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Abstract—Power system state estimation is an important prob-
lem in grid operation that has a long tradition of research
since 1960s. Due to the nonconvexity of the problem, existing
approaches based on local search methods are susceptible to
spurious local minima, which could endanger the reliability of the
system. In general, even in the absence of noise, it is challenging
to provide a practical condition under which one can uniquely
identify the global solution due to its NP-hardness. In this
study, we propose a linear basis of representation that succinctly
captures the topology of the network and enables an efficient
two-stage estimation method in case the amount of measured
data is not too low. Based on this framework, we propose an
identifiability condition that numerically depicts the boundary
where one can warrant an efficient recovery of the unique global
minimum. Furthermore, we develop a robustness metric called
“mutual incoherence,” which underpins the theoretical analysis
of global recovery conditions and statistical error bounds in the
presence of both dense noise and bad data. The proposed method
demonstrates superior performance over existing methods in
terms of both estimation accuracy and bad data robustness for
an array of benchmark systems. Above all, it is scalable to large
systems with more than 13,000 buses and can achieve an accurate
estimation within a minute.

Index Terms—Power system state estimation, statistical anal-
ysis, robust learning, smart grid

I. INTRODUCTION

Power system state estimation (PSSE) is conducted on a
regular basis (e.g., every few minutes) to monitor the state of
the grid by collecting and filtering a wealth of sensor data from
transmission and distribution infrastructures [1], [2]. The state
estimate presents system operators with essential information
about the real-time operating status to improve situational
awareness, make economic decisions, and take contingency
actions in response to potential threats that could engender
the grid reliability [3].

Due to the nonlinearity of the alternating-current (AC) grid
physics, solving the set of power flow equations that arise
from sensor measurements is known to be NP-hard for both
transmission and distribution networks [4], [5]. As a result,
there is a long tradition of studying this problem [2], [6]–
[16]. At a high level, these methods are evaluated against
multiple key criteria, including (i) accuracy (e.g., lineariza-
tion/approximation of the nonlinear law of physics and its side
effect on losing important information), (ii) robustness (e.g.,
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to random/adversarial bad data, model mismatch, topological
errors), and (iii) scalability (i.e., computational/memory re-
quirements to solve for large-scale systems). We provide a
summary of the existing methods below, and refer the reader
to [17] and [15] for a more comprehensive review.

A. Background and related work

The current practice in the power industry relies on a set
of linearization and/or Newton’s methods that are originally
developed in 1960s [2], [6], [7]. Newton’s method has been
employed to solve the nonlinear least square (NLS) PSSE
and has quadratic convergence whenever the initial point
is sufficiently close to the true solution [6]. However, the
estimator is prone to outliers and sparse noise/errors, which
can arise from sensor faults, topological errors [18]–[21], or
adversarial attack [22]–[24]. To deal with large and sparse
noise, one common approach is to perform bad data detection
(BDD) on residual errors [25], [26]. This method relies on
statistical assumptions on the errors (e.g., mean-zero and
independent Gaussian distributions) and is only effective when
the estimation from the Newton algorithm is close enough to
the ground truth [2]. Alternatively, by redesigning the cost
functions, robust estimators such as the least-absolute value
(LAV) (a.k.a., `1 loss), the least median of squares, or Huber’s
estimator have been employed [2], [8], [9], [27]–[30]. Unlike
the NLS based on Newton’s method, these loss functions are
usually not differentiable, which demand a careful choice of
numerical algorithms to guarantee convergence (to the correct
solution or a stationary point) for the nonlinear AC PSSE
problem [30]. A major drawback of the above local search
methods is the vulnerability to spurious local minima, which
are those points that satisfy first- and second-order optimality
conditions but are not a global minimum [30]–[32]. This is a
major issue that can potentially cause a tremendous danger to
the operation of the system, and it is difficult to distinguish a
spurious local minimum that fits the data well from the ground
truth. Even though some recent works have shed light on the
possibility of the non-existence of local minima in certain
scenarios [33], the conditions are difficult to verify for PSSE
[30].

Apart from local search algorithms mentioned above, sev-
eral advanced optimization techniques have been proposed,
such as particle swarm optimization [34], holomorphic embed-
ding load flow method [35], homotopy continuation methods
[36] and algorithms for solving variational inequalities involv-
ing monotone operators [31]. A comprehensive review of these
methods can be found in [17].
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The technique of convexification and semidefinite program-
ming (SDP) relaxation is a powerful tool to tackle polynomial
optimization, which arise from several areas such as graph
theory, signal processing, and power systems [37]–[42]. Re-
cently, the SDP relaxation technique has been applied to PSSE
following its success for the optimal power flow problem
[43], which has shown a satisfactory numerical performance
even in the presence of topological errors and bad data [11],
[13], [16], [20], [44]. Theoretical analysis of the estimator has
been conducted in [13], [16]. Furthermore, [24] analyzes the
vulnerabilities of AC PSSE against potential cyber attacks.
While SDP relaxation is a promising approach with both
numerical success and theoretical guarantees, this method
requires that the solution to be rank-1 to recover the true state.
Since most interior point methods to solve SDP produce a
high-rank solution by default, one may need to add an extra
rank penalty to the objective function (e.g., nuclear norm [11]
or custom-designed norm [13], [16]), which forces the solution
to be near-global optimal. Furthermore, the addition of the
positive semidefinite constraint limits the solvability of large-
scale problems, since most conic numerical algorithms scale
on the order of O(n6), where n is the number of variables.

B. Contributions

We propose a method to solve large-scale AC PSSE with
quadratic programming that finds the correct state and is robust
to sparse bad data, provided that the amount of measured data
is relatively high. A new basis of representation is proposed,
which is related to, but different from, the two dominant
complex number representations used in power flow equations
(i.e., polar coordinates and rectangular representation). This
basis fully captures the properties of the power grid topology,
which leads to efficient PSSE algorithms. Furthermore, we
develop a PSSE identifiability condition to characterize when
one can warrant the unique identification of the global optimal
using the given set of measurements. We also provide a
theoretical analysis on the recovery condition of the true state
in the presence of sparse bad data with statistical bounds on
the estimation error.

The paper is organized as follows. The linear basis of
representation is introduced in Sec. II-B, together with the
measurement models and some key definitions to facilitate the
theoretical analysis. The two-stage estimator is introduced in
Sec. III, whose performance is analyzed in Sec. IV. Sec. V
includes numerical evaluations of the proposed methods on
benchmark systems. Conclusion is drawn in Sec. VI. All
proofs have been delegated to the online supplementary doc-
ument [45] for the interested readers without interrupting the
flow of presentation.

II. POWER SYSTEM AC-MODEL

A. Notations

Vectors are shown by bold letters, and matrices are shown
by bold and capital letters. Let xi denote the i-th element of
vector x. We use R and C to show the sets of real and complex
numbers. The set of indices {1, 2, ...,m} is denoted by [m].
The cardinality |J | of a set J is the number of elements

in the set. The support supp(x) of a vector x is the set of
indices of the nonzero entries of x. For a set J ⊂ [m], we
use J c = [m] \ J to denote its complement. We use AJ to
denote the submatrix formed by the rows of A indexed by
J . The symbol (·)> represents the transpose operator. We use
<(·), =(·) and Tr (·) to denote the real part, imaginary part
and trace of a scalar/matrix. The imaginary unit is denoted as
i. The notations ∠x and |x| indicate the angle and magnitude
of a complex scalar. We use P to denote probability, and E
to denote expectation. For a convex function g(x), we use
∇g(x) to denote its subgradient. The inner product between
two vectors is denoted by 〈·, ·〉. The notations ‖x‖1, ‖x‖2 and
‖x‖∞ represent the 1-norm, 2-form and∞-norm of x. We use
E to denote the expectation operator of a random variable.

B. Power system modeling

We model the electric grid as a graph G := {N ,L}, where
N := [nb] and L := [nl] represent its set of buses and
branches. Each branch ` ∈ L that connects bus k and bus
j is characterized by the branch admittance y` = g` + ib` and
the shunt admittance ysh

` = gsh
` +ibsh

` , where g` (resp., gsh
` ) and

b` (resp., bsh
` ) denote the (shunt) conductance and susceptance,

respectively. Since gsh
` � bsh

` in practice, we set gsh
` to zero

in the subsequent description. In addition, to avoid duplicate
definitions, each line ` := (k, j) is assigned with a unique
direction from bus k (i.e., from end, given by f(`) := k) to
bus j (i.e., to end, given by t(`) := j). We also use ` : {k, j}
to denote a line ` with the direction of either (k, j) or (j, k).

The power system state is described by the complex voltage
vector v =

[
v1, ..., vnb

]> ∈ Cnb , where vk ∈ C is the complex
voltage at bus k ∈ N with magnitude |vk| and phase θk :=
∠vk. Given the complex voltages, by Ohm’s law, the complex
current injected into line ` : {k, j} at bus k is given by:

ikj = y`(vk − vj) +
i

2
bsh
` vk.

Defining θkj := θk − θj , one can write the power flow from
bus k to bus j as

p
(`)
kj = |vk|2g` − |vk||vj |(g` cos θkj − b` sin θkj),

q
(`)
kj = −|vk|2(b` + 1

2b
sh
` ) + |vk||vj |(b` cos θkj − g` sin θkj),

and active (reactive) power injections at bust k,

pk =
∑
`:{k,j}

p
(`)
kj , qk =

∑
`:{k,j}

q
(`)
kj . (1)

The above formulas are based on polar coordinates of com-
plex voltages, where measurements are nonlinear functions of
voltage magnitudes and phases. Another popular representa-
tion uses rectangular coordinates of complex numbers, where
measurements are expressed as quadratic functions of the real
and imaginary parts of voltages (see [46, Chap. 1] for more
details).

C. Linear basis of representation

In this paper, we introduce a new basis of representation,
where measurements can be expressed as linear combinations
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of the quantities derived from bus voltages. Specifically, for a
given system G, we introduce two groups of variables:

1) voltage magnitude square, xmg
k := |vk|2, for each bus

k ∈ N , and
2) real and imaginary parts of complex products, denoted

as xre
` := <(viv

∗
j ) and xim

` := =(viv
∗
j ), respectively, for

each line ` = (i, j). Note that there is only one set of
variables xre

` and xim
` for each line.

Using this representation, we can re-derive various types of
power and voltage measurements (without noise) as follows:
• Voltage magnitude square: The voltage square magnitude

square at bus k ∈ N is simply xmg
k by definition.

• Branch power flows: For each line ` = (i, j), the real
and reactive power flows from bus i to bus j and in the
reverse direction are given by:

p
(`)
ij = g`x

mg
i − g`x

re
` − b`xim

`

q
(`)
ij = −(b` + 1

2b
sh
` )xmg

i + b`x
re
` − g`xim

`

p
(`)
ji = g`x

mg
j − g`x

re
` + b`x

im
`

q
(`)
ji = −(b` + 1

2b
sh
` )xmg

j + b`x
re
` + g`x

im
`

• Nodal power injection: The power injection at bus node
k consists of real and reactive powers, where:

pk =
∑
k∈`

g`x
mg
k −

∑
k∈`

g`x
re
` −

( ∑
f(`)=k

b` −
∑
t(`)=k

b`

)
xim
`

qk = −

(∑
k∈`

b` + 1
2b

sh
`

)
xmg
k +

∑
k∈`

b`x
re
` −( ∑

f(`)=k

g` −
∑
t(`)=k

g`

)
xim
` ,

where
∑
k∈` is the sum over all lines ` ∈ L that are

connected to k,
∑
f(`)=k is the sum over all lines ` where

f(`) = k, and similarly,
∑
t(`)=k is the sum over all lines

` where t(`) = k. Equivalently, we can use (1) to combine
the branch power flows defined above.

Thus, each customary measurement in power systems that
belongs to one of the above measurement types can be
represented by a linear function1:

mi(x) = a>i x\, (2)

where ai ∈ Rnx is the vector for the i-th noiseless mea-
surement and x\ = ({xmg

k }k∈N , {xim
` , x

im
` }`∈L) ∈ Rnx is the

regression vector. By collecting all the sensor measurements
in a vector m ∈ Rnm , we have

m = Ax\, (3)

where A ∈ Rnm×nx is the sensing matrix with rows a>i for
i ∈ [nm]. Fig. 1 illustrates the sensing equation (3) for a simple
3-bus system.

It is worth mentioning that the linear basis introduced above
is different from DC modeling of measurements, because the

1It is straightforward to include linear PMU measurements in our analysis as
well using the relation tan θij = xim

` /x
re
` for each line ` = (i, j), assuming

we have a pair of PMUs on each end of a branch.

Fig. 1: Illustration of the sensing equation (3) for a 3-bus sys-
tem. A selected set of measurements are considered, namely
nodal injections at buses i and j, voltage magnitude square at
bus j, and branch power flows along line `1 = (i, j). Note
that one can choose the set of regression variables based on
the availability of measurements, as long as each measurement
can be fully represented by the chosen set of variables. For
instance, we can omit the variables xre

`3
:= <(viv

∗
k) and

xim
`3

:= =(viv
∗
k) by simultaneously excluding measurements

p
(`3)
ij , q

(`3)
ij , p

(`3)
ji , q

(`3)
ji and pi, qi, pk, qk, since they all rely on

the omitted variables.

expression is exact for the AC model. This parametrization
is inspired by the semidefinite relaxation approach for power
system optimization [11], [13], [16], [20], [44], and it effi-
ciently exploits the sparsity of the network. More specifically,
for a given system G, the regression vector has dimension
nx = nb+2nl, where nl is on the same order of nb for a tree-
like structure (i.e., when the degree of connection at each bus
is bounded by a small constant). On the other hand, the number
of measurements for a densely instrumented grid is roughly
nm ≈ 2nb + 4nl, where each bus has 2 nodal measurements,
and each line has 4 branch measurements. Thus, for a typical
system with enough measurements, the sensing matrix A is
non-singular (see Sec. IV-A for more details). The identifiabil-
ity condition can be met with even less measurements, as long
as there exists a spanning tree of the network where the sensing
matrix is non-singular. In general, to accurately recover the
system state from noisy measurements, the measurement set
should satisfy more conditions as described next.

D. Measurement model

To perform PSSE, the supervisory control and data ac-
quisition (SCADA) system collects measurements on power
flows and complex voltages at key locations instrumented
with sensors. This process is subject to both ubiquitous sensor
noise and randomly occurring sensor faults. We consider the
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measurement model as follows:

y = Ax\ + w\ + b\, (4)

where A ∈ Rnm×nx and x\ ∈ Rnx are the sensing matrix
and the true regression vector in (3), w\ ∈ Rnm denotes
random noise, and b\ ∈ Rm is the bad data error that
accounts for sensor failures or adversarial attacks [24]. Let
J := supp(b) ⊂ [nm] denote the support of the bad data
b. We introduce the following properties to characterize the
sensing matrix A.

Definition 1 (Lower eigenvalue). LetQJ :=
[
A I>J

]
, where

IJ consists of the J rows of the identity matrix I ∈ Rnm×nm ,
and let AJ c be the submatrix of A with rows indexed by J c.
Then, the lower eigenvalue Cmin(J ) for a given corruption
support J is defined as the lower bound:

min
{
λmin

(
Q>JQJ

)
, λmin

(
A>J cAJ c

)}
, (5)

where λmin(X) denotes the smallest eigenvalue of X .

The value Cmin(J ) characterizes the influence of bad data
on the identifiability of x\. If Cmin(J ) is strictly positive,
and one can accurately detect the support of bad data (a.k.a.,
support recovery), then it would be possible to obtain a good
estimation of x\ with only the clean data in J c. Typically,
the bad data due to sensor faults are randomly located, so if
only a small amount of sensors are grossly corrupted (i.e.,
|J | < |J c|), then the first term in (5) will be smaller than
the second term. As we will see in Sec. IV, the first term is
relevant for the case with dense noise w\.

The next property turns out to be critical for BDD.

Definition 2 (Mutual incoherence). Given a set J ⊂ [m] and
its complement J c := [m] \ J , let the pseudoinverse of AJ c
be denoted as A+

J c = (A>J cAJ c)
−1A>J c . Then, the mutual

incoherence parameter ρ(J ) is defined to be:

ρ(J ) = ‖A>+
J c A

>
J ‖∞,

where ‖ · ‖∞ denotes the matrix infinity norm (i.e., the
maximum absolute column sum of the matrix).

The name “mutual incoherence” originates from the com-
pressed sensing literature [47]–[50]. In our case, it measures
the alignment of the sensing directions of the corrupted
measurements (i.e., AJ ) with those of the clean data (i.e.,
AJ c ). If these directions are misaligned (a.k.a., incoherent),
then the value ρ(J ) is low, and it is likely to uncover the
support of bad data. In general, the smaller the number of bad
data measurement is, the more likely that ρ(J ) is small. As
our analysis will show, if this value is strictly less than 1, then
we can provably recover the support of the bad data.

Because the sensor data are of different types and scales,
we make a normalization assumption.

Definition 3 (Measurement normalization). Each row of A is
normalized as

‖ai‖22 = 1, ∀i ∈ [nm] (6)

where ai is the i-th row of A.

This condition is straightforward to implement in practice,
since one can arbitrarily rescale the given coefficients of each
measurement equation. This is also known as precondition-
ing, which assists with both the numerical stability and the
statistical performance of regression.

III. TWO-STAGE STATE ESTIMATION

This section describes the proposed two-stage state estima-
tion method, where both stages are linear regression problems.

A. Stage 1: Estimation of x\
In the first stage, the goal is to estimate x\ from a set of

noisy and corrupted measurements y. We consider two cases
separately. In the first case, the dense noise is negligible, i.e.,
w\ = 0, and we only need to consider the sparse measurement
corruption b. Under some conditions to be specified in Sec. IV,
one can exactly recover the underlying vector x\.

Case 1: Sparse corruption but no dense noise (i.e., w = 0)

In this case, the measurements are given by y = Ax\ +b\.
To estimate x\, we solve the following program:

min
x∈Rnx ,b∈Rnm

‖b‖1, subject to Ax+ b = y. (S1-L1)

Briefly, if the lower eigenvalue is bounded away from 0 (i.e.,
Cmin(J ) > 0) and the mutual incoherence is less than 1 (i.e.,
ρ(J ) < 1), then we can faithfully recover x\ and b\ from the
above program.

Case 2: Sparse corruption and dense noise

In this case, the dense noise cannot be ignored, and the
measurements are given by (4). We perform the estimation by
solving the following LASSO-style optimization:

min
b∈Rnm ,x∈Rnx

1
2nm
‖y −Ax− b‖22 + λ‖b‖1, (S1-LASSO)

where λ > 0 is the regularization coefficient. Due to the
existence of dense noise, it is no longer possible to exactly
recover the true x\; however, if the magnitudes of the dense
noise are small, then we can still have good statistical bounds
on the estimation error.

B. Stage 2: Recovery of v

The goal of the second stage is to recover the underlying
system voltage v from the estimation x̂ from stage 1. First,
we transform x̂ into estimations of voltage magnitudes and
phase differences:
• The voltage magnitude at each bus k ∈ N is estimated

as |v̂k| =
√
x̂mg
k ;

• The phase difference along each line ` = (i, j) is
estimated as θ̂ij = arctan x̂im

` /x̂
re
` .

To obtain the phase estimation at each bus, we solve the least-
squares problem

θ̂ = arg min
θ∈Rnb

∑
`=(i,j)

(θi − θj − θ̂ij)2, (S2-θ)



5

which has a closed-form solution. To delve into this, let θ∆

be a collection of θ̂ij , and L ∈ Rn`×nb be a sparse matrix
with L(`, i) := 1 and L(`, j) := −1 for each line ` = (i, j)
and zero elsewhere. Then, the solution for (S2-θ) is given by:

θ̂ = (L>L)−1L>θ∆. (7)

Finally, we can reconstruct v̂ by definition:

v̂k = |v̂k|eiθ̂k , k ∈ N . (8)

If the regression vector from stage 1 is exact, i.e., x̂ = x\,
then we can accurately recover the system state v̂ = v. Even
if the x̂ is not exact, the second stage estimator (S2-θ) has
strong properties to control the estimation error and ensure
that the errors in θ̂ij will not propagate along the branches.

IV. THEORETICAL ANALYSIS

This section presents several theoretical analysis for the pro-
posed framework. First, a condition for AC PSSE identifiabil-
ity is presented. Then, we discuss the conditions under which
accurate recovery of the true state is guaranteed. Furthermore,
we present a novel statistical analysis of the recovery condition
using concentration bounds.

A. Identifiability condition

Due to the nonconvexity of NLS, the existence of spurious
local minima in PSSE is well-recognized, which makes it
difficult to analyze whether the true state can be uniquely
identified based on a given set of clean measurements (i.e.,
w = b = 0). Because PSSE can be formulated as a quadratic
sensing problem, the results from the low-rank compressed
sensing community seem to be directly applicable, which rely
on a condition called restricted isometry property (RIP) (e.g.,
see [33], [51], [52]). The main result from this line of research
indicates that if RIP of the sensing system is small enough,
then every local minimum is also a global minimum [33],
[52]. However, numerical results indicate that the condition is
often too stringent to be satisfied for PSSE. It is also possible
to characterize an “essentially strongly convex region” around
the true solution, where any initial point converges to the true
solution by local search [32], or to delineate a recovery region
where the rank penalty leads to exact rank-1 solution [13],
[16]. However, they all depend on the location of the true
solution and the condition is hard to check numerically. The
following theorem provides a condition similar to the DC-
approximation results but for the AC PSSE. Without loss of
generality, assume that the power network G is connected.

Theorem 1. In the absence of noise (i.e., w = b = 0),
one can uniquely identify the true state of the power grid
if there exists a spanning tree Tspan such that the available
measurements on the spanning tree form a matrix Aspan that
has full column rank (i.e., the null space of Aspan is zero).
If the power system network G is tree-structured, then this
condition is also necessary.

This condition is user-friendly and can be checked easily for
any given measurements. A spanning tree of a graph can be
found in linear time by either depth-first search or breadth-first
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Fig. 2: Network topology of the IEEE 57 bus system. A suffi-
cient condition for identifiability is the existence of a spanning
tree Tspan (shown on the right) where the measurements form
a nonsingular sensing matrix Aspan.

TABLE I: Empirical evaluation of the identifiability condition
(Yes/No) in Theorem 1. Measurement sets include: 1) M1:
only PV/PQ measurements on all buses; 2) M2: PV/PQ
measurements and one reactive power line measurement on
Tspan; 3) M3: PVQ measurements on PQ buses, and PV
measurements plus one reactive power line measurement on
Tspan for PV buses; 4) M4: PVQ measurements on all buses.
Note that here we do not include any branch measurements.

M1 M2 M3 M4

30 Bus N Y Y Y

57 Bus N Y Y Y

118 Bus N N Y Y

300 Bus N N Y Y

1354 Bus N N Y Y

2848 Bus N N Y Y

search. For instance, Fig. 2 illustrates a spanning tree of the
IEEE 57 bus system. Moreover, it is a strong result in the sense
that it does not depend on the location of the true state (i.e.,
universally applicable). Note that “identifiability” is a stronger
condition than “observability.” The latter is usually based on
DC-approximation (see [53] and [2, Chap. 4]), while the
former is mainly for AC PSSE. Generally, a network may be
observable with the given set of measurements, but the number
of solutions that fits the AC model could be exponential (and it
is difficult to distinguish spurious local minima and the global
minimum [13], [24]); however, if a network is identifiable,
then there exists a method to efficiently recover the unique
global optimal solution. The two-stage estimation proposed
in this study is a viable candidate, and there could be other
methods to recover this solution as well; for example, due to
the exponential number of SDPs that one needs to solve for
a rank-1 solution in the worst case [54], SDP relaxation may
not be a viable candidate; neither could local search methods
due to the existence of spurious local minima.

Remark 1. In general, there are nb− 1 edges for a spanning
tree with nb nodes, by the construction of the linear represen-
tation basis in Sec. II-B, there are in total 3nb − 2 number of
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variables. This means that as long as there are 3 measurements
per node that are independent of all other measurements, we
can achieve identifiability. This is empirically evaluated for
several IEEE standard systems in Table I. It also explains
why with only PV or PQ measurements on each bus (i.e., 2
measurements per bus), as in the traditional setting of power
flow analysis, the problem may have many spurious local
minima [14], [30], [32]. However, with the simple addition
of voltage magnitude measurements to PQ buses and reactive
power measurement for PV buses (M4 in Table I), or with
the addition of one reactive power flow measurement for lines
connected to PQ buses (M3), the network becomes identifiable
(i.e., no spuriuous local minimum).

B. Global recovery conditions and error bounds

Despite the simplicity of the identifiability condition, real-
world measurements are often subject to random sensor noise
and sparse bad data whose support is often unknown. Thus,
it is important to examine under what conditions the true
state can be recovered (either exactly when the dense noise
is negligible, or accurately enough for the case with dense
noise).

Theorem 2. Consider the measurement equation y = Ax\ +
b\, where supp(b\) = J . Assume that the measurement matrix
A satisfies the following conditions: (a) the lower eigenvalue
is positive, i.e., Cmin(J ) > 0; (b) the mutual incoherence
condition ρ(J ) < 1 is satisfied. Then, the unique solution
to (S1-L1), denoted as (x̂, b̂), is exact and recovers the true
state (i.e., x̂ = x\ and b̂ = b\).

Theorem 3. Consider the measurement equation y = Ax\ +
w\+b\, where supp(b\) = J and w\ is a random vector with
zero mean and subgaussian parameter σ. Suppose that the
rows of A are normalized, and that the measurement matrix A
satisfies the following conditions: (a) the lower eigenvalue is
positive, (b) there exists a constant γ > 0 such that the mutual
incoherence condition ρ(J ) = 1 − γ. Let the regularization
parameter λ be chosen such that

λ >
2

nmγ

√
2σ2 log nm. (9)

Then, the following properties hold for the solution to
(S1-LASSO), denoted as (x̂, b̂):

1) (No false inclusion) The solution (x̂, b̂) has no false
bad data inclusion (i.e., supp(b̂) ⊂ supp(b\)) with
probability greater than 1− c0

nm
, for some constant c0 > 0.

2) (Large bad data detection) Let

g(λ) = nmλ

(
1

2
√
Cmin(J )

+ ‖Ib(Q>JQJ )−1I>b ‖∞

)
be a threshold value. Then, all bad data measurements
with magnitude greater than g(λ) will be detected (i.e.,
if |bi\| > g(λm), then |b̂i| > 0) with probability greater
than 1− c1

m for some constant c1 > 0.

3) (Bounded error) The estimator error is bounded by

‖x\ − x̂‖2 ≤

ω

√
nm + |J |
Cmin

+ nmλ‖Ix(Q>JQJ )−1I>b ‖∞,2

with probability greater than 1 − exp
(
− c1ω

2

σ4

)
, where

‖ · ‖∞,2 denotes `∞–`2 induced norm.

Despite the difference in measurement assumptions (i.e.,
existence of dense noise w) and estimation algorithms (i.e.,
(S1-L1) or (S1-LASSO)), it is remarkable that the global
recovery conditions in Theorems 2 and 3 are coincident. In
the case of negligible dense noise, a strong global recovery is
achieved, meaning that both the true state and the bad data are
detected. With the presence of dense noise, it is no longer pos-
sible to achieve exact recovery; however, Theorem 3 indicates
that with a proper selection of the penalty coefficient λ, one
can avoid false detection of bad data (part 1), detect bad data
with magnitudes greater than a threshold (part 2), and achieve
state estimation within bounded error margin. Furthermore,
both the bad data threshold and the error bound decrease with
stronger mutual incoherence condition and lower-eigenvalue
condition.

The above analysis for (S1-LASSO) can be adapted to the
case without dense noise, giving rise to the following corollary.

Corollary 1. Consider the measurement equation y = Ax\+
b\, where b\ ∈ Rm has support J . Suppose that the rows
of A are normalized, and the regularization parameter λ is
chosen to be positive, i.e., λ > 0. Assume that A satisfies the
following conditions: (a) the lower eigenvalue is positive, (b)
the mutual incoherence condition ρ(J ) < 1 is satisfied. Then,
the following properties hold for the solution to (S1-LASSO),
denoted as (x̂, b̂):

1) (No false inclusion) The solution (x̂, b̂) has no bad data
false inclusion (i.e., supp(b̂) ⊂ J ).

2) (Large bad data detection) Let g(λ) =
nmλ‖Ib(Q>JQJ )−1I>b ‖∞ be a threshold value.
Then, all bad data measurements with magnitude greater
than g(λ) will be detected (i.e., if |bi\| > g(λ), then
|b̂i| > 0).

3) (Bounded error) The estimator error is bounded by

‖x\ − x̂‖2 ≤ nmλ‖Ix(Q>JQJ )−1I>b ‖∞,2.

To understand the equivalence between Corollary 1 and
Theorem 2, note that one can choose λ to be arbitrary close to
0 so the detection threshold and error bounds also approach 0.
The proof of Theorem 3 is based on the primal-dual witness
technique popularized by [50]. However, the key difference is
that the existing literature in statistical learning only focuses on
sparse signal recovery [47]–[50], while the present study needs
to recover both the sparse signal (i.e., bad data) and the dense
signal (i.e., regressor), which is technically more challenging
to prove. Indeed, related works on this topic, such as robust
principle component analysis [55] and dense error correction
[56], employ different proof techniques than the present study.
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In what follows, we will discuss the influence of the possible
error in stage–1 estimation on the outcome of the second stage.
Let the estimations of xre

` and xim
` over a line ` ∈ L be given

by:

x̂re
` = xre

` + ∆xre
` and x̂im

` = xim
` + ∆xim

` ,

where xre
` and xim

` are the true values, and ∆xre
` and ∆xim

` are
the estimation errors from stage 1. We provide a bound on the
phase estimation error for each bus k ∈ N .

Proposition 1. The estimation error of the phase θk is
bounded by the k-th component of the vector∣∣∣(L>L)−1L>e

∣∣∣ ,
where e ∈ Rnl is a vector with the elements e` =
xre
`∆xim

` −x
im
` ∆xre

`

xre
` x̂

re
`

, and L is the matrix described in Sec. III-B.

Due to the centrality of the mutual incoherence condition
throughout the theoretical analysis, we provide an analysis on
the likelihood of global recovery condition satisfaction using
arguments based on concentration inequalities in probability.

C. Stochastic bound

In this analysis, we assume oblivious adversary, which
indicates that the set J is chosen uniformly at random. The
goal is to gauge the likelihood that a random matrix A with an
arbitrary sparsity pattern will satisfy the mutual incoherence
condition. It is important to capture the network-topology-
induced pattern in A in this analysis.

Definition 4 (Sparsity pattern). For an arbitrary matrix A ∈
Rnm×nx , the sparsity pattern is a binary matrixN ∈ Rnm×nx
whose (i, j)-th entry is equal to 0 only if Aij = 0. Define the
set of matrices with a given sparsity pattern N as

S(N) := {A ∈ Rnm×nx |A ◦N = A},

where ◦ denotes the Hadamard (element-wise) product.

To conduct the analysis, we fix the sparsity pattern N
and assume that A is a sparse matrix with the given pattern,
where each entry is a random sub-Gaussian variable. In other
words, A = N ◦Ξ, where Ξ = {ξij}i∈[nm],j∈[nx] is a dense
random matrix with independent and identically distributed
sub-Gaussian random variables with variance proxy σ2 (c.f.,
[57, Chap. 1] for a detailed account of the terminologies).

In the following, we introduce some metrics to measure
the sparsity. For each j ∈ [nx], let njJ =

∑
i∈J Nij

and njJ c =
∑
i∈J c Nij denote the numbers of nonzero

entries in the columns of NJ and NJ c , respectively, and let
n∗J = maxj∈[nx] n

j
J and n∗J c = maxj∈[nx] n

j
J c be their upper

bounds, respectively.

Theorem 4. Suppose that the following conditions hold:

1) (Bounded moments) There exist constants q > 2 and ν ≥
1 such that E|ξij |q ≤ νq for every i ∈ [nx] and j ∈ [nm];

2) (Tall matrix) nm = (1 + δ)nx for some δ > δ0; and
3) (Saturated columns) There exists a constant cν ∈ (0, ν)

such that njJ c ≥ c2ν
|J c|

E|ξij |2 for all i ∈ [nm] and j ∈ [nx].

Then, the minimization (S1-L1) recovers the true state with
probability (1 − κ) as long as the number of corrupted
measurements |J | is not too high and satisfies the inequality

min

{
c4|J c|,

|J c|
2a2

1n
∗
J nxσ

2a2
− ln 2nx

}
≥ ln

2

κ

where a1 =
c4ν

32ν2 (
c2ν

64ν2 )
q
q−2 , a2 = min{ 4

c2ν
a1, 20σ2} − ln 2

|J c| ,

and δ0 =
c2ν
4a1

.

The above theorem states that as long as the number of
good measurements is greater than the number of nonzero
elements in the spoiled part of the sensing matrix A up to a
constant multiplier (i.e., |J c| & const×n∗J nx), then with high
probability, the mutual incoherence condition is satisfied. This
agrees with the numerical results that the higher the number of
measurements (with a fixed number of bad data), the smaller
the mutual incoherence parameter.

V. EXPERIMENTS

Numerical evaluations are performed on IEEE benchmark
systems from MATPOWER [58]. This includes the Pan Eu-
ropean Grid Advanced Simulation and State Estimation (PE-
GASE) 9241-bus and 13659-bus systems, which represent the
size and complexity of the European high voltage transmission
network [59]. While PMU measurements can be incorporated
in the proposed framework, unless otherwise stated, we assume
the available measurements to include full nodal measurements
(i.e., voltage magnitudes and real/reactive injections) and bi-
directional real/reactive branch flows over all lines. All the
experiments are performed on a personal laptop with 3.3GHz
Intel Core i7 and 16GB memory.

In each case, we randomly generate 50 sets of dense noisew
and sparse bad data b. The dense noise for each measurement
is zero-mean Gaussian variable, with standard deviation of
0.1 × cn (per unit) for voltage magnitude measurements and
cn (per unit) for all the other measurements, where cn is
the dense noise level. This setup is inspired by the fact that
voltage magnitude sensors have higher standards of accuracy
compared to power meters. For the sparse bad data, its support
J is randomly selected among the line measurements, with the
only assumption that at most 1 bad data measurement exists
for each line. This ensures the identifiability and robustness of
the network. The values for the sparse noise can be arbitrarily
large, and we assume these parameters are uniformly chosen
from the set [−4.25,−3.75] ∪ [3.75, 4.25] (per unit).

We adopt the root-mean-square error (RMSE) as the per-
formance metric, which is defined as

√
1
nb

∑
i∈N |vi − v̂i|2,

where vi and v̂i are the true and estimated complex voltage
at bus i ∈ N . To evaluate the bad data detection accuracy,
we use the F1 score, which is defined as 2∗precision×recall

precision+recall ,

where precision is given by #True positives |J∩Ĵ |
#Conditional positives |Ĵ | , and recall

is given by #True positives |J∩Ĵ |
#Conditional positives |J | , and J and Ĵ denote the

true and estimated support of bad data (# shows the number
of elements). The F1 score is the harmonic average of the
precision and recall, which reaches its best value at 1 (perfect
precision and recall) and worst at 0.
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Fig. 3: Evaluation of the (S1-L1)–cleaning–direct recovery (L1-Direct), (S1-LASSO)–cleaning–direct recovery (LASSO-Direct),
and local search with `1 loss (L1-Local) and squared loss with cleaning step (since the RMSE is greater than 0.2, its line is
not shown on the graph) for the IEEE 300-bus system. We vary the percentage of bad data measurements from 0% to 10%
(out of all line measurements), with the dense noise level fixed at cn =0.5%. The plots in (b) indicate the median (line with
circles) and the min/max value (shaded region).

TABLE II: Comparison of the (S1-L1)–cleaning–direct recovery (L1-Direct), (S1-LASSO)–cleaning–direct recovery (LASSO-
Direct), and local search with `1 loss and Newton’s method with bad data detection. We fix the percentage of bad data at 5%
(out of all line measurements) and dense noise level at cn =0.5%.

Newton method Local search `1 LASSO-Direct L1-Direct
RMSE F1 Time (s) RMSE F1 Time (s) RMSE F1 Time (s) RMSE F1 Time (s)

14 Bus .002 .852 0.6 .001 1 0.3 .001 1 2.3 .001 1 2.2
30 Bus .042 .808 2.4 .001 .996 0.4 .002 1 2.3 .002 1 2.2
57 Bus .043 .827 3.2 .001 .998 1.2 .004 .999 2.3 .004 .999 2.1

118 Bus .003 .848 7.4 .002 .980 4.1 .002 1 1.5 .002 1 1.3
300 Bus .699 .379 58.1 .093 .858 21.6 .004 .999 2.6 .004 .999 1.2

We compare the proposed method (stage-1 estimators
(S1-L1) or (S1-LASSO) combined with stage-2 direct recovery
method) with the current practice local search method using
the squared loss Newton method, and another local search
method that replaces the squared loss with `1 loss [30]. We
use SeDuMi [60] as the quadratic programming solver, and
the MATLAB implementation of limited-memory BFGS [61]
for the local search methods, similar to [30]. Throughout the
experiment, we choose λ in (S1-LASSO) to be 3×10−4/nm,
which we found to be consistently well-behaving. In addition,
we choose a threshold of 0.1 for stage-1 estimators and 0.3
for local search methods, which seem to work best for all
methods to detect bad data. After the removal of bad data (i.e.,
cleaning step), we can optionally perform the estimation with
the remaining data for both the proposed stage-1 estimators
and the Newton method.

First, we evaluate the robustness of the methods to bad data.
As is shown in Fig. 3, due to convergence issues and spurious
local minima, none of the local search methods could correctly
estimate the true state. On the other hand, with the increase
of bad data percentage, the proposed methods can reliably
recover the ground truth, even with 10% of arbitrarily bad
data. This can be implied from the lower eigenvalue conditions
and the mutual incoherence conditions, which remain well-
conditioned with the presence of bad data. We also perform the
experiments on other systems, as is shown in Table II with bad
data fixed at 5% level and dense noise fixed at cn =0.5%. It
can be observed that local search methods (with a cleaning step

for Newton’s method) perform relatively well when the scale
is small (up to 118 buses), but the performance (e.g., RMSE
and bad data detection F1 score) deteriorates significantly for
larger systems due to the existence of spurious local minima.
In addition, the proposed methods remain superior, due to the
efficient detection of bad data (with F1 score close to 1).

Next, we examine the performance of the proposed esti-
mators when both the dense noise and the bad data intensity
vary. We test on the French very high voltage and high voltage
transmission network with 2848 buses [59]. As is shown
in Fig. 4, the algorithm achieves a low RMSE with up to
1000 bad data measurements and 1% level of dense noise.
The detection score for bad data remains above 99% for all
the scenarios. We also show that due to the high detection
accuracy of the bad data, it is beneficial to redo the estimation
after the cleaning stage (LASSO Clean), which can improve
the RMSE of estmation espeically when the number of bad
data measurements is significant.

Last but not least, we demonstrate the scalability of the
method to large systems with up to 13659 buses, which is
the largest system provided by MATPOWER (Table III). We
fix the dense noise level to 0.5% and the percentage of bad
data to 2% for all the cases. The number of bad data ranges
from 241 (PEGASE 1354-bus) to 2457 (PEGASE 13659-bus),
which is a large number in practice. In addition, we experiment
with two sets of measurements: case A includes full branch
flow measurements and PVQ nodal measurements on PQ buses
as well as PV measurements on PV buses; case B has full
branch flow measurements and full nodal measurements. It
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Fig. 4: Evaluation of the (S1-LASSO)–direct recovery method on the PEGASE 2848-bus system. The dense noise level cn
varies from 0 to 2%, and the number of bad data measurements ranges up to 2000 (roughly 9% of the total line measurements).
The bad data detection accuracy is shown as the F1 score. After the detection of bad data, they are removed and the remaining
clean data are used again in the estimation (LASSO Clean).

TABLE III: Evaluation in large-scale benchmarks. Case A in-
cludes the set of full branch flow measurements, in addition to
PVQ nodal measurements on PQ buses and PV measurements
on PV buses; Case B includes full branch flow and full nodal
measurements. We use the (S1-L1)–Cleaning–Direct recovery
method for Case A, and the (S1-LASSO)–Cleaning–Direct
recovery method for Case B.

Case A Case B Time
RMSE F1 RMSE F1 (sec)

1354 Bus .004 .999 .002 .999 9.4

2848 Bus .013 .989 .005 .999 17.5

3012 Bus .009 .998 .006 .998 14.2

6495 Bus .009 .995 .004 .999 32.3

9241 Bus .007 .997 .006 .997 48.4

13659 Bus .008 .996 .006 .998 48.0

can be observed that the performance is satisfactory in all
the scenarios, and the estimation becomes more robust with
the additional measurements (i.e., lower RMSE and higher
bad data detection accuracy). Moreover, all computations are
finished within a minute, which is important for real-time
situational awareness.

VI. CONCLUSION

In this study, we proposed a linear basis of representation
for power system measurements that succinctly captures the
topology of the network. This leads to a two-stage estimation
approach that breaks down the NP-hardness of the PSSE under
mild conditions that are usually satisfied with a sufficient
instrumentation of sensors. There are several key advantages of
the proposed method. First and foremost, it is free of spurious
local minima. It is a well-recognized challenge for local search
methods to find a global minimum without becoming stuck
at a spurious local minimum. However, the conditions under
which this issue does not arise are usually very stringent even

in the absence of noise, and they are hard to be satisfied
in practice, especially for large-scale PSSE. In contrast, the
identifiability result developed in this work is a deterministic
condition that is sufficient to guarantee the recovery of the
unique global minimum, which is also necessary for a tree-
topology network. We found that with full nodal measurements
(PVQ per bus) the PSSE has no spurious local minimum for
an array of benchmark systems in MATPOWER.

The proposed algorithm is provably robust to bad data.
We developed a robustness metric based on a deterministic
quantity called mutual incoherence. A theoretical analysis of
the global recovery condition and statistical error bounds was
conducted, which relied on this key metric. The algorithm
demonstrated robustness to bad data in various empirical
evaluations, and achieved superior performance compared to
the Newton method with bad data detection scheme and the
least mean absolute value regression using `1 norm. Above
all, the proposed method exhibited a satisfactory scalability
for large systems with more than 13,000 buses. In contrast
to semidefinite programming relaxation approaches, the PSSE
can be solved with high accuracy within a minute for such
large systems. This can significantly improve real-time situa-
tional awareness of grid operation.
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APPENDIX

A. Proof of Theorem 1

For the sufficient condition, one can recognize that since the
only element in the null space of Aspan is 0, the measurement
equation (4) has a unique solution, which corresponds to the
true state x\. By the algorithm in stage 2, outlined in Sec.
III-B, this recovers the true state of the grid.

For the necessary condition, suppose that G is tree-
structured. In this case, there is a unique spanning tree
Tspan that coincides with the original network G for all the
measurements. If the null space of Aspan is not zero, then
there exists a vector x̃ such that y = Ax\ = Ax̃. Since
x̃ 6= x\, these two vectors correspond to two different states of
the power system, and it is impossible to identify them based
on the given set of measurements (c.f., the stealth condition
in [24, Def. 2]). This is contradictory to the assumption that
the system is identifiable.

B. Proof of Theorem 2

The dual of (S1-L1) is given by:

max
h∈Rnm

h>y, subject to h>A = 0, ‖h‖∞ ≤ 1.

(L1-Dual)
To show that (x\, b\) is the optimal solution of (S1-L1), we
simply need to find a dual certificate h? that satisfies the
Karush-Kuhn-Tucker (KKT) conditions:

(dual feasibility) h>? A = 0, (10)
(stationarity) h? ∈ ∂‖b\‖1, (11)

where ∂‖b\‖1 denotes the subgradiet of ‖b\‖1. By the def-
inition of J := supp(b\), we need to find a vector h?
such that h?J = sign(b\J ) and ‖h?J c‖∞ ≤ 1. In fact, we
can meet a slightly stronger condition for strict feasibility
by choosing h?J c = −A>+

J c A
>
J sign(b\J ), which satisfies

strict dual feasibility (i.e., ‖h?J c‖∞ < 1) due to the mutual
incoherence condition. Thus, this certifies the optimality of
(x\, b\) for (S1-L1).

To show that (x\, b\) is the unique optimal solution, let
(x̃, b̃) be an arbitrary feasible point of (S1-L1) different from
(x\, b\). Due to the lower eigenvalue condition, the matrix

QJ :=
[
A I>J

]
has full column rank. Let J̃ = supp(b̃);

then J̃ must not be equal to or be a subset of J , because

otherwise, from QJ

[
x\
b\

]
= QJ

[
x̃

b̃

]
= y, we must have[

x\
b\

]
=

[
x̃

b̃

]
, which is contradictory to the assumption. Let

J̃c = J̃ \ J ; then,

‖b\‖1 = h>? y (12)

= h>? (Ax̃+ I>J̃c b̃J̃c + I>J b̃J ) (13)

= h>
?J̃c b̃J̃c + h>?J b̃J (14)

≤ ‖h?J̃c‖∞‖b̃J̃c‖1 + ‖h?J ‖∞‖b̃J ‖1 (15)

< ‖b̃J̃c‖1 + ‖b̃J ‖1 (16)

= ‖b̃‖1, (17)

where (12) is due to the strong duality between (S1-L1) and
(L1-Dual), (13) is due to the primal feasibility of (x̃, b̃), (14)
is due to the dual feasibility condition (10), (15) is due to the
Hölder inequality, and (16) is due to the strict feasibility of h?.
Thus, we have shown the uniqueness of the optimal solution
(x\, b\).

C. Proof of Theorem 3
We design the primal-dual witness (PDW) process as fol-

lows (note that this is not an actual algorithm, because we do
not know the true support J ; rather, it is only part of a proof
technique popularized by [50]):

1) Set b̂J c = 0.
2) Determine (x̂, b̂J ) by solving the following program:

min
b∈Rnm ,x∈Rnx

1

2nm

∥∥∥y −Ax− I>J bJ ∥∥∥2

2
+ λ‖bJ ‖1,

(18)
and ẑJ ∈ ∂‖b̂J ‖1 satisfying

− 1

nm
IJ (y −Ax̂− I>J b̂J ) + λẑJ = 0, (19)

A>(y −Ax̂− I>J b̂J ) = 0. (20)

3) Solve ẑJ c via the zero-subgradient equation:

− 1

nm
(y −Ax̂− b̂) + λẑ = 0 (21)

and check whether the strict feasibility condition
‖ẑJ c‖∞ < 1 holds.

Lemma 1. If the PDW procedure succeeds, then (x̂, b̂) is the
unique optimal solution of (S1-LASSO), where b̂ = (b̂J ,0).

Proof. If PDW succeeds, then the optimality conditions (20)
and (21) are satisfied, which certify the optimality of (x̂, b̂).
The subgradient ẑ satisfies ‖ẑJ c‖∞ < 1 and

〈
ẑ, b̂
〉

= ‖b̂‖1.

Now, let (x̃, b̃) be any other optimal, and let F (x, b) =
1

2nm
‖y −Ax− b‖22. One can write:

F (x̂, b̂) + λ
〈
ẑ, b̂
〉

= F (x̃, b̃) + λ‖b̃‖1,

and hence,

F (x̂, b̂) + λ
〈
ẑ, b̂− b̃

〉
= F (x̃, b̃) + λ

(
‖b̃‖1 −

〈
ẑ, b̃
〉)

.
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By the optimality conditions (20) and (21), we have λẑ =
−∇bF (x̂, b̂) = 1

nm
(y−Ax̂− b̂) and ∇xF (x̂, b̂) = 0 , which

imply that

F (x̂, b̂)−
〈
∇bF (x̂, b̂), b̂− b̃

〉
− F (x̃, b̃)

= λ
(
‖b̃‖1 −

〈
ẑ, b̃
〉)
≤ 0

due to convexity. We thus have ‖b̃‖1 ≤
〈
ẑ, b̃
〉

. In light of

the Holder’s inequality, we also have
〈
ẑ, b̃
〉
≤ ‖ẑ‖∞‖b̃‖1

and ‖ẑ‖∞ ≤ 1, and therefore ‖b̃‖1 =
〈
ẑ, b̃
〉

and b̃j = 0

for all j ∈ J c. This means that supp(b̃) ⊆ supp(b̂) ⊆ J . By
restricting the optimization of b in (S1-LASSO) to the support
J and by the lower eigenvalue condition, the problem becomes
strictly convex and the uniqueness of the solution follows.

Proof of Theorem 3: We prove each part sequentially:

Part 1): By the construction of PDW, we have b̂J c =
b\J c = 0. The zero-subgradient condition (21) can be written
as:

− 1

nm

([
IJA
IJ cA

]
(x\ − x̂) +

[
IJ
0

]
(b\ − b̂)

)
− 1

nm

[
IJ
IJ c

]
w\ + λ

[
ẑJ
ẑJ c

]
=

[
0
0

]
,

where the equations indexed by J can be reorganized as:

− 1

nm

[
IJA IJ I

>
J
] [ x\ − x̂
bJ \ − b̂J

]
(22)

− 1

nm
IJw\ + λẑJ = 0.

Solving for ẑJ c yields that

ẑJ c =
1

nmλ
IJ c (A(x\ − x̂) +w\) . (23)

Similarly, combining (20) and (22) leads to

− 1

nm

[
A>A A>I>J
IJA IJ I

>
J

] [
x\ − x̂
bJ \ − b̂J

]
− 1

nm

[
A>

IJ

]
w\ +

[
0

λẑJ

]
= 0.

Thus, by the lower eigenvalue condition (see Def. 1), one can

solve for the estimation error ∆ =

[
x\ − x̂
bJ \ − b̂J

]
as follows

∆ = −(Q>JQJ )−1Q>Jw\ + nmλ(Q>JQJ )−1

[
0
ẑJ

]
. (24)

Recall that Ix and Ib denote the matrices consisting of the
first nx rows and last |J | rows of the identity matrix of size

nx + |J |, respectively. Therefore,

ẑJ c = − 1

nmλ
IJ cAIx(Q>JQJ )−1Q>Jw\

+ IJ cAIx(Q>JQJ )−1

[
0
ẑJ

]
+

1

nmλ
IJ cw\

= IJ cAIx(Q>JQJ )−1I>b ẑJ︸ ︷︷ ︸
µ

+ IJ c
(
I −AIx(Q>JQJ )−1Q>J

) w\

nmλ︸ ︷︷ ︸
ξJc

.

By the mutual incoherence condition (i.e., ρ(J ) = 1 − γ for
γ > 0) and Lemma 2, we have ‖µ‖∞ ≤ 1 − γ. Let ΠQ⊥J

=

J −QJ (Q>JQJ )−1Q>J be the orthogonal projection matrix.
It can be verified that

ξJ c =
(
IJ cΠQ⊥J

+ IJ cI
>
J Ib(Q

>
JQJ )−1Q>J

)( w\

nmλ

)
= IJ cΠQ⊥J

(
w\

nmλ

)
,

due to IJ cI
>
J = 0. Since the elements of w are zero-

mean sub-Gaussian with the parameter σ2 and the projection
operator has spectral norm one, it can be concluded that

P
(
‖ξJ c‖∞ ≥ t

)
≤ 2|J c| exp

(
−n

2
mλ

2t2

2σ2

)
.

Setting t = γ
2 yields that

P
(
‖ξJ c‖∞ ≥

γ

2

)
≤ 2 exp

(
−n

2
mλ

2γ2

8σ2
+ log(nm − |J |)

)
.

By the design of λ, we conclude that

P
(
‖ẑJ c‖∞ ≥ 1− γ

2

)
≤ 2 exp

(
−c1n2

mλ
2
)
.

Part 2): Now, we will bound the estimation error ∆ in
(24). First, we bound the infinity norm of bJ \ − b̂J = Ib∆.
It follows from the triangle inequality that

‖Ib∆‖∞ ≤ ‖Ib(Q>JQJ )−1Q>Jw\‖∞
+ nmλ‖Ib(Q>JQJ )−1I>b ‖∞.

Since the second term is deterministic, one can bound
the first term. By the normalized measurement condition
(6) and the lower eigenvalue condition (5), each entry of
(Q>JQJ )−1Q>Jw\ is zero-mean sub-Gaussian with parameter
at most

σ2‖(Q>JQJ )−1‖2 ≤
σ2

Cmin
.

Thus, by the union bound, we have

P
(
‖Ib(Q>JQJ )−1Q>Jw\‖∞ > t

)
≤ 2 exp

(
−Cmint

2

2σ2
+ log |J |

)
.

Then, set t = nmλ
2
√
Cmin

, and note that by the choice of λ, one
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can obtain Cmint
2

2σ2 > log |J |. Thus,

‖bJ \ − b̂J ‖∞ ≤ nmλ
(

1

2
√
Cmin

+ ‖Ib(Q>JQJ )−1I>b ‖∞
)

with probability greater than 1− 2 exp(−c2n2
mλ

2). This indi-
cates that bad data entries greater than

g(λ) = nmλ

(
1

2
√
Cmin

+ ‖Ib(Q>JQJ )−1I>b ‖∞
)

will be detected by b̂.
Part 3): Now, we bound the `2 norm of the signal error

x\ − x̂ = Ix∆ as

‖Ix∆‖2 ≤ ‖Ix(Q>JQJ )−1Q>Jw\‖2
+ nmλ‖Ix(Q>JQJ )−1I>b ‖∞,2.

For the first term, by the application of standard sub-Gaussian
concentration (see Theorem 5), one can write

P

(
‖Ix(Q>JQJ )−1Q>Jw\‖2 > ‖Ix(Q>JQJ )−1Q>J ‖F

+ t‖Ix(Q>JQJ )−1Q>J ‖2

)
≤ exp

(
−c1t

2

σ4

)
.

It can be verified that

‖Ix(Q>JQJ )−1Q>J ‖F ≤ ‖Ix‖2‖(Q
>
JQJ )−1‖2‖Q>J ‖F

≤
√
nm + |J |
Cmin

due to the lower eigenvalue condition (5) and the normalized
measurement assumption (6). Similarly,

‖Ix(Q>JQJ )−1Q>J ‖2 ≤ ‖Ix‖2‖(Q
>
JQJ )−1‖2‖Q>J ‖F

≤
√
nm + |J |
Cmin

,

and

P

(
‖Ix(Q>JQJ )−1Q>Jw\‖2 > t

√
nm + |J |
Cmin

)

≤ exp

(
−c1t

2

σ4

)
.

Together, it can be concluded that

‖x\ − x̂‖2 ≤ t
√
nm + |J |
Cmin

+ nmλ‖Ix(Q>JQJ )−1I>b ‖∞,2

with probability greater than 1− exp
(
− c1t

2

σ4

)
.

D. Proof of Corollary 1
The proof is similar to that of Theorem 3. We need to make

changes such that w\ = 0 whenever necessary, and some
elementary operations lead to the results.

E. Proof of Proposition 1
The `-th component of the vector θ̂∆ can be written as

[θ̂∆]` = arctan

(
xim
`

xre
`

+
x̂im
` x

re
` − xim

` x̂
re
`

x̂re
` x

re
`

)

Since the arctangent is a Lipschitz function with constant 1,
we can establish the bound:

|[θ̂∆]` − [θ∆]`| ≤ | x̂
im
` x

re
`−x

im
` x̂

re
`

x̂re
` x

re
`
| = |e`|

After using the closed-form expression (7) for θ̂, the result
will easily follow.

F. Proof of Theorem 4

For a vector s ∈ {+1,−1}|J | define r = −A>J s. From the
definition of sub-Gaussian distribution, the following inequal-
ity holds for every j ∈ [nx] :

E

exp

t njJ∑
k=1

ξkj

 =

niJ∏
k=1

E [exp(tξkj)]

≤
niJ∏
k=1

exp

(
σ2t2

2

)
Therefore, due to the symmetry of ξ, we have

rj ∼ subG(njJ σ
2),

and r is a sub-Gaussian random vector with variance proxy
n∗J σ

2.

It is sufficient to have ‖A>+
J c r‖∞ ≤ 1 to guarantee

the perfect recovery. We further relax this condition to
‖A>+
J c ‖∞‖r‖∞ ≤

√
nx‖A>+

J c ‖2‖r‖∞ ≤ 1. By [57, Thm.
1.14], we have:

P(‖r‖∞ > t) ≤ 2nx exp(− t2

2n∗J σ
2

).

Moreover, notice that ‖A>+
J c ‖2 = 1

sn(A>Jc )
, where sn(·) is the

minimal singular value of the argument. By |J c| ≥ nx ≥ 1,
due to Proposition 2.2 of [62], there exist c = c(σ) and
C = C(σ) such that for every t > C it holds that
P(‖AJ c‖2 > t

√
|J c|) ≤ exp(−ct2|J c|) (note that we

calculated the precise form of c(σ) and C(σ) based on Fact
2.4. from [63] and the inequality ‖ξ‖ψ ≤

√
6σ). After applying

this result and the assumptions of the theorem for using
Theorem 1.1 of [62], one can obtain the following bound:

P

(
‖A>+
J c ‖2 >

a1√
|J c|

)
≤ 2 exp(−a2|J c|).

Consequently, P(‖A>+
Jc r‖∞ ≤ 1) > 1 − κ if and only if

max{−c4|Jc|, log 2nx − |Jc|
2a21n

∗
Jnxσ

2a2
} ≤ ln κ

2 .

G. Some technical results

Theorem 5 (sub-gaussian concentration [64]). Let B be an
m × n matrix, and let x = (x1, ..., xn) ∈ Rn be a random
vector with independent, zero mean, sub-gaussian coordinates
with parameter σ2. Then,

P (‖Bx‖2 ≥ ‖B‖F + t‖B‖2) ≤ exp

(
−c1t

2

σ4

)
.
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Lemma 2. Suppose that Q>JQJ is invertible for a given J ⊂
[nm], where QJ =

[
A I>J

]
. Then, it holds that

ρ(J ) = ‖AJ cIx(Q>JQJ )−1I>b ‖∞. (25)

Proof. We will show that AJ cIx(Q>JQJ )−1I>b =
−A>+

J c A
>
J for any given J ⊂ [nm]. By the definition

of QJ and block matrix inversion formula, one can write

Ix(Q>JQJ )−1I>b

= −(A>A)−1A>J (I −AJ (A>A)−1A>J )−1

= −(A>A)−1A>J (I +AJ (A>J cAJ c)
−1A>J )

= −(A>A)−1(I +A>JAJ (A>J cAJ c)
−1)A>J

= −(A>J cAJ c)
−1A>J ,

where the first equation follows from the Sherman–Morrison–
Woodbury formula.

Lemma 3. Suppose that Q>JQJ is invertible for a given J ⊂
[nm], where QJ =

[
A I>J

]
. Then, it holds that

Ib(Q
>
JQJ )−1I>b = I +AJ (A>J cAJ c)

−1A>J (26)

Proof. By the definition of QJ and block matrix inversion
formula, one can write:

Ib(Q
>
JQJ )−1I>b = (I −AJ (A>A)−1A>J )−1

= I +AJ (A>J cAJ c)
−1A>J ,

where the second equation follows from the Sherman–
Morrison–Woodbury formula.
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