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Imitation Learning with Stability and Safety Guarantees

He Yin, Peter Seiler, Ming Jin and Murat Arcak

Abstract—A method is presented to synthesize neural network
(NN) controllers with stability and safety guarantees through imi-
tation learning. Convex stability and safety conditions are derived
for linear time-invariant plant dynamics with NN controllers.
The proposed approach merges Lyapunov theory with local
quadratic constraints to bound the nonlinear activation functions
in the NN. The safe imitation learning problem is formulated
as an optimization problem with the goal of minimizing the
imitation learning loss, and maximizing volume of the region of
attraction associated with the NN controller, while enforcing the
stability and safety conditions. An alternating direction method of
multipliers based algorithm is proposed to solve the optimization.
The method is illustrated on an inverted pendulum system and
aircraft longitudinal dynamics.

I. INTRODUCTION

Imitation learning (IL) is a class of methods that learns
a policy to attain a control goal consistent with expert
demonstrations [1]], [2]. Used in tandem with deep neural
networks (NN), IL presents unique advantages, including a
substantial increase in sample efficiency compared to rein-
forcement learning (RL) [3], and wide applicability to do-
mains where the reward model is not accessible or on-policy
data is difficult/unsafe to acquire [1]]. While IL is closely
related to supervised learning as it trains a mapping from
observations to actions [4]], a key difference is the ensuing
deployment of the learned policy under dynamics, which
consequently raises the issue of closed-loop stability. This
problem naturally falls within the realm of robust control,
which provides rigorous analysis of stability for linear or
nonlinear systems [5]; however, a major technical challenge
is to derive nonconservative guarantees for highly nonlinear
policies such as neural networks that can be also tractably
incorporated into the learning process.

The paper tackles this issue and presents a method to
synthesize NN controllers with stability and safety guarantees
through IL. We first derive convex stability and safety condi-
tions by merging Lyapunov theory with local (sector) quadratic
constraints to describe the nonlinear activation functions in
the NN. Then we formulate an optimization problem that
minimizes the IL loss, and maximizes the region of attraction
inner-estimates certified by the learned NN controller, while
enforcing the stability and safety constraints. Finally, we pro-
pose an alternating direction method of multipliers (ADMM)
based method to solve the optimization problem.
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The method of using quadratic constraints to characterize
the nonlinear activation functions has been proposed in [6],
and applied to Lipschitz constant estimation for NNs [7],
forward reachability analysis of NN controlled systems [8]],
and local stability analysis of NN controlled uncertain systems
[9], [10]. Reference [11] proposes an ADMM based robust
NN training method that minimizes the training loss and the
Lipschitz constant simultaneously. Reference [|12] formulates
convex sets of recurrent NN with bounded incremental ¢o
gain using incremental quadratic constraints. The work [[13]]
performs global stability analysis of RL-controlled nonlinear
systems based on integral quadratic constraint theory.

Compared to existing works, our approach makes the fol-
lowing contributions. First, to the best of our knowledge, this is
the first attempt to ensure stability of IL based on deep neural
networks. The stability condition from [9] is nonconvex and
thus computationally intractable for NN control synthesis; here
we convexify this constraint (using loop transformation) for its
efficient enforcement in the learning process. Notably, a well-
known challenge in IL is the existence of suboptimal demon-
strations, which can even come from unstable controllers. As
demonstrated in the case studies, while the proposed approach
can train a policy that imitates the expert demonstrations, it
can potentially improve local stability over suboptimal expert
policies, thus enhance the robustness of IL.

The stability and safety issues for learning (especially
RL) based control has also been addressed by a Hamilton-
Jacobi reachability-based framework in [[14], a control barrier
function based method in [15], [[16], and a convex projection
operator based method in [[17].

The paper is organized as follows. Section [lI| presents the
problem formulation. Section[IIl] reviews the stability condition
proposed in [9], and Section [[V]presents a loop transformation
based method to convexify it. Section[V]formulates the safe IL
problem as an optimization problem, and proposes an ADMM
based method to solve it. Section provides numerical
examples, including an inverted pendulum example, and an
aircraft example. Section summarizes the results.

Notation: S™ denotes the set of n-by-n symmetric matrices.
S and S, denote the sets of n-by-n symmetric, positive
semidefinite and positive definite matrices, respectively. For
v,w € R”, the inequality v < w is interpreted element-
wise, i.e. v; < w; for ¢ = 1,...n. Similarly, v > w is an
elementwise inequality. For P € S7 , , define the ellipsoid

E(P):={zcR":z"Px <1}. (1)

II. PROBLEM FORMULATION

Consider the feedback system consisting of a plant G and
state-feedback controller 7 as shown in Figure I, We assume



the plant G is a linear, time-invariant (LTI) system defined by
the following discrete-time model:

z(k+1) = Ag x(k) + Bg u(k), (2)

where z(k) € R™“ is the state and u(k) € R™ is the
control. The state matrices have compatible dimensions, i.e.
Ag € R*6¢*"¢ and Bg € R™¢*™u_ Finally, assume x(k) is
constrained to a set X C R™¢, which is referred to as the
“safety condition”. This state constraint set is assumed to be
a polytope symmetric around the origin:

X={xeR":—-h< Hzx<h, h>0}, 3)

where H € R"x*"¢_ and h € R"X. The controller 7 :
R™¢ — R™ is an (-layer, feedforward neural network (NN)
defined as:

w’ (k) = z(k), (4a)
w' (k) =¢" (W ' (k)+0b" ), i=1,...,¢ (4b)
u(k) = W twt (k) + b1, (4¢)

where w' € R™ are the outputs (activations) from the i‘"
layer and ny = ng. The operations for each layer are defined
by a weight matrix W € R™*"i-1, bias vector b* € R™, and
activation function ¢’ : R™ — R"™. The activation function
¢* is applied element-wise, i.e.

d)l(v) = [(P(Ul)7 e 750(Un1)]—r ) &)

where ¢ : R — R is the (scalar) activation function selected
for the NN. Common choices for the scalar activation function
include () := tanh(v), sigmoid ¢(v) := H%’ ReLU
o(v) = max(0,v), and leaky ReLU ¢(v) := max(av,v)
with a € (0,1). We assume the activation ¢ is identical in all
layers; this can be relaxed with minor changes to the notation.

Fig. 1: Feedback system with plant G and NN =«

Remark 1. Note that the control constraint is not considered
in this paper. However, if the control constraint set is a
hypercube, it can be addressed by scaling the dynamics
so that the control constraint set becomes [—1,, x1, 1n, x1),
and applying tanh elementwise to the output layer (4c).

Assumption 1. We assume the equilibrium point of the closed-
loop system is at the origin ., = Op,x1 With input u, =
On, x1. To ensure this assumption holds, we restrict ourselves
to zero bias terms: b' = Op,x1, fori =1,..,0+ 1, and we
also assume that the activation ¢ satisfies p(0) = 0.

Let x(k;xo) denote the solution to the feedback system
at time & from initial condition xz(0) = x¢. The region of
attraction (ROA) is defined below.

Definition 1. The region of attraction (ROA) of the feedback
system with plant G and NN 7 is defined as

R:i={xg€ X : klir& X(k;20) = Opgx1}- (6)

Given state and control data pairs from the expert demon-
strations, our goal is to learn a NN controller from the data
to reproduce the demonstrated behavior, while guaranteeing
the system trajectories under the control of the learned NN
controller satisfy the safety condition (z(k) € X Vk > 0),
and are able to converge to the equilibrium point if they start
from the ROA associated with the learned NN controller.

III. STABILITY CONDITION FOR NN CONTROLLED
SYSTEMS

In this section, we treat the parameters of the NN controller
as fixed and analyze the safety and local stability conditions
of the closed loop systems.

A. NN Representation: Isolation of Nonlinearities

It is useful to isolate the nonlinear activation functions from
the linear operations of the NN as done in [6], [|18]]. Define v
as the input to the activation function ¢’ (recalling that b’ = 0
by Assumption [I)):

vi(k) = W' k), i=1,...,L (7)

The nonlinear operation of the it" layer (Equation is thus
expressed as w'(k) = ¢*(v¢(k)). Gather the inputs and outputs

of all activation functions:

vl w!

€ R" and wy =

vt w’

Vg 1= € R"¢, )

where ng :=nq 4 --- 4+ ny, and define the combined nonlin-
earity ¢ : R — R™¢ by stacking the activation functions:

¢ (v')
(]5(’U¢) = . 9

o' (v")
Thus wg (k) = ¢(ve(k)), where the scalar activation function
@ is applied element-wise to each entry of v4. Finally, using

bt = Op,;x1 fori=1,...,¢+1, the NN control policy 7 defined
in Equation [4] can be rewritten as:

5] -+[2)

vy (k) wg (k)
wy (k) = ¢(vy(k))-

The matrix N depends on the weights as follows, where the

vertical and horizontal bars partition N compatibly with the
inputs (z,wy) and outputs (u, ve):

(10a)
(10b)

0lo o wett
wrl o - 0 0

N:e=| O |W? - 0 0 (11a)
L 0] 0 wt 0

= ]]\\;W ]]\\;“w . (11b)




This decomposition of the NN, depicted in Figure [2] isolates
the activation functions in preparation for the stability analysis.

N

we (k) vy (k)

¢

Fig. 2: NN representation to isolate the nonlinearities ¢.

The equilibrium state z, = 0,,x1 can be propagated
through the NN. This yields the equilibrium values v, =
wyx = Opyx1 as well as the equilibrium control command
Uy = Onuxl-

B. Quadratic Constraints: Scalar Activation Functions

The stability analysis relies on quadratic constraints to
bound the activation function. A typical constraint is the sector
bound as defined next.

Definition 2. Let o < 8 be given. The function ¢ : R — R
lies in the (global) sector o, 3] if:

(o) —av) - (Bv— (1)) 20 WeR.  (12)

The interpretation of the sector [«, 3] is that ¢ lies between
lines passing through the origin with slope « and S. Many
activation functions are bounded in the sector [0, 1], e.g. tanh
and ReLU. Figure [3| illustrates ¢(v) = tanh(v) (blue solid)
and the global sector defined by [0, 1] (red solid lines).

tanh(v) (7, tanh(7))
A

— Global Sector
----- Local Sector

Fig. 3: Sector constraints on tanh

The global sector constraint is often too coarse for analysis;
thus, we consider a local sector constraint for tighter bounds.

Definition 3. Let o, 8, v, e Rwitha < B and v <0< .
The function ¢ : R — R satisfies the local sector |a, (] if

(p(v) —av)-(Bv—¢) 20 Vv e y,r].  (13)

As an example, ¢(v) := tanh(v) restricted to the interval
[, D] satisfies the local sector bound [a, 8] with a :=
tanh(7)/7 > 0 and S := 1. As shown in Figure [3| (green
dashed lines), the local sector provides a tighter bound than the
global sector. These bounds are valid for a symmetric interval
around the origin with ¥ = —»; non-symmetric intervals
(v # —0) can be handled similarly.

C. Quadratic Constraints: Combined Activation Functions

Local sector constraints can also be defined for the com-
bined nonlinearity ¢, given by (9). Let v,7 € R™* be given
with v < ©. Suppose that the activation input vy, € R™¢ lies
element-wise in the interval [v, ] and the i*" input/output pair
is w; = ¢(v;), and the scalar activation function satisfies the
local sector [, 3;] with the input restricted to v; € [v;, T;]
for ¢ = 1,...,n4. The local sector bounds can be computed
for ¢ on the given interval analytically (as above for tanh).
These local sectors can be stacked into vectors ag, B¢ € R™¢
that provide quadratic constraints satisfied by the combined
nonlinearity ¢.

Lemma 1. Let oy, By, v, ¥ € R™ be given with ay < By,
and v < U. Suppose that ¢ satisfies the local sector o, Bg]
element-wise for all vy € [v, 7). For any A € R™ with A\ > 0,
it holds that
Vg T —2A¢B¢A (A¢ + B(zs)A Vg
We (A¢ + B¢)A —2A We
V’U¢ € [Qa 17]7 Wy = ¢(’U¢)7 (14)

where Ay = diag(ay), By = diag(By), and A = diag(N).

>0

Proof. For any vy € R™ and wy = ¢(vy):

o] [ pAemeh (ot B [

n¢
= Z)\z(wz —a;v;) - (Bivi —wi).
i=1

If vy € [v,7] then each term in the sum is non-negative by
the local sector constraints and A > 0. O

In order to apply the local sector bounds in the stability
analysis, we must first compute the bounds v,7 € R"® on
the activation input v,. The process to compute the bounds is
briefly discussed here with more details provided in [9], [19].
The first step is to find the smallest hypercube that bounds the
state constraint set: X C {x : z < x < T}. Therefore, w"
(defined in (@a)) is bounded by w® = z and W° = 7. Define
c = 3@ +w’), r = (@ — w), and denote y' as the
it" row of W1. Then the first activation input v* = Wlw° is
bounded by [v!,7'], where

)

o=y et Y lyrl, (152)
j=1
)

ol =yTe=> lyrl. (15b)
j=1

If the activation functions ¢' are monotonically non-
decreasing, then the first activation output w'® is bounded by
w' = ¢'(v) and W' = ¢! (). This process can be propagated
through all layers of the NN to obtain the bounds v,v € R"¢
for the activation input vg. The remainder of the paper will
assume these local sector bounds have been computed as
briefly summarized in the following property.

Property 1. Let the state constraint set X and its corre-
sponding activation input bounds v,v be given. There exist



g, By € R™ such that ¢ satisfies the local sector for all
vy € [v,7).

D. Lyapunov Condition

This section uses a Lyapunov function and the local sector to
compute an inner approximation for the ROA of the feedback
system of G and .

Theorem 1. Consider the feedback system of plant G in
and NN T in @D with equilibrium point x, = Op x1, and the
state constraint set X. Let U, v, ag, By € R™ be given vectors
satisfying Property [I| for the NN and the set X. Denote the
it" row of the matrix H by H ZT and define matrices

P InG On(;><n¢ R vi va
Ry = {NM Now | and Ry = Onpxnes Iny |-
If there exists a matrix P € S"%, and vector X\ € R™ with
A > 0 such that
ALPA; - P ALPB
T G G G G
Ry [ BLPAg BgPBG] By

T | —244BgA (A¢+B¢)A
+R)] {(A(ﬁ Veon B <0 a6
2 T
[Z IH >0, i= 1, ,nx, (16b)

where A = diag(\), then: (i) the feedback system consisting
of G and 7 is locally asymptotically stable around x., and (ii)
the set E(P), defined by Equation is an inner-approximation
to the ROA.

Proof. By Schur complements, (T6b) is equivalent to:
H'P'H; <h? i=1,--- ,nx. (17)

It follows from Lemma 1 in [20]] that:

EP)C{zeR": —h <H'z<h;, i=1,..nx}=X.

To summarize, feasibility of (I6b) verifies that if x(k) €
E(P) C X then v4(k) € [v,9] and hence the local sector
conditions are valid.

Next, left / right multiply the LMI by any (non-zero)
[#(k)T  wy(k)"] and its transpose to obtain

{x(k)]T [AgPAG .y AgPBG} {x(k)}

u(k) BLPA:  BLPBg| |u(k)
ve(k)] " [ =244ByA  (Ag + By)A] [vy(k)
* L%(k)] [(A¢+B¢)A _92A } L%(k)] <0.
Define V() := " Pz and use (2) to show:
V(w(k+1)) = V(x(k))
0s(B)] [ ~2A6BoA  (Ag + BoA [ual)
- L%(k)] [(A¢ + Bg)A _9A } L%(/f)] < 0.

(18)

As noted above, z(k) € £(P) implies the local sector [cvg, B4].
Then, by Lemmam the final term in (I8) is > 0 and it follows
from a Lyapunov argument, e.g. Theorem 4.1 in [21]], that
T, is an asymptotically stable equilibrium point. Using the
proof by contradiction argument from [22, Theorem 1], we

can show that £(P) is an invariant set: if 2(0) € £(P), then
x(k) € E(P) Vk > 0, and thus £(P) is an inner approximation
of the ROA. O

The Lyapunov condition is convex in P and A if
the weight matrix IV is given, and thus we can efficiently
compute the ROA inner-estimates. However, this condition is
computationally intractable for NN controller synthesis, as it
is nonconvex if we search over N, P, and A simultaneously.

IV. CONVEX STABILITY AND SAFETY CONDITIONS

In [11], [12], oy is set to zero in order to formulate
convex constraints. This restriction is too coarse for stability
analysis of NN controlled systems. Instead, we perform a loop
transformation as shown in Figure [ to convexify the stability
condition without having restrictions on a4 and Sg.

By — Ay N
2
B A¢ + B¢
2
By — Ay i ¢
L A¢ + B¢
Qg 2

Fig. 4: Loop transformation. If ¢ is in the sector [a, 3], then
¢ is in the sector [—1,,x1, 1n,x1]-

A. Loop transformation

Through loop transformation [5]], we obtain a new repre-
sentation of the NN controller, which is equivalent to (10,

[«%] B N L%} ’

z¢(k) = o(vg(k)),

where N and ¢ are defined in Figure@ Here, we also partition
N compatibly with the inputs (z, z4) and outputs (u, vy)

N7 Num Nuz
w= 5l

(19a)

(19b)

(20)

The loop transformation normalizes the nonlinearity g?) to
lie in the sector [—1,,x1, 1n,x1]. As a result, ¢ satisfies the
sector quadratic constraint[ﬂfor any A = diag(\) with A > 0:

[EZEZ;]T [3 —OA} EZEZH >0, Yoy € [v,7]. (2D

fNote that when substituting Ay = I, and By = In,, in (@), we get

@] P 0] [2] 20, wou

The factor of 2 is absorbed into A in ZI).



The input to N is transformed by the following algebraic
equation:

_ Bs—4¢

Ay + B
we (k) 5 AL 2

2(k) + =0y (k).

The transformed matrix N can be computed by combining
this relation with (T0a). Substituting (22) into (10a) we obtain

(22)

u(k) = Nygx(k) + Crz4(k) + Covy(k), (23)
1}4)(]{7) = ngl'(k’) + 032¢(k) + C4’U¢(k’), 24)
Where Cl — Nude)%l%7 02 — Nuw@,
Cs = vaM’ Cy = NWM,
2 2
The expression for v, (k) can be solved from 24):
vy(k) = (I — Cy) ' Nyga(k) + (I — Cy) ' C3z4(k). (25)
Substituting 23) into (23) yields
u(k) = (Nug + C2(1 — 04)_1er)x(k)
+ (C1 + Oo(I — C4) 71 C3) 24 (k). (26)

Matching (23) and (26) with (T9a) we get

N _ Nuyg + CZ(I — 04)71N1m Ci + CQ(I — 04)7103
(I - 04)71vi (I - 04)7103 ’

Thus, N is a function of N denoted concisely as N = f(NN).
It is important to note that N depends on N both directly, and
also indirectly through its dependence on (A, By). Specifi-
cally, suppose both N and a hypercube state bound (z,T)
are given. Then N is constructed by: (i) propagating (z, )
through the NN to compute bounds T,v on the activation
inputs, (ii) computing local sector bounds (Ag, By) consistent
with the activation bounds, and (iii) performing the steps in
this section to compute N from (N, Ay, By).

B. Stability condition after loop transformation

Similar to the original Lyapunov condition (T6a), the new
Lyapunov condition for the feedback system of G in (Z) and
NN in (T9) can be written as

~ T f— T ~ ~ ~
Al {AGPAG P AGPBG} Fy+ R B _O[J Ay <0,

BLPA:  BlPBg
(27)
where A := diag()\), and
D, _ In(; OnG XN D Nvac sz
By = |:Nuz Nuz :| 7R¢ N |:0n¢><nc In¢:| ' 28)

Lemma 2. Consider the feedback system of G in (2)) and NN in
(TO) with the state constraint set X. If there exist a matrix P €
S, and vector X € R™ such that (where N = f(N))
and (T6b) hold, then: (i) the feedback system consisting of G
in @) and NN in (T0) is locally asymptotically stable around
X, and (ii) the set E(P) is a ROA inner-approximation for it.

Proof. Tt follows from the assumption that (27) and (T6B) hold
that the feedback system of G in (2) and NN in (T9) is locally

asymptotically stable around z., and £(P) is its ROA inner-
approximation. Since the representations (I0) and (T9) of NN
are equivalent, the feedback system of G in () and NN in
(T0) is identical to the feedback system of G in (2) and NN
in (T9). As a result, the feedback system consisting of G in
(2) and NN in (T0) is locally asymptotically stable around z.,
and the set £(P) is a ROA inner-approximation for it. O

The new Lyapunov condition (27) is convex in P and A
using N = f(N), where N is given. To incorporate the
stability condition in the IL process, we will proceed by
treating N € R("utn6)x(n6+n0) 45 a decision variable along
with P and A, and try to derive a stability condition that is
convex in (P, A, N). Substitute (28) into (27) to obtain

SN {P 0] [AG +~BGNM BQNUZ] - {P 0

0 Al R N, 0A<Q

(29)

Applying Schur complements, we can write the equivalent
condition

P 0 AL+NLBL N
0 A N, B} N

- - uz vz > 0

Ag +~BGNuac BCiNuz Pt 0 ’
Nyz Ny 0 A1

(30)

and P > 0, A > 0. Now (30) is linear in N, but still
nonconvex in P and A. Multiplying (30) on the left and right

by diag ([Pgl A91 s Ing4n, ) We obtain

o} 0 AL+ LTBL LY
0 Q- Ly Bl L] >0
AcQ1+ BgLi BglLs Q1 0 ’
L3 Ly 0 Q2
(31)

where

Qi=P'>0, Q=A"">0,
Ly = NuaﬁQla Ly, = NuzQQa L3 = viQl, Ly= szQ2~

The stability condition (3T) is convex in the decision variables
(@1,Q2,L1,...,Ly), where @1 € ST, Q2 € S} and
Q> is a diagonal matrix, L, € R"™*"¢ [, € ]Rzlux”d’,
L; € R**"G and Ly € R™*". Variables (P, A, N) that
satisfy the Lyapunov condition (27) can be recovered using
the computed (Q1,Q2,L1,...,Ls) through the following
equations: P = Q;*,A = Q; ", and

]\7 — |:]\:]u9c J\:]uz

2
Now N, (32)

|- 10

6(2)2} , and L := E; Zj .33

Thus, the convex stability condition @) allows us to search
over P, A, and N simultaneously.

To enforce the safety condition (z(k) € X Vk > 0) of the
system, convex constraints on (J; are imposed:

H'QiH; <h? i=1,--

where () := {%1

(34)

y X,



which is derived directly from (I6b) by Schur complements,
and using Q; = P~!. Again, this ensures E(Ql_l) C X.

We denote the LMIs (31), (34) with @1 > 0 and Q2 > 0
altogether as LMI(Q, L) > 0. Later in this paper, these LMIs
will be incorporated in the IL process to robustify the NN
controller.

Remark 2. Note that model uncertainties and nonlinearities
are not considered in the paper. They can be incorporated in
the Lyapunov condition or using integral quadratic
constraints as in [|9)]. However, to derive convex stability condi-
tions, only limited types of uncertainties may be incorporated.

V. SAFE IMITATION LEARNING ALGORITHM

Given state and control data pairs from the expert demon-
strations, we use a loss function £(N) to train NN controllers
with weights N to match the data. Common choices of the
loss function includes mean squared error, absolute error, and
cross-entropy. In general, £(N) is non-convex in N. We
propose the next optimization to solve the safe IL problem,

J\r]nciQHL mL(N) — n2logdet(Q1) (35a)
s.t. LMI(Q, L) > 0 (35b)
f(NQ =L (35¢)

where @ and L are defined in (33). The optimization has sep-
arate objectives. The cost function combines the IL loss
function with a term that attempts to increase the volume of
E(Q7") (which is proportional to det(Q;) ). The parameters
n1,m2 > 0 reflect the relative importance between imitation
learning accuracy and size of the robustness margin. The
optimization has two sets of decision variables: N and (Q, L).
The former is involved in mimicking the expert behaviour, and
the latter are involved in the stability and safety constraints
(33D). The two sets of variables are connected through the
equality constraint (35c). Note that is equivalent to
f(N) = LQ™', and the term on the right-hand side equals
to N from . Therefore, (35¢c) essentially means that the
first set of decision variable N, after being transformed by
the nonlinear function f, satisfies the stability and safety
constraints.

Similar to [11], we use the alternating direction method
of multipliers (ADMM) algorithm to solve this type of con-
strained learning problem. We first define an augmented loss
function

La(Na Q7 La Y) = ThL"(N) — 72 IOg det(Ql)
p
+u (YT (f(V)Q = D) + 5 IF(N)Q = Lil7-, (36)
where |-|| - is the Frobenius norm, Y € R(mutne)x(ne+ns)
is the Lagrange multiplier, and p > 0 is the regularization

parameter typically affecting the convergence rate of ADMM.
The ADMM algorithm takes the following form

1. N-update

NFL = arg min Lo(N,QF, L* YF) (37a)

2. (@, L)-update
("', LM = arg min Lo(N¥.Q,L,Y")

s.t. LMI(Q, L) > 0 (37b)

3. Y-update: If || f(N*F1)QFF — L’““HF < o, where 0 > 0
is the stopping tolerance, then the algorithm has converged,
and we have found a solution to @, so terminate the
algorithm. Otherwise, update Y and return to step 1.

YR = vk 4 p (F(NFTHQFTT — L) (37¢)

Step 1 can be solved using gradient based algorithm, e.g.,
stochastic gradient descent, or ADAM [23]]. The optimization
in Step 2 is convex, and can be solved effectively using SDP
solvers, e.g., MOSEK. The variable Y in Step 3 accumulates
the deviation from the constraint as in integral control.

Since the loss function £(N) is generally nonconvex, and
the constraint is also nonconvex, the proposed ADMM
does not have the guarantee to converge to the global optima.
However, any converged solution (even local optima) provides
a safe NN controller with stability and safety guarantees.

VI. EXAMPLES

In the following examples, Step 1 of ADMM algorithm is
implemented on Tensorflow, and solved by ADAM [23]. Step 2
is formulated using CVX, and is solved by MOSEK. The mean
squared error is chosen as the loss function L(V).

A. Inverted pendulum

Consider an inverted pendulum with mass m = 0.15 kg,
length [ = 0.5 m, and friction coefficient 1+ = 0.5 Nms/rad.
The discretized and linearized dynamics are:

) =l o e )]+ [0
where the states xq, xo represent the angular position (rad)
and velocity (rad/s), u is the control input (Nm), and § =
0.02 s is the sampling time. The state constraint set is
X = [-2.5,2.5] x [—6,6]. To generate state and control data
pairs for IL, we design an explicit model predictive controller
(MPC) to serve as the expert. By fitting a NN controller to
the explicit MPC controller, we can expedite the evaluation of
controllers during run-time [24]-[26]]. In this example, besides
a NN controller, we will also provide its associated ROA
inner-approximation that guarantees stability and safety. The
NN controller is parameterized by a 2-layer, feedforward NN
with ny = no = 16 and tanh as the activation function
for both layers. Take p = 1, n3 = 200, and 7, = 10.
The ADMM algorithm is terminated after 16 iterations, and
|f(N) = LQ™Y|| . = 0.094.

In Figure [5] the ROA inner-approximation (shown with a
blue ellipsoid) is tightly contained by the state constraint set X
(shown with an orange rectangle), which guarantees the safety
of the system. Figure [f] shows the learned NN controller with
a blue surface, and state and control data pairs from expert
demonstrations with orange stars. Figure [/| shows the mesh
plots of f(N) and LQ ™! after 16 iterations of ADMM.
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Fig. 7: f(N) vs. LQ~! after running 16 iterations of the
ADMM algorithm of the inverted pendulum

B. Generic Transport Model

The Generic Transport Model (GTM) is a 5.5% scale com-
mercial aircraft. Linearizing and discretizing the longitudinal
dynamics given in with sampling time § = 0.02 s yields:

] o I | R e R

where the states x1, x5 represent angle of attack (rad), and
pitch rate (rad/s), and the control u represents the elevator
deflection (rad). Take the state constraint set as X = [—2,2] X
[—3,3]. In this example, we design an LQR controller to
produce expert data. The NN controller is again parameterized

by a 2-layer, feedforward NN with n; = ny = 16 and tanh
as the activation function for both layers. In this example, we
will show how the parameter 7y affects the result. To do so,
two experiments are carried out using two sets of parameters
(p=1,m = 100,72 = 5) and (p = 1,1, = 100,72 = 20),
meaning that we care more about the size of the ROA
inner-approximation, and less about the IL accuracy in the
second experiment than we do in the first experiment. In
both experiments, the ADMM algorithm is terminated in 20
iterations.

The ROA inner-approximations of the NN controllers from
the two experiments are shown in Figure[8] The one computed
with 7o = 5 is shown with a magenta ellipsoid, and the
one computed with 7, = 20 is shown with a blue ellipsoid.
First, it is important to notice that both NN controllers” ROA
inner-approximations are larger than that of the expert’s LQR
controller (shown with a dashed gray ellipsoid), thanks to
the second term in the cost function (35a), which enhances
the robustness of IL. Also, as expected, the ROA inner-
approximation of the NN controller with 72 = 20 is larger
than that with 73 = 5, since a larger 7y leads to a larger
ROA inner-approximation. However, the larger ROA inner-
approximation comes at the cost of less accurate regression to
the expert data. As shown in Figure [J] the mesh plot of the
NN controller with 175 = 20 (shown with a blue surface) is
more off from the expert data (shown with orange stars) than
that with 2 = 5 (shown with a magenta surface).

: ;
= ROA with n, = 5
e ROA with 7 = 20
== ROA of LQR

1x

Fig. 8: ROA inner-approximations and state constraint set X
of GTM

NN with 7o =5
NN with 7o = 20
+ expert data

£ -2 Ty

Fig. 9: NN controllers vs. expert data of GTM



VII. CONCLUSIONS

In this paper, we present an imitation learning algorithm
with local stability and safety guarantees for LTI systems.
First, we convexify the stability and safety conditions for
NN controlled systems from [9] using loop transformation.
Second, we formulate the safe imitation learning problem as
an optimization problem that trades off between the imitation
learning accuracy, and size of the stability margin, while
enforcing the stability and safety constraints. We propose an
ADMM based algorithm to solve the constrained optimization.
Finally, we illustrate the method on an inverted pendulum
example and an aircraft example. Future work will address
incorporation of the stability and safety conditions in the
reinforcement learning process.
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