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Abstract— Observer design for nonlinear systems with in-
complete state observations is of practical significance. Despite
numerous existing works and recent developments in handling
multiple types of nonlinearities, it is still an open challenge
to reduce conservatism of synthesis conditions for systems
with large Lipschitz constants, and to improve computational
efficiency for complex real-world dynamics. To this end, this
study presents a multiplier-based approach that is capable
of determining an asymptotically stable observer for a large
class of highly nonlinear and large-scale systems. These key
advantages are due to an informative quadratic constraint on
the nonlinear dynamics. Both the present and the state-of-the-
art methods are evaluated in a benchmark example and a case
study on the dynamic power system state estimation, where the
proposed approach exhibits an imperative trade-off between
non-conservatism and computational tractability, establishing
its viability for real-world large-scale nonlinear systems.

I. INTRODUCTION

Real-world physical systems, such as power grids and
autonomous vehicles, are often large-scale and nonlinear [1]–
[4]. Because the entire state of a real-world system may not
be accessible due to economical/technological constraints, a
fundamental problem in system analysis and control is how
to estimate the state from measurements, which is known
as observer design [1]. This study focuses on the important
case1 {

ẋ = Ax + f(x) + Bu

y = Cx
, (1)

where A, B and C are matrices of appropriate dimensions,
x ∈ Rn and y ∈ Rm are the state and the observation
vectors, and u ∈ Rn is a known control input (this implies
that the observer has access to the output of the controller).
We further assume that the nonlinear part f(·) : Rn → Rn
satisfies (local) Lipschitz continuity, namely for all x1 and
x2 in the subset B ∈ Rn,

‖f(x1)− f(x2)‖ ≤ γ‖x1 − x2‖, (2)

where γ is known as the Lipschitz constant, and f(·) may also
capture uncertain parameters in the presence of measurement
errors and changing environments. While observer design can
be easily integrated in the controller design for linear time-
invariant systems, it presents unique challenges for nonlinear
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1This formulation is general in the sense that one can always linearize
the system dynamics around an equilibrium point.

systems and has been the subject of investigation in numerous
works [2], [5]–[14]. Despite recent developments in handling
multiple types of nonlinearities [2], [10], [11], [15], the
estimation problem is still open and several difficulties remain,
namely: (1) to reduce conservativeness of the design methods
(e.g., for highly nonlinear systems with larger Lipschitz
constants); and (2) to improve computational scalability to
analyze physical systems at larger scales.

Motivated by these pressing needs, this study proposes a
multiplier-based approach for the observer design problem,
borrowing powerful ideas from the framework of integral
quadratic constraints (IQC) [16] and dissipation theory [17].
The IQC framework is celebrated for its capability to
encompass a variety of real-life uncertainties and for com-
putational efficiency in analyzing large-scale systems. The
main obstacle in applying IQC, nonetheless, is the lack of
available mechanisms to characterize multiple-input multiple-
output (MIMO) Lipschitz nonlinearities. Existing tools are
either potentially very conservative (e.g., sector-bound IQC)
or impose stringent conditions (e.g., Zames-Falb IQC [18]
and its MIMO extension require the nonlinear function to
be the derivative of a convex function [19]). To address this
issue, we propose a new quadratic constraint on Lipschitz
nonlinearities by exploiting inherent structures of MIMO
Lipschitz functions. With this informative constraint in place,
in tandem with the introduction of multipliers, this study
enables the design of observers for a major class of large-
scale and highly nonlinear systems. The multiplier-based
framework can also incorporate uncertainties/nonlinearities
that have practical implications, such as uncertain and time-
varying parameters.

The paper is organized as follows. An overview of observer
design methods for nonlinear systems is provided in Sec. II.
The multiplier-based design method is introduced in Sec. III.
To numerically evaluate the developed method and compare
it with the state-of-the-art approaches, experiments on a
benchmark example and a power grid state estimation problem
are conducted in Sec. IV. Concluding remarks are given in
Sec. V.

II. RELATED WORK

Observer design for nonlinear systems has been widely
investigated in the literature [1], [2], [5], [8]–[13], [15].
Several types of observers have been studied, including
Luenberger-like observers with a single gain matrix [6],
[8], [14] or multiple gain matrices [2], [10], [20]. In many
cases, the problem can be reduced to solving linear matrix
inequalities (LMIs) by applying the Young’s inequality [8],
[13], Riccati equations [7], [13], or via introducing multipliers



based on the S-procedure [2], [3], [9], [10], [21], [22].
Asymptotic observers for nonlinear systems with globally
Lipschitz nonlinearities have been developed in [7], [8], [20],
[23]. The technique in [20] has also been extended to systems
with single-input single-output slope-restricted nonlineari-
ties [20], MIMO nonlinearities satisfying a monotonicity
condition [10], and time-varying nonlinearities satisfying
incremental quadratic constraints [2]. These methods all
employ the observer structure that has multiple gain matrices
to add more degrees of freedom. A general description of a
nonlinear observer with an “output injection” form was first
given in [24], and further analyzed by [25] in an incremental
stability framework. Despite novel attempts to exploit the
decoupled nature of Lipschitz nonlinearities by introducing
decomposition matrices [10], [13], existing LMI synthesis
conditions remain restrictive for many nonlinear systems.

To overcome this difficulty, a new linear parameter-varying
(LPV) formulation was introduced in [14], which was shown
to substantially reduce the conservatism of prior methods
[3], [9], [13], [22]. However, as remarked in that paper,
a major bottleneck of the proposed LPV method is its
high computational complexity (e.g., 2n

2

LMIs need to
be solved simultaneously for an n-dimensional nonlinear
vector), which significantly limits its application to large-
scale systems. This hurdle is removed in the present study,
based on a reformulation of the Lipschitz condition as
a quadratic constraint that depends on auxiliary variables.
By introducing multipliers using the S-procedure [21], this
constraint can be incorporated into a single LMI, which
only scales quadratically in terms of the dimension of the
nonlinearities. This leads to a less restrictive observer design
for large-scale real-world physical systems, as demonstrated
in numerical experiments.

III. MULTIPLIER-BASED OBSERVER DESIGN

The starting point of this analysis is a less conservative
constraint on general vector-valued smooth functions.

A. Characterization of Lipschitz functions

Lipschitz continuity (2) implies uniform continuity. Unless
otherwise stated, we use the Euclidean norm in our analysis.
The property (2) can be expressed as a point-wise quadratic
constraint for all x1,x2 ∈ B:[

x1 − x2

f(x1)− f(x2)

]> [
γ2In

−Im

] [
?
]
≥ 0, (3)

where we use ? to denote the symmetric component. The
above constraint, nevertheless, can be sometimes very con-
servative, because it does not explore the structure of the
problem [14]. To understand this, consider the function

f(x1, x2) =
[

1
1+e−0.5x1

− ax1, sin(x2)
]>

, (4)

where x1, x2 ∈ R and |a| ≤ 0.1 is a deterministic but
unknown parameter with a bounded magnitude. Clearly, to
satisfy (2), we need to specify that γ ≥ 1 (i.e., the function
has Lipshitz constant 1). However, this characterization is too

general in this case, because it ignores the non-homogeneity
of f1 and f2, as well as the sparsity of the inputs x1 and
x2. Indeed, f1 only depends on x1 with its slope restricted
to [−0.1, 0.6] for all possible values |a| ≤ 0.1, and f2
only depends on x2 with its slope restricted to [−1, 1]. In
the context of controller design, the non-homogeneity of
control outputs often arises from physical constraints and
domain specifications, and the sparsity of inputs is inherent to
decentralized/distributed control. To explicitly address these
requirements, we state the following quadratic constraint,
which was partially inspired by [14].

Lemma 1 (Quadratic constraint for Lipschitz functions). For
a vector-valued function f : Rn → Rm that is differentiable
with bounded partial derivatives on B (i.e., bij ≤ ∂jfi(x) ≤
bij , for all x ∈ B), the following quadratic constraint is
satisfied for all λij ≥ 0, i ∈ [m], j ∈ [n], and x, z ∈ B:2

[
x−z

q

]>diag
({∑

i

λij(c
2
ij−c2ij)

})
Σ({λij , cij})>

Σ({λij , cij}) diag
(
{−λij}

)


︸ ︷︷ ︸
M(λ,γ)

[
?
]
≥0,

(5)
where q =

[
q11, ..., q1n, ..., qm1, ..., qmn

]> ∈ Rmn
is a function of x and z, {λijcij} follows
the same index order as q, Σ({λij , cij})T =[
diag

(
{λ1jc1j}

)
· · · diag

(
{λmjcmj}

)]
∈ Rn×mn,

cij = 1
2

(
bij + bij

)
, cij = bij − cij , and q is related to the

output of f by the constraint:

f(x)− f(z) =
[
Im ⊗ 11×n

]︸ ︷︷ ︸
W

q, (6)

where Im is the m×m identity matrix, 11×n is the 1× n
all-one matrix, ⊗ denotes the Kronecker product, and γ in
M(λ,γ) denotes the set of bounds bij and bij on partial
derivatives.

Proof: See Appendix A. �
This bound is a direct consequence of standard tools in

real analysis. To understand this result, it can be verified that
(2) is equivalent to:∑

ij

λij

(
(c2ij−c2ij)(xj−yj)2+2cijqij(xj−zj)−q2ij

)
≥0,

(7)
for all λij ≥ 0, with fi(x) − fi(z) =

∑n
j=1 qij . Since (7)

holds for all λij ≥ 0, it is equivalent to the condition that
(c2ij−c2ij)(xj−zj)2+2cijqij(xj−zj)−q2ij ≥ 0 for all i ∈ [m],
j ∈ [n], which is a direct result of the bounds associated with
the partial derivatives of fi. To illustrate the application of this
idea, we apply it to (4), where b11 = −0.1, b11 = 0.6, b22 =
−1, b22 = 1 while the other bounds (b12, b12, b21, b21) are
zero. This clearly yields a more informative constraint than
simply relying on the Lipschitz constraint (3). In fact, for
a differentiable Lipschitz function, we have bij = −bij =

2We use [n] to denote the set {1, ..., n}.



γ, and by limiting the choice of λij =

{
λ if i = 1

0 if i 6= 1
, (7)

is reduced to (3). However, as illustrated in this example,
the quadratic constraint in Lemma 1 can incorporate richer
information about input sparsity and output structures, and
thus it can often reduce conservatism in practice.

To simplify the mathematical treatment, we have focused
on differentiable functions in Lemma 1; nevertheless, the
analysis can be extended to non-differentiable but Lipschitz
continuous functions using the notions of generalized gradient
[26, Chap. 2]. In brief, by re-assigning the bounds on partial
derivatives to uniform bounds on the set of generalized partial
derivatives, the constraint (5) can be directly applied.

This constraint is in the form similar to an IQC. In relation
to existing IQCs, it has wider applications to characterize
smooth functions. The Zames-Falb IQC introduced in [18]
has been widely used for single-input single-output (SISO)
function f : R → R, but it requires the function to be
monotone with its slope restricted to [α, β] with α ≥ 0

(i.e., 0 ≤ α ≤ f(x)−f(y)
x−y ≤ β for all x 6= y). Its MIMO

extension holds true only if f : Rn → Rn is restricted to be
the gradient of a convex real-valued function [19]. As for
the sector IQC, the vector version is in fact (3). By contrast,
the quadratic constraint in Lemma 1 can be applied to non-
monotone, vector-valued Lipschitz functions, where existing
IQCs cannot be used.

B. Observer design

With the newly developed quadratic constraint on smooth
functions in place, this subsection illustrates the design of
an observer for the system (1). We focus on the classical
Luenberger observer [8], [13], [14], [27]:

˙̂x = Ax̂ + f(x̂) + L(y −Cx̂) + Bu, (8)

where x̂ ∈ Rn is the estimated state and L ∈ Rn×m is to be
designed. The dynamics of the estimation error e = x− x̂
can be described by:

ė = (A− LC)e + f(x)− f(x̂). (9)

The objective is to design L such that the estimation error
e(t) asymptotically decreases to 0. The robust version of the
error dynamics (9) can be written as

ė = (A− LC)e + φ

φ = w + v

w = f(x)− f(x̂)

(10)

where e = x− x̂ ∈ Rn is the estimation error, v ∈ Rn is the
perturbation noise with bounded L2 energy (

∫ T
0

∥∥v(t)
∥∥2
2
dt <

∞ for all T > 0), and w ∈ Rn arises from the system
nonlinearities. We introduce an internal variable q ∈ Rn2

that is related to w by the underdetermined equality w = Wq,
where W =

[
In ⊗ 11×n

]
∈ Rn×n2

is defined in Lemma 1.
Because f(·) is Lipschitz continuous, the signals e and q
jointly satisfy the quadratic constraint (5). The objective is to
search for L such that the observer is asymptotically stable.

This property can be derived from input-output stability at
all time T ≥ 0, i.e.,∫ T

0

∥∥e(t)
∥∥2
2
dt ≤ ρ2

∫ T

0

∥∥v(t)
∥∥2
2
dt+ c, (11)

where c is a finite constant and ρ is a finite upper bound
constant for the L2 gain. In particular, as long as v has
finite energy, the right-hand side is a bounded constant for
all T . The asymptotic stability follows by allowing T to
approach infinity. To this end, define the feasibility problem
SDP(P,L,λ, ρ, γ) as follows:

SDP(P,L,λ, ρ,γ) :

[
O(P,L,λ, ρ,γ) S(P)
S(P)> −ρIn

]
� 0, (12)

where P = P> � 0 is positive definite, γ incorporates the
upper/lower bounds on partial derivatives (e.g., Lipschitz
upper bound of f(·)), and O(P,L,λ, ρ,γ) is given by[

(A−LC)>P+P(A−LC)+ 1
ρIn PW

W>P 0n2,n2

]
+ M(λ,γ),

and

S(P) =

[
P

0n2,n

]
,

where M(λ,γ) is defined in (5) with non-negative multipliers
λ = {λij} for i ∈ [n] and j ∈ [n]. We will show next that the
above condition can be used to synthesize an asymptotically
stable observer.

Theorem 2. Let f : Rn → Rn be a bounded nonlinear
function of the state. Assume that f(·) is γ-Lipschitz with
bounded partial derivatives on B (i.e., bij ≤ ∂jfi(x) ≤ bij
and |bij |, |bij | ≤ γ for all x ∈ B, i ∈ [n] and j ∈ [n]). If
there exist a scalar ρ > 0, L ∈ Rn×m and P = P> � 0
such that SDP(P,L,λ, ρ,γ) is feasible, then the observer
parameterized by L is stable (i.e., it satisfies (11)). �

The proof follows from a standard dissipation argument
and is relegated to the appendix. Because SDP(P,L,λ, ρ,γ)
is a bilinear matrix inequality with the term PL, we can
replace it with a new variable R ∈ Rn×m. Then, the observer
gain L is given by P−1R. This makes SDP(P,R,λ, ρ,γ)
quasiconvex, in the sense that it reduces to a standard LMI
with fixed ρ. To solve the resulting problem numerically, we
start with a small L2 gain ρ and gradually increase it until
a solution (P,R,λ) is found. Each iteration (i.e., LMI for
a given set of ρ) can be solved efficiently by interior-point
methods, which have been implemented in SDPT3, Mosek,
and SeDuMi. As an alternative to performing a search on
ρ, more sophisticated methods for solving the generalized
eigenvalue optimization problem can be employed [21].

IV. EXPERIMENTS

In this section, we evaluate the developed methodology on
a benchmark system, in addition to a real-world example of
power grid dynamic state estimation.



A. Flexible link robot

This example considers a one-link manipulator with revo-
lute joints actuated by a DC motor [7], [13], [14]. The system
dynamics can be modeled as (1) with the parameters

A =


0 1 0 0

−48.6 −1.25 48.6 0
0 0 0 1

19.5 0 −19.5 0

 ,B =


0

21.6
0
6

 ,

C =

[
1 0 0 0
0 1 0 0

]
, f(x) =


0
0
0

−3.33 sin(x3)

 ,
where the states are the motor position and velocity as well
as the link position and velocity. The Lipschitz constant γ for
this system is 3.33. By solving LMI (12) with fixed γ = 3.33
(Lipschitz constant) and ρ = 1.5 (certified L2 gain), the
stablizing gain matrix is given by

L> =

[
3.37 −47.25 1.05 21.75

0 56.62 124.54 304.20

]
. (13)

A simulation with an open-loop excitation u(t) = sin(2πt)
is shown in Fig. 1 to illustrate the observer’s tracking
ability. Furthermore, to demonstrate the superiority of the
proposed approach in dealing with highly nonlinear systems,
we increase the Lipschitz constant of the system (i.e., increase
the mass of the links) until the feasibility LMI condition
cannot be solved, and use it to evaluate the existing methods
[9], [13], [14]. The results are listed in Table I (see [14] for
a discussion of the potential bias in comparing LMI (50)
and LMI (28) in [13]). Compared with [13], our method and
[9], [14] can deal with systems with very large Lipschitz
constants. Even though the methods are comparable in this
example, [9] does not apply to MIMO nonlinearities, and
[14] needs to solve an exponential number of LMIs, which
is not scalable to larger systems; on the contrary, our method
can be applied for MIMO nonlinearities with large Lipschitz
constants while maintaining computational tractability.
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Fig. 1: Tracking performance of the observer with the gain
matrix (13) and the initial condition set to be 0.

TABLE I: Comparison results for different LMI methods for
the flexible link robot example.

LMI (50)
in [13]

LMI (28)
in [13]

LMI (9)
in [9]

LMI (35)
in [14] LMI (12)

γmax 0.99 48.5 ≈ 107 ≈ 1010 ≈ 107

∗ Strict positive/negative definite inequalities imposed with 10−6 margin.

B. Power grid dynamic state estimation

In this subsection, we study the power grid phase and
frequency dynamic estimation. The New England Power
System (NE-PS) under analysis is shown in Fig. 2. Under
the prescribed information structure, the observer can only
access phases and frequencies at generators G1, G2 and G3,
and the objective is to determine the states at the remaining
geographically separated counterparts.

observed 
generators

unobserved 
generators

comm. links

Fig. 2: Information structure in NE-PS under study, where
only states at G1, G2 and G3 can be accessed.

By defining θi as the voltage angle at a generator bus i
(in rad), the physics of power systems are modeled by the
per-unit swing equation:

Qiθ̈i +Kiθ̇ = PMi
− PEi

, (14)

where PMi is the mechanical power input to the generator at
bus i (in p.u.), PEi is the electrical active power injection at
bus i (in p.u.), Qi is the inertia coefficient of the generator
at bus i (in p.u.-sec2/rad), and Ki is the damping coefficient
of the generator at bus i (in p.u.-sec/rad). The electrical real
power injection PEi

depends on the voltage angle difference
in a nonlinear way, as governed by the AC power flow
equation:

PEi
=

n∑
j=1

|Vi||Vj |
(
Gij cos(θi−θj)+Sij sin(θi−θj)

)
,

where n is the number of generators in the system, Gij and
Sij are the conductance and susceptance of the transmission
line that connects buses i and j, Vi is the voltage phasor
at bus i, and |Vi| is its voltage magnitude. Because the
conductance Gij is typically several magnitudes smaller
than the susceptance Sij , for the simplicity of mathematical
treatment, we omit the cos(·) term and only keep the sin(·)
term.



Let the rotor angles and the frequencies be denoted as
θ =

[
θ1 · · · θn

]>
and ω =

[
ω1 · · · ωn

]>
, and the

generator mechanical power injections be denoted as PM =[
PM1

· · · PMn

]>
. The state-space representation of this

nonlinear system is given by:[
θ̇
ω̇

]
=

[
0 I

−Q−1Λ −Q−1K

]
︸ ︷︷ ︸

A

[
θ
ω

]
︸︷︷︸
x

+

[
0

Q−1

]
︸ ︷︷ ︸

B

PM+

[
0

g(θ)

]
︸ ︷︷ ︸

f(x)

where g(θ) =
[
g1(θ) · · · gn(θ)

]>
with

gi(θ) =

n∑
j=1

Ai+n,j
(
(θi − θj)− sin(θi − θj)

)
,

where Ai+n,j is the (i + n, j)-th entry of A, Q =
diag

(
{Qi}ni=1

)
, K = diag

(
{Ki}ni=1

)
, and Λ is a Laplacian

matrix whose entries are specified in [4, Sec. IV-B]. For
linearization (also known as DC approximation), the nonlinear
part g(x) is assumed to be zero when the phase differences
are small [4]. On the contrary, we deal with this term in
the observer design directly. The information constraint is
encoded in the observer matrix C, which is a 6× 20 matrix
with its (1, 1), (2, 2), (3, 3), (4, 11), (5, 12), (6, 13) entries to
be 1 and the remaining entries to be 0.

The nonlinearities of the system are due to g(θ), which
is a MIMO function of power phases. The phase differences
are assumed to be bounded within [−∆θmax,∆θmax] (i.e.,
|θi − θj | ≤ ∆θmax for i, j ∈ [n])), where θmax is typically
less than π/6 under normal operations. The upper and lower
bounds on partial derivatives ∂

∂θi
gj(θ) are given by3{

bij = −Ai+n,j
(
1− cos(∆θmax)

)
, bij = 0 for i 6= j

bij = 0, bij =
∑
i 6=j Ai+n,j

(
1− cos(∆θmax)

)
for i = j

.

As listed in Table II, the proposed method (12) is able to
find an asymptotically stable observer for ∆θmax up to 0.92
(rad), covering a wide range of operational status. However,
the LMI conditions in [13] can only certify observer stability
for ∆θmax up to 0.17.4 The method proposed in [9] is not
applicable because it only deals with SISO nonlinear functions.
Due to the scale of this system, the LPV approach proposed
in [14] requires solving 2100 LMIs, which is computationally
intractable.

3These bounds can be further refined by setting Ai+n,j = 0 in the
calculation of bounds whenever i 6= j and both i and j generators are
directly observed. The effect of this refinement is left for future study.

4The Lipschitz constant could be estimate by the mean-value inequality

‖f(x)− f(y)‖ ≤ sup
0≤t≤1

‖Jf (x + t(y − x))‖2‖x− y‖,

where Jf (·) is the Jacobian of f(·) and the supremum is taken over the
line segment between x and y. This 2-norm can be further bounded using
the matrix inequality ‖Jf‖2 ≤

√
‖Jf‖1‖Jf‖∞, where the right-hand side

can be bounded by the maximum phase difference. The Lipschitz constant
γf can then be upper bounded by

γf ≤
√
‖Q−1Λ‖1‖Q−1Λ‖∞(1− cos(∆θmax)).

TABLE II: Comparison results for different LMI methods for
power system dynamic state estimation.

LMI (50)
in [13]

LMI (28)
in [13]

LMI (35)
in [14] LMI (12)

∆θmax (rad) < 0.17 < 0.17 † > 0.92

computation time < 0.5s < 0.5s † < 3s

† At least 2100 10 × 10 LMIs need to be solved, which is not
implementable on a personal computer.

The tracking performance of our method is demonstrated
in Fig. 3. To ensure the stability of the physical system, we
deploy 10 independent neural-network controllers learned
by reinforcement learning for PM , each of which can only
observe states prescribed in Fig. 2 (details can be found in
[28]). Because we assume that the inputs PM can be accessed
directly, this does not change our design methodology in (12).
The key advantage in the scalability of our multiplier-based
approach can be verified in this real-world example.
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(a) G9 phase θ9 and θ̂9.
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Fig. 3: Tracking performance of (12) for dynamic state
estimation at the geographically separated generator G9. The
observer is synthesized using (12) with ∆θmax = π/4 and
ρ = 8 (L2 gain).

V. CONCLUSION

This study investigated an observer design methodology
for nonlinear systems based on multipliers. Compared with
existing methods, it can handle nonlinearities with far less
conservatism, and can be employed for large-scale systems,
as evaluated in a benchmark example and a case study on the
dynamic power system state estimation. The multiplier-based
framework can be generalized to incorporate multiple types of
nonlinearities (e.g., time delays, time-varying and uncertain
parameters), which significantly extends its applications to
complex real-world problems.
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APPENDIX

A. Proof of Lemma 1
Lemma 3 ([14]). For a vector-valued function f : Rn → Rm
that is differentiable with bounded partial derivatives, namely
bij ≤ ∂jfi(x) ≤ bij , there exist functions δij : Rn×Rn → R
with bij ≤ δij(x, z) ≤ bij for all i ∈ [m], j ∈ [n], and
x, z ∈ Rn, such that f(x)− f(z) can be written as

f(x)− f(z) =

m∑
i=1

n∑
j=1

δij(x, z)e>m(i)e>n (j)(x− z), (15)

where en(j) is an n-dimensional vector with its j-th compo-
nent equal to 1 and the remaining ones equal to 0. �

With the above result, we can prove the quadratic constraint
in Lemma 1 for functions with bounded derivatives.

Proof of Lemma 1:
By Lemma 3, there exist functions δij : Rn × Rn → R

bounded by bij ≤ δij(x,y) ≤ bij , such that

f(x)− f(y) =


∑n
j=1 δ1j(x,y)(xj − yj)

...∑n
j=1 δmj(x,y)(xj − yj)

 .
By defining qij = δij(x,y)(xj − yj), due to the bounds on
partial derivatives, we have(

δij(x,y)− cij
)2 ≤ c2ij ,

for all i ∈ [m] and j ∈ [n], which can be reformulated as[
xj − yj
qij

]> [
c2ij − c2ij cij
cij −1

] [
?
]
≥ 0.

The statement in Lemma 1 follows by introducing non-
negative multipliers λij ≥ 0, and using the fact that
fi(x)− fi(y) =

∑m
j=1 qij . �

B. Proof of Theorem 2

By multiplying
[
e> q> v>

]>
to the left and its trans-

pose to the right of the augmented matrix in (12), and using
the constraints w = Wq, the condition SDP(P,L,λ, ρ,γ)
can be written as a dissipation inequality:

V̇ (e) +

[
e
q

]>
M(λ,γ)

[
e
q

]
≤ ρv>v − 1

ρ
e>e,

where V (e) = e>Pe is known as the storage func-
tion, and V̇ (·) is its derivative with respect to time t. If
SDP(P,L,λ, ρ,γ) is feasible with a solution (P,L,λ, ρ,γ),
we have:

V̇ (e) +
1

ρ
e>e− ρv>v ≤ 0, (16)

which is satisfied at all times t. It can be integrated from
t = 0 to t = T , and then it follows from P � 0 that:∫ T

0

‖e(t)‖2dt ≤ ρ2
∫ T

0

‖v(t)‖2dt+ c, (17)

where c = e(0)>Pe(0) is a finite constant that depends on
the initial tracking error. Hence, the observer is shown to be
stable. �
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