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Why occupancy detection matters?

• Buildings account for 40% total energy use
• Energy consumption in buildings is highly

correlated to occupants
• Occupancy information can be used to:
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Monitor occupant
specific energy use

Individual energy use
(Chen and Ahn, 2014)

Occupant classification:
energy efficiency,
entropy, intensity
(Gulbinas et al., 2015)

Improve occupant
behavior modeling

Social connectivity vs.
energy saving study
(Peschiera and Taylor, 2012)

Improve proposed/future
occupancy models
(Hong et al. 2016)

Real time building
automatic control

Demand-controlled
ventilation

Geo-fencing

Lighting control



Sensors Presence Count Activity Identity Track
CO2 ✓ ✓ ✗ ✗ ✗

PIR ✓ ✗ ✗ ✗ ✗

Ultrasonic ✓ ✗ ✗ ✗ ✗

Power meter ✓ ✗ ✓ ✗ ✗

Camera ✓ ✓ ✓ ✓ ✓

Sound ✓ ✓ ✓ ✓ ✓

WiFi access ✓ ✓ ✗ ✓ ✓

Computer app. ✓ ✓ ✓ ✓ ✗

Occupancy detection can be
classified by information granularity

3(Labeodan et al., 2015)
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Privacy concerns



Why (or not) CO2 based detection
+ Humans naturally exhale CO2 –

occupancy proxy
+ CO2 sensors can be integrated with

climate sensors & HVAC systems
+ CO2 provides info on indoor air quality,

linked to productivity (Fisk, 2013)

- Influenced by human factors, e.g.,
different physiques, activities

- Slow response rate

4

“The ‘Sensing by Proxy’ model is more accurate than 
previously used machine learning models, and could be 
used to improve the efficiency of Demand-Controlled 
Ventilation systems (DCV) currently in use.”

-- CO2Meter.com



“Sensing by proxy” is based on a
physical model
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Warm	CO2 air	“bubble”



ODE-PDE model captures the
dynamics of CO2 concentration
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Ordinary	Differential	Equation	(ODE)

CO2 gen. rate
from breath: V(t)

CO2 in local
vicinity: X(t)

Models CO2 production from breath
on local vicinity concentration

Partial	Differential	Equation	(PDE)

Diffusion rate: bx

Fresh air
CO2 : U(t)

Exhaust air
CO2 : u(1,t)

Environment
CO2 : u(x,t)

Convection rate: b

Models CO2 convection in space



Occupancy detection becomes an
“observer” problem
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CO2 production Indoor	CO2 Model Observations

Occupancy detection

ODE-PDE model
state X

Input V Output u

Observer

à Given output, estimate input V(t) and state X(t)



Occupancy detection becomes an
“observer design” problem
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System
state X

Input V Output u

Observer

Observer	for	the	ODE-PDE	System

à Given output, estimate input V(t) and state X(t)

Convergence	
guaranteed	by	
Theorem 1



Experiment setup and CO2 sensor
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• 44 m3 conference room
• Completely interior in the building

Air supplyAir return

• K-30 Sensor Module
• Baselined via the 

Automatic Baseline 
Correction



Experiment with occupants while
measuring indoor CO2
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# occupantsà
rate and level

1

Takes time to accumulate
2

3 Vacancy: CO2
depletion



CO2 instant concentration is a poor
indication of occupancy

• Different occupancy levels can correspond
to similar CO2 concentration, due to slow
accumulation/depletion 11

CO2 distributions for different occupancy level



Mismatch à Inaccuracy in
occupancy estimation

Sensing by proxy captures the
indoor CO2 dynamics
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PDE-ODE Model Return vent CO2Occupancy

Given occupancy, we can have accurate prediction
of exhaust air CO2 concentration



The parameters are based on
physics (room, ventilation rate, etc.)
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CO2 Fresh air equil.: 400ppm

Human breathe: 0.183ppm/sec

Param. Physical
meaning

Value Unit

1/a Effect rate 16.67 sec
b Convection

rate
2.5 m/sec

bX Diffusion
rate

1.5 1/sec

Spatial temporal simulation

PDE-ODE can reproduce the
spatio-temporal distribution of
CO2 concentration



SbP has fast response rate and
high real-time accuracy

• Inference based on the dynamics of PDE-ODE Model
• Robust to non-uniformity (physique, positions), doors
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Close inferenceFast response to
occupancy changes

PDE-ODE
ObserverExhaust CO2 Occupancy

Median
Filter

V(t) Normalize by
breath rate



Bayes Net Sensing by Proxy
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SbP is more reliable than
ML-based methods
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Naïve
Bayes

Bayes
Net

Logistic
Regress.

Multi-Layer
Perceptron

RBF
Network

SMO Ada-
Boost

Sensing
by Proxy

RMSE 1.356 1.21 1.47 1.23 1.33 1.61 2.39 0.63
Lower RMSE!

RMSE = !
"
∑ 𝑇𝑟𝑢𝑒𝑂𝑐𝑐 𝑖 − 𝐸𝑠𝑡𝑂𝑐𝑐 𝑖 /"
01!
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Misclassification with large 
magnitudes!

Concentrated à Small 
classification error!

Code and data shared at my github


