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ABSTRACT We investigate the important problem of certifying stability of reinforcement learning
policies when interconnected with nonlinear dynamical systems. We show that by regulating the partial
gradients of policies, strong guarantees of robust stability can be obtained based on a proposed semidefinite
programming feasibility problem. The method is able to certify a large set of stabilizing controllers
by exploiting problem-specific structures; furthermore, we analyze and establish its (non)conservatism.
Empirical evaluations on two decentralized control tasks, namely multi-flight formation and power system
frequency regulation, demonstrate that the reinforcement learning agents can have high performance within
the stability-certified parameter space and also exhibit stable learning behaviors in the long run.

INDEX TERMS Reinforcement learning, robust control, decentralized control synthesis, safe reinforce-
ment learning

I. INTRODUCTION

REINFORCEMENT learning (RL) aims at guiding an
agent to perform a task as efficiently and skillfully as

possible through interactions with the environment. Consider
the interconnected system illustrated in Fig. 1, where G is
the environment and πθ is the policy. The goal of RL is to
maximize the expected return:

η(πθ) = E
x0,ut∼πθ(·|xt),xt+1∼G(xt,ut)

[∑∞

t=0
ρtr(xt, ut)

]
,

(1)
where r(x, u) is the reward at state x ∈ Rns and action
u ∈ Rna , ρ ∈ (0, 1] is the future discount factor, and the
expectation is taken over the policy πθ as well as the initial
state distribution and dynamics G. While remarkable progress
has been made in RL algorithms, such as policy gradient [1]–
[3], Q-learning [4], [5], and actor-critic methods [6], [7], a
fundamental issue that is unresolved in the literature is how
to analyze or certify stability of the interconnected system,
which is closely related to the safety aspect of reinforcement
learning [8]–[10].

Stability verification is challenging for two key reasons:
(i) both the environment and the control policy (e.g., deep

neural networks) are often highly nonlinear; and (ii) the policy
changes dynamically during the learning phase. In robust
control, Lyapunov functions are widely used to analyze and
verify stability under uncertainty [11], [12]. For nonlinear
systems without global stability guarantees, region of at-
traction and reachability analysis have been employed for
local convergence analysis [13]–[15]. The main challenge
of these methods is that the robustness guarantee can be
conservative due to coarse constraints on nonlinearity such
as those based on Lipschitz constants [16], [17], leading to a
limited search space for safe policies. To mitigate this issue,
the integral quadratic constraint (IQC) framework proposed
in [18] can be employed, which has been widely used to
analyze the stability of large-scale complex systems, such as
aircraft control [19]. Nevertheless, existing techniques can
be computational intensive for deep neural networks, and
establishing necessary conditions for robustness has been
limited to only a few cases (e.g., block-diagonal structured
uncertainty operators with bounded singular values [20]).

To address this issue, we introduce a more informative
quadratic constraint and analyze the necessity of the certificate
criterion as an extension of the preliminary conference
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FIGURE 1: The goal of RL is to maximize expected rewards
through interaction and exploration. In this study, we address
the challenge of maintaining the stability of the interconnected
system during the learning and control process.

version [21]. This opens up new possibilities to safely apply
deep RL to nonlinear large-scale real-world systems, whose
stability is otherwise impossible to be certified using existing
approaches. As an overview, we propose a “safety set” of
policies P(ξ) based on partial gradients, i.e.,1{
π
∣∣∣ ξ

ij
≤ ∂jπi(y) ≤ ξij ,∀i ∈ [na], j ∈ [ns], y ∈ Rns

}
,

(2)
where y ∈ Rns is the output vector, and na, ns are the dimen-
sions of the input and output, respectively, ∂jπi is the partial
derivative of πi for the j-th input. Our framework designs a set
of numerical bounds ξ ∈ Rna×ns and ξ ∈ Rna×ns such that
as long as the policy stays within the “safety set,” the stability
of the interconnected system is guaranteed. Importantly, this
work bridges the robust control with reinforcement learning
to provide provably guarantees of stability during the learning
and control process. Key contributions of the present study
are as follows:
• Development of a general framework to certify the stabil-

ity of reinforcement learning for nonlinear systems, with
new strategies to incorporate the stability requirement
into RL;

• A new characterization of the safety set of policies based
on point-wise IQC, as well as the analysis of its non-
conservativeness property;

• Numerical evaluation on decentralized control problems
for flight formation and power grid frequency regulation.

The rest of the paper is organized as follows. We formulate
the problem in Section II. Main results for the stability analysis
are presented in Section III, where we also analyze the conser-
vatism of the certificate. Section IV presents numerical studies
on two nonlinear decentralized control tasks. Conclusions are
drawn in Section V.

Notations
Let A � B or A � B denote that A − B is positive
semidefinite or positive definite, respectively. Also, R and
R+ represent the sets of real and nonnegative real numbers,
respectively. The notation [n] shows the set {1, ..., n}. We use

1We use [n] = {1, ..., n} as the set notation.

x to denote a vector, and boldface x to denote a signal with
value x(t) at each time t. Also, we use x0:T to denote the
signal over the time interval [0, T ]. We use {xij}i∈[m],j∈[n] to
denote a collection of entries xij in a vector form, or simply
{xij} if the ranges of i and j are clear from the context. By
convention, we arrange the entries in {xij}i∈[m],j∈[n] such
that xij is at location k = (i − 1)n + j. Similarly, we use
{xij} to denote a collection of signals. The i-th entry of x
is written as xi or [x]i, and the i-th dimension of a signal is
xi or [x]i. For norms, we denote |x| =

√
x2

1 + · · ·+ x2
n

as the 2-norm of a vector x, and ‖x‖ =
√∫∞

0
|x(t)|2dt

as the 2-norm of a signal. When ‖ · ‖ is applied to an
operator, it denotes an induced norm from L to L, where
L is the vector space of signals with bounded 2-norm, i.e.,
‖x‖ =

√∫∞
0
|x(t)|2dt < ∞ for x ∈ L. In the case we

need to specify n as the spatial dimension of a signal, we will
use Ln. Also, 〈x,y〉 =

∫∞
0
x(t)>y(t)dt denotes the inner

product between two signals in L; therefore, ‖x‖ =
√
〈x,x〉.

The notation ‖x‖Ω =
√
〈x,Ωx〉 is used for an adjoint

operator Ω. Given a matrix M ∈ Rm×n, diag(M) denotes
a diagonal matrix whose diagonal elements are given by the
entries M11, . . . ,M1n,M21, . . . ,M2n, . . . ,Mm1, . . . ,Mmn.
We use ⊗ to denote the Kronecker product.

II. PROBLEM FORMULATION
Consider a continuous-time dynamical system:

ẋ(t) = ft(x(t), u(t)), (3)

with the state x(t) ∈ Rns and the control action u(t) ∈
Rna . In general, ft(·, ·) can be a time-varying and nonlinear
function. In this work, we focus on an important class of
systems described by:

ft(x(t), u(t)) = Ax(t) +Bu(t) + gt(x(t)), (4)

where ft(·, ·) comprises a linear time-invariant (LTI) compo-
nent modeled by a matrix A ∈ Rns×ns that is Hurwitz (i.e.,
every eigenvalue of A has strictly negative real part) and a
control matrix B ∈ Rns×na , as well as a slowly time-varying
component gt(·) that captures the nonlinearity and uncertainty
of the original system.2 The output y(t) = Cx(t) ∈ Rns is a
linear function of the states, where C ∈ Rns×ns may have a
sparsity pattern in the context of decentralized controls [22].
Nevertheless, since we can account for the sparsity pattern in
the design of the control policy, we henceforth assume that
y(t) = x(t) for simplicity. The control input based on RL is

u(t) = πt(y(t); θt) + e(t), (5)

where πt(y(t); θt) is usually a neural network parametrized
by θt (which can be time-varying during learning). The vector
e(t) ∈ Rna captures the input perturbation that is assumed to
have a bounded energy over time (‖e‖2 =

√∫
|e(t)|22dt ≤

2This requirement is not difficult to meet in practice, because one can
linearize any nonlinear systems around the equilibrium point to obtain a
linear component and a nonlinear part.
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∞). Let {πt|t ∈ [0, T ]} be the trajectory of policies deployed
in the system over the time interval [0, T ]. We propose
the following notion of dynamic stability adapted from the
classical definition of the L2 gain [20], [23].3

Definition 1 (Dynamic input-output stability). Given a dy-
namical system G, the L2 gain of the system G with the
input u(t) = πt(y(t); θt) + e(t) is defined as the worst-
case ratio between the total output energy and the total input
perturbation energy:

γ(G, {πt|t ∈ [0, T ]}) = sup
e∈L

‖y0:T ‖2
‖e0:T ‖2

, (6)

where L2 is the set of all square-summable signals and

‖y0:T ‖2 =
√∫ T

0
|y(t)|22dt is the total energy within the time

window [0, T ]. If limT→∞ γ(G, {πt|t ∈ [0, T ]}) is bounded
by a finite number Γ, then the closed-loop system is said to be
dynamically input-output stable (with finite gain Γ).

The stability-certified RL problem is thus to find an optimal
policy πθ that maximizes the expected reward η(πθ) defined in
(1) while ensuring that the system is dynamically input-output
stable, i.e., γ(G, {πt|t ∈ [0, T ]}) < Γ for a given finite gain
Γ. Our approach is to delineate a safety set of controllers P(ξ)
based on partial gradients, such that as long as πt ∈ P(ξ) for
all t ∈ [0, T ], we can guarantee that γ(G, {πt|t ∈ [0, T ]}) is
bounded by Γ. After identifying the safety set, one can impose
it via a constraint during RL, and then the problem can be
solved by any arbitrary RL algorithm (e.g., policy gradient [1],
[2], Q-learning [4], [24], actor-critic [6], [7]). Furthermore,
the certification can be regarded as an S-procedure (c.f., [25]),
and we analyze its non-conservatism by showing that this
condition is necessary for the robustness of a surrogate system
that is closely related to the original system.

III. MAIN RESULTS
A. QUADRATIC CONSTRAINTS ON
GRADIENT-BOUNDED FUNCTIONS
First, we introduce the time-domain definition of IQC [26]:

Definition 2 (IQC in the time-domain). Consider the signals
w ∈ L and y ∈ Lwithw = ∆(y), where ∆ is a bounded and
causal operator. Let Ψ be a stable LTI system and M = M>

be a symmetric matrix. Then, ∆ is said to satisfy the hard IQC
defined by (Ψ,M), denoted by ∆ ∈ IQC(Ψ,M), if:∫ T

0

z(t)>Mz(t)dt ≥ 0, ∀ T ≥ 0, (7)

where z = Ψ

[
y
w

]
is the filtered output given by Ψ. Further-

more, if
z(t)>Mz(t) ≥ 0, ∀t ≥ 0 (8)

3This stability metric is widely adopted in practice, and is closely related
to bounded-input bounded-output (BIBO) stability and absolute stability
(or asymptotic stability). For controllable and observable LTI systems, the
equivalence can be established. Since we assume that y(t) = x(t), the
input-output stability is equivalent to internal stability.

then ∆ is said to satisfy the point-wise IQC.

Recall that a function h(x) is Lipschitz continuous with
constant ξ > 0 if and only if it satisfies the following quadratic
constraint for all xα, xβ ∈ Rn:[

xα − xβ
h(xα)− h(xβ)

]> [
ξ2I 0
0 −I

] [
xα − xβ

h(xα)− h(xβ)

]
≥ 0,

(9)
which corresponds to the point-wise IQC (8) with Ψ = I

and M =

[
ξ2I 0
0 −I

]
. It can be observed that a Lipschitz

continuous function with constant ξ is a member of P(ξ),
where ξij = −ξ

ij
= ξ. Nevertheless, this constraint can

be sometimes too conservative. For example, consider the
function h : R2 → R2 defined as

h(x) =
[
tanh(0.5x1)− ax1, sin(x2)

]>
, (10)

where |a| ≤ 0.1 is a deterministic but unknown parameter
with a bounded magnitude. Clearly, the function has the Lips-
chitz constant 1; however, the above characterization ignores
the non-homogeneity of h1(x) (i.e., the first output of h(x))
and h2(x), as well as the sparsity of the dependence on x.
Indeed, h1(x) only depends on x1 with its slope restricted to
[−0.1, 0.6] for all possible |a| ≤ 0.1, and h2(x) only depends
on x2 with its slope restricted to [−1, 1]. In the context of
control synthesis, the non-homogeneity of outputs often arises
from physical constraints, and the sparsity of inputs can be due
to distributed local information. To explicitly address these
requirements, we propose the following quadratic constraint.

Lemma 1 (Function with bounded partial gradients). Con-
sider an arbitrary vector-valued function h : Rn → Rm
that is differentiable with bounded partial derivatives (i.e.,
ξ
ij
≤ ∂jhi(x) ≤ ξij for all x ∈ Rn). Define the vectors

c ∈ Rnm and c̄ ∈ Rnm with the entries cij = 1
2

(
ξ
ij

+ ξij

)
and cij = ξij − cij for i ∈ [m] and j ∈ [n]. Let W =[
Im ⊗ 11×n

]
. Then, for all λ ∈ Rn×m+ and xα, xβ ∈ Rn,

there exists a vector-valued function q : R2n → Rnm (with
entries qij(·, ·) for i ∈ [m] and j ∈ [n]) with the property that

h(xα)− h(xβ) = Wq(xα, xβ), (11)

such that the following quadratic constraint is satisfied:[
xα − xβ
q(xα, xβ)

]>
M(λ; ξ)

[
xα − xβ
q(xα, xβ)

]
≥ 0 (12)

where M(λ; ξ) is given bydiag

({∑m
i=1 λij(c

2
ij − c2ij)

}n
j=1

)
U(λ, c)>

U(λ, c) diag (−λ)

 , (13)

and U(λ, c) ∈ Rn×mn is given by[
diag

(
{−λ1jc1j}nj=1

)
· · · diag

(
{−λmjcmj}nj=1

)]
.
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Proof. See Appendix V-A.

The above bound is a direct consequence of standard tools
in real analysis [27]. To understand this result, it can be
observed that (12) is equivalent to:

m∑
i=1

n∑
j=1

λij

(
(c2ij − c2ij)([xα]j − [xβ ]j)

2 (14)

+ 2cijqij([xα]j − [xβ ]j)− q2
ij

)
≥ 0

for λij ≥ 0 and hi(xα) − hi(xβ) =
∑n
j=1 qij , where we

omit the dependence of qij on xα and xβ for notational
simplicity. Since (14) holds for all λij ≥ 0, it is equivalent to
the condition that (c2ij−c2ij)([xα]j−[xβ ]j)

2+2cijqij([xα]j−
[xβ ]j) − q2

ij ≥ 0 for all i ∈ [m] and j ∈ [n], which is a
direct result of the bounds imposed on the partial derivatives
of hi. If we apply it to the example function (10), we can
specify that ξ

11
= −0.1, ξ11 = 0.6, ξ

22
= −1, ξ22 = 1, and

all the other bounds (ξ
12
, ξ12, ξ21

, ξ21) are zero. This clearly
yields a more informative constraint than merely relying on
the Lipschitz constraint (9). In fact, for a differentiable l-
Lipschitz function, we have ξij = −ξ

ij
= l, and by limiting

the choice of λij =

{
λ if i = 1

0 if i 6= 1
, (14) is reduced to (9).

However, as illustrated in this example and the experiments in
Section IV, since the condition in Lemma 1 can incorporate
richer information about the problem structure, it often gives
rise to less restrictive stability bounds compared to (9).

Remark 1: The constraint introduced above can be consid-
ered as a point-wise IQC; however, it is unconventional in
the sense that it involves an intermediate unknown function
q(·, ·) that is related to the output h(·). For stability analysis,
let xβ = x∗ ∈ Rn be the equilibrium point, and without loss
of generality, assume that x∗ = 0 and h(x∗) = 0. Then, one
can define the quadratic functions

φij(x, q) = (c2ij − c2ij)x2
j + 2cijqijxj − q2

ij ,

and the condition (12) can be written as∑
ij

λijφij(x, q) ≥ 0, ∀λij ≥ 0, (15)

which can be used to characterize the set of (x, q) associated
with the function h(·), as we will discuss in Section III-D.

To simplify the mathematical treatment, we have focused on
differentiable functions in Lemma 1; nevertheless, the analysis
can be extended to non-differentiable but continuous functions
(e.g., the ReLU function max{0, x}) using the notion of
generalized gradient [28, Chap. 2]. In brief, by re-assigning
the bounds on partial derivatives to uniform bounds on the set
of generalized partial derivatives, the constraint (12) can be
directly applied.

In relation to the existing IQCs, this constraint has wider
applications for the characterization of gradient-bounded
functions. The Zames-Falb IQC introduced in [29] has been
widely used for single-input single-output (SISO) functions

h : R → R, but it requires the function to be monotone
with the slope restricted to [α, β] with α ≥ 0, i.e., 0 ≤ α ≤
h(xα)−h(xβ)

xα−xβ ≤ β whenever xα 6= xβ . The multi-input multi-
output (MIMO) extension holds true only if the nonlinear
function h : Rn → Rn is restricted to be the gradient of
a convex real-valued function [30], [31]. As for the sector
IQC, the scalar version can not be used (because it requires
hi(x) = 0 whenever there exists j ∈ [n] such that xj = 0,
which is extremely restrictive), and the vector version is in
fact (9). In contrast, the quadratic constraint in Lemma 1 can
be applied to non-monotone, vector-valued gradient-bounded
functions.

B. STABILITY CERTIFICATION
In this part, we assume that the nonlinear component gt(x) is
zero and leave the generalization to the next subsection. It is
desirable to study the stability certification of RL for an LTI
system G, whose state-space representation is given by:

ẋG = AxG +Bu

w = πt(xG)

u = e+ w

(16)

where xG ∈ Rns is the state (the dependence on t is omitted
for simplicity), and the policy πt is changing due to RL. As
before, A is Hurwitz. The goal is to certify the safety set P(ξ)
such that as long as πt remains in P(ξ), the RL-controlled
system is stable with some constant γ and cγ :∫ T

0

∣∣y(t)
∣∣2 dt ≤ γ2

∫ T

0

∣∣e(t)∣∣2 dt+ cγ . (17)

To this end, define the SDP(P, λ, γ, ξ) as follows:

SDP(P, λ, γ, ξ) :

[
O(P, λ, ξ) S(P )
S(P )> −γI

]
≺ 0, (18)

where P = P> � 0 and

S(P ) =

[
PB
0

]
,

O(P, λ, ξ) =

[
A>P + PA PBW
W>B>P 0

]
+

1

γ

[
I 0
0 0

]
+M(λ; ξ),

where M(λ; ξ) and W =
[
Im ⊗ 11×n

]
are defined in

Lemma 1. We will next show that the stability can be certified
using the aforementioned linear matrix inequalities (LMIs).

Theorem 1. Let A be Hurwitz and πt ∈ Rns → Rna be a
time-varying causal controller. Assume that πt has bounded
partial derivatives (i.e., ξ

ij
≤ ∂j [πt]i(x) ≤ ξij , for all t ∈

[0, T ], x ∈ Rns , i ∈ [na] and j ∈ [ns]. If there exist P � 0
and a scalar γ > 0 such that SDP(P, λ, γ, ξ) is feasible, then
the RL-controlled system (16) is stable with the gain γ.

Proof. To proceed, we choose a q according to Lemma 1 and

multiply
[
x>G q> e>

]>
to the left and its transpose to the

right of the augmented matrix in (18), and use the constraints
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w = Wq and y = xG. Then, SDP(P, λ, γ, ξ) can be written
as a dissipation inequality:

V̇ (xG) +

[
xG
q

]>
M(λ; ξ)

[
xG
q

]
< γe>e− 1

γ
y>y,

where V (xG) = x>GPxG is known as the storage function,
and V̇ (·) is its derivative with respect to time t. Denote the
initial state of the system by x0. Because the second term
is guaranteed to be non-negative at all times t by Lemma 1,
if SDP(P, λ, γ, ξ) is feasible with a solution (P, λ, γ, ξ), we
have:

V̇ (xG) +
1

γ
y>y − γe>e < 0, (19)

which is satisfied at all times t. The above inequality can be
integrated from t = 0 to t = T , and then it follows from
P � 0 that:∫ T

0

|y(t)|2dt− x>0 Px0 ≤ γ2

∫ T

0

|e(t)|2dt, (20)

which completes the proof.

We remark that SDP(P, λ, γ, ξ) is quasiconvex, in the sense
that it reduces to a standard LMI with a fixed γ. To solve it
numerically, we start with a small γ and gradually increase it
until a solution (P, λ) is found. This is repeated for multiple
sets of ξ. Each iteration (i.e., LMI for a given set of γ and
ξ) can be solved efficiently by interior-point methods. As an
alternative to searching on γ for a given ξ, more sophisticated
methods for solving the generalized eigenvalue optimization
problem can be employed [32].

C. EXTENSION TO NONLINEAR SYSTEMS WITH
UNCERTAINTY
In the context of RL, we often need to deal with systems with
nonlinear dynamics and/or unmodeled dynamics. We model
the nonlinear, uncertain and potentially time-varying part of
the system with gt(x(t)) in (3) and regard it as an uncertain
block with IQC constraints. Specifically, consider the LTI
component G: {

ẋG = AxG +Bu+ v

y = xG
(21)

where A is assumed to be Hurwitz. The nonlinear part is
moved to the feedback:

u = e+ w

w = πt(y)

v = gt(y)

(22)

where e ∈ Rna and w ∈ Rna are defined as before, and
gt : Rns → Rns is the nonlinear and time-varying component.
We assume that gt : Rns → Rns satisfies the IQC defined by
(Ψ,Mg) as in Definition 2 (see [18], [33] for some examples).
The system Ψ has the state-space representation:{

ψ̇ = Aψψ +Bvψv +Byψy

z = Cψψ +Dv
ψv +Dy

ψy
, (23)

where ψ ∈ Rns is the internal state and z ∈ Rnz is the filtered

output. By denoting x =
[
x>G ψ>

]>
∈ R2ns as the new

state, one can combine (21) and (23) via reducing y and letting
w = Wq:

ẋ =

[
A 0

Byψ Aψ

]
︸ ︷︷ ︸

A

x+

[
B

0

]
︸︷︷︸
Be

e+

[
BW

0

]
︸ ︷︷ ︸
Bq

q +

[
I

Bvψ

]
︸ ︷︷ ︸
Bv

v

z =
[
Dy
ψ Cψ

]
︸ ︷︷ ︸

C

x+Dv
ψv

,

(24)
where A, Be, Bq, Bv, C are matrices of proper dimensions
defined above. We define SDP(P, λ, γ, ξ) as:

SDP(P, λ, γ, ξ) :

O(P, λ, ξ) Ov(P ) S(P )
Ov(P )> Dv>

ψ MqD
v
ψ 0

S(P )> 0 −γI

 ≺ 0,

(25)
where P � 0, and

O(P, λ, ξ) =

[
A>P + PA PBq

B>q P 0

]
+

[
C>MgC 0

0 0

]

+M(λ; ξ) +
1

γ

[
I 0
0 0

]
,

Ov(P ) =

[
C>MqD

v
ψ + PBv
0

]
, S(P ) =

[
PBe

0

]
,

where M(λ; ξ) is defined in (13). The next theorem provides
a stability certificate for the nonlinear time-varying system
(3).

Theorem 2. Let A in (21) be Hurwitz, and πt ∈ Rns → Rna
be a time-varying causal controller. Assume that:
(i) πt has bounded partial derivatives (i.e., ξ

ij
≤

∂j [πt]i(x) ≤ ξij for all t ∈ [0, T ], x ∈ Rns , i ∈ [na]
and j ∈ [ns]);

(ii) gt ∈ IQC(Ψ,Mg) for all t ∈ [0, T ], where Ψ is a stable
LTI system.

If there exist P � 0 and a scalar γ > 0 such that
SDP(P, λ, γ, ξ) given in (25) is feasible, then the RL-
controlled system (3) is stable with the gain γ.

Proof. See Appendix V-B.

Theorem 2 requires A to be stable, but this is not a
conservative assumption. Indeed, any arbitrary system can be
decomposed (in infinitely many ways) into a stable component
Ax and a second part gt(x). In other words, gt(x) gives
the flexibility to perform this decomposition. Alternatively,
one can find a linear nominal model for the system (using
linearization of the known part of the dynamics), stabilize it
via an internal controller to arrive at a stable matrix A, and
then design a main RL controller to deal with the remaining
dynamics gt(x).
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The present study models the unknown system as a known
nominal model plus an unknown (un-modelled) dynamics
with weak assumptions on the prior knowledge about the
system. This is standard in control theory and indeed it is
theoretically impossible to design a high-performance stabi-
lizing controller without prior knowledge about the system. If
such knowledge is not available, the only option is to perform
system identification to gain such knowledge, which requires
extensive data collection and sufficient system excitation.
Note that having the nonlinearity satisfying IQC is different
from having the nonlinearity being known. For example, if
we make an assumption that an unknown parameter of the
system has norm less than 1, then there are still infinitely many
possibilities for that unknown parameter. IQC serves the same
purpose. In the two case studies provided in the paper (see Sec.
IV), it is NP-hard to design an optimal distributed controller
even for a known model of the system. In those examples,
it is easy to define the nominal part and the nonlinear part,
and then check the IQC. This way we can effectively handle
the NP-hardness of the problem. In other words, one can
ignore the nonlinearity to break down the NP-hardness of
the controller design and then use IQC to make up for the
discarded nonlinear part through an RL controller.

The stability analysis fundamentally depends on the uncer-
tainty of the system—as the system becomes more uncertain
(e.g., due to time variation or finite sample estimation), the
stability guarantee becomes more conservative. The proposed
method is a general framework that can address a variety of un-
certainties, both in the system model and in the reinforcement
learning policy. As we impose more and tighter constraints,
the results become less conservative. Therefore, as opposed
to being restrictive assumptions, the IQC constraints imposed
on the nonlinear, uncertain, and potentially time-varying
components of the system incorporate useful information to
make the stability analysis less conservative.

D. ANALYSIS OF CONSERVATISM OF THE STABILITY
CERTIFICATE

We focus on system (16) where an LTI system is intercon-
nected with a fixed RL policy. Without loss of generality, we
also assume that ξij = −ξ

ij
for all i ∈ [na] and j ∈ [ns] to

streamline the presentation. To certify stability of the original
system, as will be shown in the next proposition, it suffices to
examine the stability of the following system:


xG =

[
G11 G12

] [q
e

]
q = π̃(xG)

, (26)

where G =

[
A BW B
I 0 0

]
=
[
G11 G12

]
, and π̃ ∈

P̃(ξ) is a functional in the uncertainty set

P̃(ξ) =

{
π̃ | ‖π̃ij(x)‖ ≤ ξij‖xj‖,

∀x ∈ Lns , i ∈ [na], j ∈ [ns]

}
.

(27)

Recall that the notation x implies a signal, and it represents
x(t) for t from 0 to infinity. This means that although the
argument of π(·) is a vector, the argument of π̃(·) is a signal.
Therefore, π̃(·) is a functional extension of the function π.
By convention, we interpret the output of a function applied
to a signal, e.g. π(x), as point-wise operation at each time
instance, i.e. {π(x(t))|t ∈ [0,∞)}.
Proposition 1. If the system (26) is stable for all π̃ ∈ P̃(ξ),
then the system (16) is stable for all π ∈ P(ξ).

Proof. See Appendix V-C.

Now, let S(ξ) =
{

(x, q) | φ̃ij(x, q) ≥ 0,∀i ∈ [na], j ∈
[ns]
}

, where

φ̃ij(x, q) = ξ
2

ij‖xj‖2 − ‖qij‖2. (28)

We now show that the pair (x, q) belongs to S(ξ) if and only
if there exists a sector-bounded function π̃ ∈ P̃ (ξ) such that
it satisfies q = π̃(x).

Lemma 2. Suppose that x ∈ Lns and q ∈ Lnans . Then,
the pair (x, q) belongs to S(ξ) if and only if there exists
an operator π̃ : Lns → Lnans such that q = π̃(x) and π̃
satisfies the following conditions: (i) π̃ij(x) = 0 if xj = 0,
and (ii)

∥∥π̃ij(x)
∥∥ ≤ ξij‖xj‖ for all i ∈ [na] and j ∈ [ns].

Proof. See the Appendix V-D.

The previous result indicates that the input and output pair
of π̃ can be described by S(ξ). We next show that this set
should be separated from the signal space of the dynamical
system in order to ensure robust stability.

Lemma 3. If (G, π̃) is robustly stable, then there cannot exist
a nonzero q ∈ L such that x = Gq and (x, q) ∈ S(ξ).

Proof. We prove this lemma by contraposition. If there exists
a nonzero q ∈ L such that (x, q) ∈ S(ξ), then it follows
from Lemma 2 that there exists a linear operator π̃ such that
q = π̃(x) = π̃(Gq). This implies that the operator (I − π̃G)
is singular, and therefore, (I −Gπ̃) is singular, implying that
the interconnected system is not robustly stable.

Consider the set generated by the LTI system:

Λ =
{
{φ̃ij(x, q)} ∈ Rnans |q ∈ Lnans , ‖q‖ = 1,x = Gq

}
,

(29)
and the positive orthant

Π =
{
{rij} ∈ Rnans |rij ≥ 0, ∀i ∈ [na], j ∈ [ns]

}
.
(30)
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Lemma 3 implies that the two sets Λ and Π are separated if
(G, π̃) is robustly stable.

To prove the necessity of the stability certificate, we first
aim to show in Lemma 4 that there exists a strict separating
hyperplane when the system is robustly stable. We then draw
the connection in Proposition 2 between the existence of the
strict separating hyperplane and the feasibility of the SDP
condition (18). These two results together imply that the
stability certificate derived from (18) is necessary for any
robustly stable system controlled by RL (Theorem 3).

Define Ωij,x = diag
({

ξ
2

ij

})
and Ωij,q as a matrix with

its (k, l)-th element equals to

[Ωij,q]kl =

{
1 if k = ins + j

0 otherwise
.

Thus, we can write φ̃ij(x = Gq, q) as an inner product:

φ̃(x = Gq, q) = ‖Gq‖2Ωij,x − ‖q‖2Ωij,q =
〈
q, Tijq

〉
,

where Tij = G∗Ωij,xG − Ωij,q. Now, we show that strict
separation occurs when the system is robustly stable.

Lemma 4. Suppose that I − Gπ̃ is nonsingular. Then, the
sets Π and Λ are strictly separated, namely D(Π,Λ) =
infr∈Π,y∈Λ |r − y| > 0.

Proof. Assume that D(Π,Ψ) = infr∈Π,y∈Ψ |r − y| = 0.
Consider a sequence εk → 0 as k tends to∞. For each εk, we
construct the signals q(k) with a bounded support on the time
interval [tk, tk+1], such that ‖q(k)‖ = 1 and that there exists
a signal x(k) ∈ Lns satisfying:

φ̃ij(x
(k), q(k)) ≥ 0, ∀i ∈ [na], j ∈ [ns] (31a)

ε2k > ‖(I − Γ[tk,tk+1])Gq
(k)‖ (31b)

εk = ‖x(k) − Γ[tk,tk+1]Gq
(k)‖Ωij,x , (31c)

where Γ[tk,tk+1] projects the signal onto the support of
[tk, tk+1]. We also construct a functional π̃(k) ∈ P̃ (ξ) such
that q(k) = π̃(k)x(k) and ‖(I− π̃(k)Γ[tk,tk+1]G)q(k)‖ ≤ Cεk
for some constant C > 0 that depends on the sector bounds ξ
(the existence of such q(k) and π̃(k) is shown in Lemma 6 in
Appendix V-F). Now, define

π̃ =

∞∑
k=1

π̃(k)Γ[tk,tk+1].

Then, ‖π̃‖ ≤ Cπ, where Cπ > 0 is a finite number that
depends on ξ. We have

π̃Gq(k) = π̃(k)Γ[tk,tk+1]Gq
(k) + π̃(I − Γ[tk,tk+1])Gq

(k),

and

‖(I − π̃G)q(k)‖ ≤ ‖(I − π̃(k)Γ[tk,tk+1]G)q(k)‖
+ Cπ‖(I − Γ[tk,tk+1])Gq

(k)‖
≤ Cεk + Cπε

2
k

Because εk → 0, the right-hand side approaches 0, and so
does the left-hand side. Therefore, since ‖q(k)‖ = 1, the

mapping I − π̃G cannot be invertible, which contradicts the
robust stability assumption. This implies that Π and Ψ are
strictly separable.

Next, we draw the connection to the SDP problem (18).
Observe that

φ̃ij(x, q) =

〈[
x
q

]
,M ij

π

[
x
q

]〉
, (32)

where

[M ij
π ]kl =


ξ

2

ij (k, l) = (j, j)

0 (k, l) = (i, ins+j) or (ins+j, i)

−1 (k, l) = (ins+j, ins+j)

,

and M(λ; ξ) =
∑
i∈[na],j∈[ns]

λijM
ij
π as defined in

Lemma 1.

Proposition 2. The SDP condition (18) is feasible if and only
if there exist multipliers λij ≥ 0 and ε > 0 such that∑

i∈[na],j∈[ns]

λij φ̃ij(x, q) ≤ −ε‖q‖2 (33)

for all q ∈ Lnans and x = Gq.

Proof. By (32), the condition (33) is equivalent to[
G
I

]∗
M(λ; ξ)

[
G
I

]
≺ 0. (34)

By the KYP lemma, this is equivalent to the existence of
P � 0 such that:[

A>P + PA PBW
W>B>P 0

]
+M(λ; ξ) ≺ 0. (35)

By Schur complement, P satisfies the KYP condition if and
only if it satisfies (18), which proves the statement.

Finally, we are able to show the necessity of the stability
certificate below.

Theorem 3. Let π̃ : Lns → Lnans be a bounded causal
controller such that π̃ ∈ P̃(ξ). Then, the input-output stability
of the feedback interconnection of system (26) implies that
there exist P � 0, γ > 0 and λ ≥ 0 such that SDP(P, λ, γ, ξ)
in (18) is feasible.

Proof. Since the system is input-output stable, the sets Π and
Ψ are strictly separable due to Lemma 4. Since both Π and
Ψ are convex (see Lemma 5 in Appendix V-E), there exist a
strictly separating hyperplane parametrized by λ ∈ Rmn and
scalars α, β, such that

〈λ, φ〉 ≤ α < β ≤ 〈λ, ν〉
for all φ ∈ Ψ and ν ∈ Π. Since 〈λ, ν〉 is bounded from below,
we must have λ ≥ 0, and without loss of generality, we can
set β = 0 and α < 0. This condition is equivalent to (33),
and by Proposition 2, this implies that the SDP condition is
feasible.
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E. REINFORCEMENT LEARNING WITH STABILITY
REGULARIZATION

The key takeaway message from the previous analysis
is that in order to ensure stability during the learning and
control process, it is critical to regulate the magnitudes of
the partial gradients. In this section, we use trust region
policy optimization (TRPO) [3] as an example to illustrate
our approach to addressing this requirement. Note that our
methods can be applied to other types of RL algorithms as
well.
1) Stability penalty
In this method, we consider adding a penalty term to the RL
objective function:

Lpen(θ; ξ) =
∑T

t=1
1

(
∂j [πθ]i(xt) ∈ [ξ

ij
, ξij ]

)
, (36)

where 1(·) is the indicator function that aims to keep the
partial gradients along the trajectories inside the bounds by
softly penalizing it. This term is closely related to the term
used in the literature∑T

t=1

∣∣∂j [πθ]i(xt)∣∣2 . (37)

Both terms encourage the behavior that small changes in the
input should not change the output drastically, and they are
different from typical regularization terms designed for the
weights θ (e.g., weight decay in neural network). Interestingly,
the penalty (37) was termed “double backpropagation” in
[34], and recently rediscovered in [35], [36] to improve the
generalization performance of image classification tasks. The
present study provides theoretical and empirical justification
of this penalty along with (36) to improve stability of the
RL-controlled dynamical system.

For policy gradient with TRPO, by manipulating the
expected return η(π) using the identity proposed in [37], the
following “surrogate objective” ηpol(θ) can be designed:

ηpol(θ) = E
[
πθ(u|x)

πold(u|x)
Λπold(x, u)

]
, (38)

where the expectation is taken over the old policy πold = πθold ,
the ratio inside the expectation is also known as the importance
weight, and Λπold(x, u) is the advantage function given by:

Λπold(x, u) = E
[
r(x, u) + ρV πold(x′)− V πold(x)

]
, (39)

where the expectation is with respect to the dynamics x′ ∼
T (x, u) (in our case, the dynamics is a nonlinear dynamical
system, and x′ is the next state given the current state x and
input u), and it measures the improvement of taking action u
at state x over the old policy in terms of the value function
V πold . Combined with (36), the modified objective is given by:

ηnew(θ) = ηpol(θ)− ωLpen(θ), (40)

where ω ≥ 0 is the regularization coefficient whose value is
selected such that the scale of the corresponding term is about
[0.01, 0.05] of the surrogate loss value ηpol(θ). In practice, the
modified objective ηnew(θ) can be estimated using trajectories
sampled from πold.

2) Hard thresholding
After each gradient step, we obtain an upper bound on the
Lipschitz constant l(πθ) of the updated neural network πθ
(e.g., using the simple approach introduced in [38]). If the
upper bound is greater than the certified bound l◦, then we
execute a hard thresholding (HT) step that rescales the weight
matrices at each layer by (l◦/l(πθ))

1/nL if l(πθ) > l◦, where
nL is the number of layers of the neural network. The goal is
to ensure that the Lipschitz constant of the RL policy remains
bounded by l◦.

Remark 2: We note that the proposed approaches are
applicable to existing RL algorithms (e.g., policy gradient,
Q-learning, and actor-critic), since we either modify the
objective function (1) or the resulting policy directly. For
neural networks, it remains an open problem how to calculate
the Lipschitz constant or partial gradients exactly [39]. In
some cases, the bounds given by the simple approach proposed
in [38] can be conservative. Alternatively, one can estimate
the bounds on partial gradients using existing trajectories,
which is reasonable as long as the trajectory does not deviate
significantly from the history.

IV. CASE STUDIES
In this section, we empirically study the stability-certified
RL in two important problems: flight formation [40] and
power grid frequency regulation [41]. Designing an optimal
controller for these systems is challenging, because they
consist of interconnected subsystems that have limited infor-
mation sharing, and also their underlying models are typically
nonlinear and even time-varying and uncertain. Indeed, for the
case of distributed control, which aims at designing a set of
local controllers whose interactions are specified by physical
and informational structures, it has been long known that it
amounts to an NP-hard optimization problem in general [22].
End-to-end reinforcement learning comes in handy, because
it does not require model information by simply interacting
with the environment while collecting rewards.

In a multi-agent setting, each agent explores and learns
its own policy independently without knowing about other
agents’ policies [42]. For the simplicity of implementation,
we consider the synchronous and cooperative scenario, where
agents conduct an action at each time step and observe the
reward for the whole system. Their goal is to collectively
maximize the rewards (or minimize the costs) shared equally
among them. The present analysis aims at offering stability
certificates when applying RL to dynamical systems, which is
orthogonal to the line of research that aims at improving the
performance of the existing RL algorithms. For illustration,
we adopt an approach based on policy gradient that combines
TRPO [3] with natural gradient [2] and the two regularization
techniques proposed in Section III-D. For both the multi-agent
formation and power grid frequency regulation, we employ
the method proposed in [41] to design the nominal controller,
which is distributed and stabilizing for the nominal LTI system
without uncertainty and nonlinearity, since those two parts
together with reward maximization are handled through RL.
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A. MULTI-AGENT FLIGHT FORMATION
Consider the multi-agent flight formation problem [40], where
each agent can only observe the relative distance from its
neighbors, as illustrated in Fig. 2. The goal is to design a local
controller for each aircraft such that a predefined pattern is
formed as efficiently as possible.

The physical model4 for each aircraft is given by:

z̈i(t) = ui(t)

θ̈i(t) =
1

δ

(
sin θi(t) + ui(t)

)
,

where zi, θi and ui denote the horizontal position, angle and
control input of aircraft i, respectively, and δ > 0 charac-
terizes the physical coupling of rolling moment and lateral
acceleration. We consider 10 aircrafts in the experiments.

One particular strength of RL is that the reward function
can be highly nonconvex, nonlinear, and arbitrarily designed;
however, since quadratic costs are widely used in the control
literature, consider the case r(x(t), u(t)) = x(t)>Qx(t) +
u(t)>Ru(t). For the following experiments, assume that Q =
1000× I15 and R = I4. In addition, we designed a nominal
static distributed controller Kn to make the largest eigenvalue
of A+BKn negative [41].

The task for multi-agent RL is to learn the controller ui(t),
which only takes inputs of the relative distances of agent
i to its neighbors. For example, agent 1 can only observe
z1(t)− z2(t)− d (i.e., the 1st entry of x(t)); similarly, agent
2 can only observe z1(t)− z2(t)− d and z2(t)− z3(t)− d
(i.e., the 1st and 5th entries of x(t)).

1) Stability certificate
To obtain the stability certificate, we apply the method in
Section III-C. The nonzero entries of the nonlinear component
g(x(t)) are in the form of sin(θ) − θ, which can be treated
as an uncertainty block with the slope restricted to [−1, 0]
for θ ∈ [−π2 , π2 ]; therefore, the Zames-Falb IQCs can be
employed to construct (23) [29], [43]. As for the RL agents ui,
their gradient bounds can be certified according to Theorem
2. Specifically, we assume that each agent ui is l-Lipschitz
continuous, and solve (25) for a given set of γ and l. The
certified gradient bounds (Lipschitz constants) are plotted

4The cosine term in the original formulation is omitted for simplicity,
though it can be incorporated in a more comprehensive treatment.
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FIGURE 2: Illustration of the multi-agent flight formation
problem.
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FIGURE 3: Stability-certified Lipschitz constants obtained by
the standard L2 bound (L2) in (9) and the method proposed in
Lemma 1, which considers input sparsity (inp. sp.) and output
non-homogeneity (out. nh.).
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FIGURE 4: Learning performance of different control struc-
tures (1-layer neural network, 5-layer neural network, and
linear controller). The outputs of the last layer of neural
networks are used as the system inputs. By the inclusion
of the stability regularization (SL), the exploration becomes
more effective.

in Fig. 3 using different constraints. The L2 constraint (9)
can only certify stability for Lipschitz constants up to 0.8.
By setting the bounds ξij and ξ

ij
to 0 for agent i that does

not access input j due to input sparsity, we can increase the
certified value to 1.2.

To further increase the set of certifiable stable controllers,
we monitor the partial gradient information for each agent
and encode them as non-homogeneous gradient bounds. For
instance, if ∂jπi(x) has been consistently positive for latest
iterations, we will set ξij = l and ξ

ij
= −εl, where ε > 0 is

a small margin, e.g. 0.1, to allow explorations. As a result, we
can significantly enlarge the certified Lipschitz bound to up to
2.5, as shown in Fig. 3.

2) RL performance
The trajectories of rewards averaged over 20 independent
experiments are shown in Fig. 4. In this example, agents with
a one hidden layer neural network (each with 5 hidden units)
can learn most efficiently with stability regularization, which
significantly outperforms the linear controller.

The learned 5-layer neural network policy is employed in
an actual control task, as shown in Fig. 5. Compared to the
nominal controller (i.e., no RL control), the flights can be
maneuvered more efficiently. In terms of the actual cost, the
RL agents achieve the cost 41.0, which is about 30% lower
than that of the nominal controller (58.3). This result can be
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FIGURE 5: State and action trajectories in a typical contral task, where the nominal controller (Nom) and the RL agents achieve
costs of 58.3 and 41.0, respectively. In the legend, we use “A1-A2” to denote the relative distance between agents A1 and A2.

examined both in the actual state-action trajectories in Fig. 5
or the control behaviors in Fig. 6. The results indicate that
RL is able to improve a given controller when the underlying
system is nonlinear and unknown.
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FIGURE 6: Demonstration of control outputs for the nominal
action and RL agents.

B. POWER SYSTEM FREQUENCY REGULATION
In this case study, we focus on the problem of distributed
control for power system frequency regulation [41]. The IEEE
39-Bus New England Power System under analysis is shown
in Fig. 7. In a distributed control setting, each generator can
only share its rotor angle and frequency information with
a pre-specified set of counterparts that are geographically
distributed. The main goal is to optimally adjust the mechan-
ical power input to each generator such that the phase and
frequency at each bus can be restored to their nominal values
after a possible perturbation.

Let the rotor angles and the frequency states be denoted
as θ =

[
θ1 · · · θn

]>
and ω =

[
ω1 · · · ωn

]>
, and the

generator mechanical power injections be denoted as pm =[
pm1

· · · pmn
]>

. Then, the state-space representation of
the nonlinear system is given by:[
θ̇
ω̇

]
=

[
0 I

−M−1L −M−1D

]
︸ ︷︷ ︸

A

[
θ
ω

]
︸︷︷︸
x

+

[
0

M−1

]
︸ ︷︷ ︸

B

pm+

[
0
g(θ)

]
︸ ︷︷ ︸
g(x)

where g(θ) =
[
g1(θ) · · · gn(θ)

]>
with gi(θ) =∑n

j=1
bij
mj

(
(θi − θj)− sin(θi − θj)

)
, andM = diag

(
{mi}ni=1

)
,

D = diag
(
{di}ni=1

)
, and L is a Laplacian matrix whose

entries are specified in [41, Sec. IV-B]. For linearization
(also known as DC approximation), the nonlinear part g(x) is
assumed to be zero when the phase differences are small [41],
[44]. On the contrary, we deal with this term in the stability
certification to demonstrate its capability of producing non-
conservative results even for nonlinear systems. Similar to the
flight formation case, we assume that there exists a distributed
nominal controller that stabilizes the system. To conduct multi-
agent RL, each controller pmi is a neural network learned
online.

1) Stability certificate
The nonlinearities in gi(θ) are in the form of ∆θij − sin ∆θij ,
where ∆θij = θi − θj represents the phase difference,
which has its slope restricted to [0, 1 − cos(θ)] for every
∆θij ∈ [−θ, θ] (here, assume θ = π

3 to include both normal
and abnormal operational conditions); thus, we can apply the
Zames-Falb IQC. By simply applying the L2 constraint in (9),
we can only certify stability for Lipschitz constants up to 0.4,
as shown in Fig. 8. With input sparsity, we can certify l up to
0.6. With output non-homogeneity, which is visualized in Fig.
9, we can further extend the certificate up to 1.1.
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FIGURE 7: Illustration of the frequency regulation problem for the New England power system. The communication among
generators follows a star topology.
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FIGURE 8: Certified Lipschitz constants for power system
frequency regulation.

2) RL performance
First, we visualize the behavior of the learned neural network
controller in a typical control case (Fig. 10). The nominal
controller is designed by the method in [41] for the LTI
nominal system and does not maximize the reward. As can
be seen, the RL policies can regulate the frequencies more
efficiently than the nominal controller (i.e. no RL), with a
significantly lowered cost (50.8 vs. 23.9). More importantly,
we compare the cases of RL with and without regulating
the Lipschitz constants in Fig. 11. Without regulating the
gradients, the RL is able to reach a performance slightly higher
than its stability-certified counterpart. However, after about
iteration 500, the performance starts to deteriorate (due to a
possibly large gradient variance and high sensitivity to step
size) until it completely loses the previous gains and starts to
behave erratically. This intolerable behavior is due to the large
Lipschitz gains that grow unboundedly, as shown in Fig. 12.
In comparison, RL with regulated gradient bounds is able to
make a substantial improvement and also preserve stability of
the interconnected system at the same time.

C. DISCUSSIONS
While the case studies focus on the application of the
framework to systems with nonlinearities, the method can

be readily deployed to handle uncertainties (which may arise
due to finite sample estimation in system identification),
since the unmodeled parts can be principally characterized
using IQC constraints [18]. In practice, to certify the stability
of any system with the feedback control of reinforcement
learning agents, one needs to summarize the information
into the linear parts of the model and impose as many valid
constraints as possible on the unmodeled parts to reduce the
conservativeness.

One limitation of the present study is the requirement
of the system nominal system matrix A to be Hurwitz.
Even though it is not difficult for many applications to
design a controller that is stabilizing as showcased in the
experiments, this requirement may exclude some possibilities
for reinforcement learning agents to control highly unstable
systems. In particular, if Kn is required to be distributed,
finding a stabilizing Kn even for a known LTI system is
NP-hard in the worst case. The second limitation is that the
analysis is restricted to global asymptotic stability – it is
interesting to extend the analysis to local stability.

V. CONCLUSIONS
In this paper, we focused on the challenging task of ensuring
the stability of RL in real-world dynamical systems. The
present study makes the following contributions:
• Development of a new quadratic constraint based on

partial gradients, which can be integrated into a SDP-
based problem to certify stability of RL-controlled
systems;

• Analysis of the (non)conservatism of the certification
condition, which is shown to be almost necessary and
sufficient under some assumptions;

• Evaluation of the framework for decentralized nonlinear
control tasks, which demonstrates that the proposed
approach can certify policies with Lipschitz constants
that are about 3 times larger than those certifiable by
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FIGURE 9: Box plots of partial gradients of individual generators (G10, G4, G7) with respect to local information. Grey dashed
lines indicate ±0.1.
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FIGURE 10: State and action trajectories of the nominal and neural network controllers for power system frequency regulation,
with costs of 50.8 and 23.9, respectively.
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FIGURE 11: Long-term performance of RL for agents with
regulated gradients by soft penalty (SP) and hard thresholding
(HT). The RL agents without regulating the gradients exhibit
“dangerous” behaviors in the long run.

existing methods for the flight formation and power
system frequency regulation problems.

The proposed approach can systematically address nonlin-
earity in the neural network policy and uncertainty/time-
variation in the underlying system. A key benefit is the ability

to certify a much larger set of controllers for exploration
by reinforcement learning. Moreover, unlike some existing
techniques that require the controller to be static for the
stability analysis, our method allows it to change over time,
which is crucial for RL since the policies are continuously
updated with new data. Most importantly, the regulation of
gradient bounds was shown to improve on-policy learning
performance and avoid “catastrophic” effects caused by the
unregulated high gains. The present study represents a key
step towards safe deployment of RL in mission-critical real-
world systems.
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APPENDIX
A. PROOF OF LEMMA 1
Proof. For a vector-valued function h : Rn → Rm that is
differentiable with bounded partial derivatives (i.e., ξ

ij
≤

∂jhi(x) ≤ ξij), there exist functions δij : Rn × Rn → R
bounded by ξ

ij
≤ δij(xα, xβ) ≤ ξij for i ∈ [m] and j ∈ [n]

such that

h(xα)− h(xβ) =


∑n
j=1 δ1j(xα, xβ)([xα]j − [xβ ]j)

...∑n
j=1 δmj(xα, xβ)([xα]j − [xβ ]j)

 .
(41)

By defining qij = δij(xα, xβ)([xα]j − [xβ ]j), since(
δij(xα, xβ)− cij

)2 ≤ c2ij , it follows that

[
[xα]j − [xβ ]j

qij

]> [
c2ij − c2ij cij
cij −1

] [
[xα]j − [xβ ]j

qij

]
≥ 0.

(42)
The result follows by introducing nonnegative multipliers
λij ≥ 0, and the fact that hi(xα)− hi(xβ) =

∑n
j=1 qij .

B. PROOF OF THEOREM 2
Proof. The proof is in the same vein as that of Theorem 1.
The main technical difference is the consideration of the
filtered state ψ and the output z to impose IQC constraints
on the nonlinearities gt(y) in the dynamical system [18]. The
dissipation inequality follows by multiplying both sides of the

matrix in (25) by
[
x> q> v> e>

]>
and its transpose:

V̇ (x) + z>Mgz +

[
xG
q

]>
Mπ

[
xG
q

]
< γe>e− 1

γ
y>y,

where x and z are defined in (24), and V (x) = x>Px
is the storage function with V̇ (·) as its time derivative.
The second term on the left side is non-negative because
gt ∈ IQC(Ψ,Mg), and the third term is non-negative due
to the smoothness quadratic constraint in Lemma 1. Thus,
if there exists a feasible solution P � 0 to SDP(P, λ, γ, ξ),
integrating the inequality from t = 0 to t = T yields that:∫ T

0

|y(t)|2dt ≤ γ2

∫ T

0

|e(t)|2dt. (43)

Hence, the nonlinear system interconnected with the RL policy
π is certifiably stable in the sense of a finite L2 gain.

C. PROOF OF PROPOSITION 1
Proof. First, we define the set

P(ξ) =

{
π̄ | |π̄ij(x)| ≤ |ξijxj |, (44)

∀x ∈ Rns , i ∈ [na], j ∈ [ns]

}
.

Since the constraint on π̄ in P(ξ) is point-wise at each
time instance, it is straightforward to verify that P(ξ) ⊆
P̃(ξ). It suffices to show that for any π ∈ P(ξ), there
exists a policy π̄ ∈ P(ξ) such that π = Wπ̄. Let
y0
j =

[
0 · · · 0 yj+1 · · · yns

]
∈ Rns for every

j ∈ {0, 1, ..., ns}, and y0
0 = y, y0

ns = 0. Then, one can
write:

πi(y) =

ns∑
j=1

πi(y
0
j−1)− πi(y0

j ) =

ns∑
j=1

π̄ij(y),

where π̄ij(y) satisfies∣∣∣∣∣ π̄ij(y)

yj

∣∣∣∣∣ =

∣∣∣∣∣πi(y0
j−1)− πi(y0

j )

|y0
j−1 − y0

j |

∣∣∣∣∣ ≤ ξij
if yj 6= 0 and π̄ij(y) = 0 if yj = 0. The bound is due to the
mean-value theorem and the bounds on the partial derivatives
of πi. Since the above argument is valid for all i ∈ [na], it
means that π̄ ∈ P(ξ) ⊆ P̃(ξ), and π = Wπ̄.

D. PROOF OF LEMMA 2
Proof. For the sufficiency condition, since π̃ij is sector
bounded, and π̃ij(x) = 0 if xj = 0, we have∥∥∥ξijxj∥∥∥2

≥
∥∥∥∥∥
∥∥π̃ij(x)

∥∥
‖xj‖

xj

∥∥∥∥∥
2

= ‖qij‖2.

By rearranging the above inequality, it can be concluded that
(x, q) ∈ S(ξ).

For the necessary direction, we can construct π̃(y) =

q 〈y,x〉‖x‖2 for all y ∈ Lns . This leads to π̃(x) = q, and the

condition φ̃ij(x, q) ≥ 0 is equivalent to
∥∥∥qij∥∥∥ ≤ ξij

∥∥xj∥∥.
Thus, we have π̃ij(x) = 0 if xj = 0 and the sector bound
condition is satisfied.

E. STATEMENT AND PROOF OF LEMMA 5
Lemma 5. For a given linear time-invariant operator G, the
closure Λ of Λ defined in (29) is convex.

Proof. Because G is time-invariant, by denoting Dτ as the
delay operator at scale τ , we obtain D∗τTijDτ = Tij . For
simplicity, let φ̃(q) denote φ̃(Gq, q), since we restrict the
first argument of φ̃ to only depend on q. Let y = φ̃(q) and
ỹ = φ̃(q̃) be the elements of Λ, with ‖q‖ = ‖q̃‖ = 1. By
considering qτ =

√
αq +

√
1− αDτ q̃, one can write

φ̃ij(qτ ) = α
〈
Tijq, q

〉
+ (1− α)

〈
TijDτ q̃, Dτ q̃

〉
+ 2α

√
1− αRe

〈
Tijq, Dτ q̃

〉
= αφ̃ij(q) + (1− α)φ̃ij(q̃) + 2α

√
1− αRe

〈
Tijq, Dτ q̃

〉
.
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By letting τ → ∞, we obtain Re
〈
Tijq, Dτ q̃

〉
→ 0, where

Re(x) denotes the real part of a complex vector x. Thus,

lim
τ→∞

φ̃ij(qτ ) = αφ̃ij(q) + (1− α)φ̃ij(q̃)

and limτ→∞ ‖qτ‖2 = α‖q‖2 + (1−α)‖q̃‖2 = 1. Therefore,

lim
τ→∞

φ̃

(
qτ
‖qτ‖

)
= αy + (1− α)ỹ ∈ Λ.

F. STATEMENT AND PROOF OF LEMMA 6
Lemma 6. Suppose that D(Π,Λ) = infr∈Π,y∈Λ |r − y| = 0.
Given any ε > 0 and t0 ≥ 0, there exist a closed interval
[t0, t1] and two signals x ∈ Lns and q ∈ Lnans with ‖q‖ = 1
such that

φ̃ij(x, q) ≥ 0, ∀i ∈ [na], j ∈ [ns] (45)

ε2 > ‖(I − Γ[t0,t1])Gq‖ (46)
ε = ‖x− Γ[t0,t1]Gq‖Ωij,x , (47)

where Γ[t0,t1] projects the signal onto the support of [t0, t1].
With the above choice of q,x and [t0, t1], there exists an
operator π̃ ∈ P̃ (ξ) such that ‖(I − π̃Γ[t0,t1]G)q‖ ≤ Cε for
some constant C > 0 that depends on the sector bounds ξ.

Proof. For a given ε > 0, since D(Π,Λ) = 0, there exists
q ∈ Lnans with ‖q‖ = 1 satisfying φ̃ij(x, q) > −ε2 for all
i ∈ [na] and j ∈ [ns], i.e.,

ε2 + ‖Gq‖2Ωij,x > ‖q‖2Ωij,q ,
where Ωij,x is defined previously. Clearly, if q is truncated to
a sufficiently long interval, and q is rescaled to have a unit
norm, the above inequality will still hold. SinceGq ∈ Lns , by
possibly enlarging the truncation interval to [t0, t1], we obtain
(46), and

ε2 + ‖Γ[t0,t1]Gq‖2Ωij,x > ‖q‖2Ωij,q ,
Next, we choose η ∈ Lns such that ‖η‖2Ωij,x = ε2, and
that η is orthogonal to Γ[t0,t1]Gq. Then, by considering x =
Γ[t0,t1]Gq + η, we obtain

‖x‖2Ωij,x = ‖Γ[t0,t1]Gq + η‖2Ωij,x = ε2 + ‖Γ[t0,t1]Gq‖2Ωij,x ,

which leads to φ̃ij(x, q) ≥ 0 and (47). Now, we can invoke
Lemma 2 to construct π̃ ∈ P(ξ) based on (45) such that π̃
becomes sector bounded and q = π̃x. Then,

(I − π̃Γ[t0,t1]G)q = π̃(x− Γ[t0,t1]Gq).

Let ‖π̃‖ ≤ C (which depends on the sector bounds). Then,

‖(I − π̃Γ[t0,t1]G)q‖ ≤ Cε
.
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