡 ) = 𝜂𝑡 (𝑥𝑡+1 − 𝑥𝑠𝑝,𝑡+1)2︸                  ︷︷                  ︸
comfort

+ 𝑢𝑡︸︷︷︸
energy

(2)

4.2 Target Policies
We pretrained the agents with imitating learning, a supervised ap-
proach for an agent to learn a policy. The premise is that it is easier
for the expert to demonstrate the desired behaviour, compared to
asking the expert to encode or fine-tune a policy. The imitation
loss is given in Eq. 3, where 𝑢𝑡 is the action by the learner. That

(a) Geometric View
(b) System Schematic

Figure 1: Simulation Testbed
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(b) Each data point represents the ground truth energy / cost cost of
one target policy (out of ten) used for evaluation.

Figure 2: Pretraining Target Policies

is to say, the learner tries to minimize the difference between its
predicted actions with those of the expert.

LImit =
∑
𝑡

(𝑢𝑡 − 𝑢𝑡 )2 (3)

Specifically, the policy we used is a 2-layer long short-term mem-
ory (LSTM) block with 8 hidden units, along with fully-connected
layers as encoder for states and decoder for actions1. Denoting the
planning horizon as 𝑙 , the policy takes as input the current state
𝑥𝑡 and the future disturbances 𝑑𝑡 :𝑡+𝑙−1, and outputs the predicted
actions 𝑢𝑡 :𝑡+𝑙−1. The disturbances include information on weather
and occupancy. To avoid compounding errors, we let the policy pre-
dict actions multi-step ahead and minimize the imitation loss over
the planning horizon. The number of steps was randomly sampled
from 4 to 12. That is to say the planning horizon ranged from 1 to
3 hours, given a 15-min control time-step. We used ADAM [8] as
the optimizer with a learning rate of 1 × 10−3. The training loss
decreases over epochs, as shown in Figure 2a.

To make the results reliable, we want to evaluate the proposed
approach on multiple target policies. An easy way to implement
1We will make the code available



RLEM ’20, Nov. 17, 2020, Yokohama, Japan Trovato and Tobin, et al.

that is to use the policies at different number of training epochs.
Specifically, we picked the policy at every other epoch starting from
epoch 12, after which the learner is performing reasonably close to
the expert. We evaluated the ground truth performance of the 10
selected target policies by running them in the simulation testbed,
the result of which is summarized Figure 2b. While the imitation
loss decreases over epochs, the cost and energy performance is
more nuanced. The energy cost is lowest at the 20th epoch, while
the comfort cost is lowest at the 30th epoch. Such information is
not available from training loss. This reaffirms the need for OPE
to make informed decision in policy selection. Finally, we would
like to draw readers’ attention to Figure 3a, where we included a
comparison of a target policy with the behaviour policy, i.e. the
baseline P-controller. The target policy, 𝜋𝑒 has similar actions as
the P-controller, 𝜋𝑏 , and does not suffer from compounding error
due to our training procedure.

4.3 Approximate Modeling
We modeled the simulation testbed using an autoregressive model
with exogenous variable (ARX) [10] given in Eq. 4, where ®𝑑𝑡 is a vec-
tor of disturbance terms, and 𝑎𝑖 , 𝑏𝑢 , and ®𝑏𝑑 are model parameters.
The model order, i.e. 𝑝 = 12, was determined by visually examining
the partial autocorrection function. The model parameters are iden-
tified on the historical data using prediction error minimization
[10]. The root mean squared error (RMSE) on a unseen test set
based on the weather sequence in 2017 is 0.14oC.

𝑥𝑡+1 =
𝑝−1∑
𝑖=0

𝑎𝑖𝑥𝑡−𝑖 + 𝑏𝑢,𝑡𝑢𝑡 + ®𝑏𝑑 · ®𝑑𝑡 (4)

4.4 Results
We demonstrate the use of the proposed approach on a specific
target policy in Figure 3. Figure 3a compares the agent’s behaviour
in the simulation testbed vs. the AM, over a four-day period. The
actions generated by the agent’s policy, i.e. 𝜋𝑒 , are similar in the En-
ergyPlus model and in the AM. At the same time, the state trajectory
is qualitatively similar, despite some discrepancy. This means that
an AM may serve as a reasonable proxy of the actual environment
for performance evaluation.

Figure 3b compares the ground truth performance 𝑉 (𝜋𝑒 ) vs. the
estimate by the AM method 𝑉 (𝜋𝑒 ). In this case, the AM estimates
the energy and comfort with 1.37% and 10.7% error respectively. We
also used bootstrapping to quantify uncertainty and correct for bias.
Specifically, from the state-action pairs in the historical dataset, we
resampled with replacement 100 bootstrap samples of the same
data size as the original dataset. Figure 3b also shows the empirical
distribution of the bootstrap estimates, i.e. 𝐹 ∗. The 95% confidence
interval (CI) is bounded by value of 2.5th and 97.5th percentile of
the empirical distribution. While the energy estimate falls within
the CI, the comfort estimate does not. Furthermore, bias-correction
barely changed the estimates, despite the clear bias.

We elaborate on the limitation of bootstrapping here. While it
accounted for the parameter uncertainty [3], there are two sources
of bias it did not account for. Firstly, we assumed a model form to
explain the data, which allows us generalize to unseen state-action
space. While this makes the OPE problem tractable, it also introduce
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Figure 3: AM method and Bootstrapping

a bias that is hard to quantify from data [7]. Secondly, the historical
dataset covers a limited portion of the state-action space. Thus, the
empirical distribution that we obtained the bootstrap samples from
may not be representative of the true distribution, and introduces
a bias stemming from this distribution mismatch.

Finally, Figure 4 compares the estimates by the AM method
vs. the ground truth performance of the 10 target policies. Were
the estimation perfect, all the data points would have fallen on
the dashed black line. On average, the AM method estimated the
energy and comfort cost with 1.84% and 14.1% error respectively.
Note that the AM method systematically overestimates the cost
and has little impact on the ordering of the performance. That is
to say, one would have picked the correct policy if one were using
the proposed method to select the best-performing policy.

5 CONCLUSIONS
To summarize, we introduce OPE to the building control community,
a problem that should be addressed to enable real-world RL for
building control. While there exists a rich literature on this topic,
the characteristics of building operational data, i.e. generated by
deterministic policy and limited coverage of the state-action space,
present challenges for applying some of these methods to building
control. By comparing existing methods, we determined that the
AM method is a simple, yet feasible approach. We evaluated it on
10 different target policies in a simulation testbed. On average, the
AM method estimated the energy and comfort cost with 1.84% and
14.1% error respectively.
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Figure 4: Summary. AM Estimates vs. Ground Truth

While AM shows promising results in this preliminary work and
allows one to tap into existing knowledge on building modeling,
it by no means precludes the possibility of other methods being
more suitable. We attempted to use bootstrapping to correct for
bias and quantify uncertainty, but some of the ground truth values
are outside of the corresponding confidence interval. As discussed,
there are two sources of biases that are not accounted for, and
further work is required to address these issues.
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