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Abstract— Given a non-cooperative, continuous game, we
describe a framework for parametric utility learning. Using
heteroskedasticity inference, we adapt a Constrained Feasible
Generalized Least Squares (cFGLS) utility learning method in
which estimator variance is reduced, unbiased, and consistent.
We extend our utility learning method using bootstrapping and
bagging. We show the performance of the proposed method
using data from a social game experiment designed to encourage
energy efficient behavior amongst building occupants. Using
occupant voting data we simulate the game defined by the esti-
mated utility functions and show that the performance of our
robust utility learning method and quantify its improvement
over classical methods such as Ordinary Least Squares (OLS).

I. INTRODUCTION

Smart buildings are a fundamental component in con-
structing smart cities; their efficient design and operation
enables flexibility and reliability in making urban spaces
sustainable. It is well known that energy consumption of
buildings, both residential and commercial, accounts for
approximately 40% of all energy usage in the U.S. [1]. There
have been many approaches to improve energy efficiency of
buildings through control and automation, e.g., [2]–[7], as
well as incentives and pricing, e.g., [8], [9].

The incentive for a building manager to encourage en-
ergy efficient behavior may be that they are accountable
for the cost or are required to maintain an operational
excellence measure. Beyond these motivations, demand re-
sponse programs are being rolled out by utility companies
and third-party solution providers—e.g. companies such as
Ohmconnect—with the goal of correcting for improper load
forecasting (see, e.g., [10], [11], [12]). In such a program,
consumers enter into a contract in which they agree to change
their demand when demand response events are called. The
building manager may be required to keep this schedule.
By captizalizing on new technological advances that enable
smart building automation, the prescribed schedule can be
met. Through automation and integration of the end-user,
smart buildings play an integral role in creating a more
sustainable and efficient smart city.
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Our approach to efficient building energy management
focuses on smart office buildings that utilize builiding au-
tomation. We have designed and implemented a social game
aimed at incentivizing occupants to modify their behavior.
The impact is two fold: First, the overall energy consumption
in the building is reduced and second, the building manager
can effectively close the loop around the occupants. The
latter allows for control of occupant behavior subject to
comfort constraints thereby creating more flexibility and
accuracy in meeting demand response scheduling.

At the core of our approach is the fact that we modeled
the occupants as non-cooperative agents who play according
to a Nash equilibrium strategy. This serves the purpose of
modeling the agents as strategic entities who make decisions
based on their own preferences in spite of others. The game
theoretic framework both allows for qualitative insights to
be made about the outcome of such selfish behavior and,
more importantly, can be leveraged in designing incentives
for modifying occupany behavior.

We designed a utility learning framework based on data
generated from the social game experiment. Specifically,
assuming a parametric form of utility function for each agent,
we utilized Constrained Feasible Generalized Least Squares
(cFGLS) to formulate a parameter estimation scheme in
which the estimator variance is reduced, unbiased, and con-
sistent. We explore wild bootstraping, a powerful technique
for asympotic approximation of the bias and standard error
of an estimator in a complex and noisy statistical model.
Strengthened by the bootstrap estimators, we improve the
parameter estimation scheme by using ensemble methods
such as bagging. We showed that estimating agent utility
functions via the proposed method based on the cFGLS
results in a predictive model that outperforms several other
standard techniques such as OLS and our preliminary esti-
mation scheme in [13].

The rest of the paper is organized as follows. We begin
in Section II by describing the social game and presenting
the game formulation. Section III proposes the robust utility
estimation approach. We present the results of our estimation
scheme in Section IV. We conclude with some discussion
and proposal for future work in Section V.

II. SOCIAL GAME FRAMEWORK

In this section, we briefly describe the social game ex-
periemental setup and present a game theoretic framework
for occupant decision making. We refer the reader to our
previous works [13], [14] for a more detailed description of
the former.



A. Social Game
We have instrumented an office space in Cory Hall on the

University of California, Berkeley campus with a heating,
ventilation, and air conditioning (HVAC) system, automated
lighting control (Lutron system1), plug-load metering and
carbon dioxide sensors. The social game we designed and
implemented consists of occupants voting according to their
lighting usage preferences over comfort and productivity.
We designed an online platform so that occupants can log
their vote, view their points, and observe all occupants’
consumption patterns and points. This platform stores past
data that is used to estimate occupant behavior.

Occupants win points based on how energy efficient their
vote is compared to others. The points are used to determine
an occupant’s likelihood of winning in a lottery. Specifically,
occupants choose a value in the interval [0, 100] representing
their vote for the dim level in their zone as well as neighbor-
ing zones. The lighting setting that is implemented in each
zone is the average of all the votes weighted according to
proximity to that zone. If occupants are not in the office,
they are considered absent and are not allowed to vote. On
the other hand, if they are present, they can actively vote
according to their preferences or choose to opt-out, in which
case their vote is taken to be the default value; we explored
four different default settings, {10, 20, 60, 90}.
B. Occupant Decision Making

In previous work [13], we modeled the interaction be-
tween the building manager and the occupants as a leader–
follower(s) game. We designed the incentives by estimating
the parameters using a online least squares framework and
optimized the points and default value using the estimated
utilities of the occupants. This work is based on the theoreti-
cal utility learning and incentive design framework presented
in [15]. In the present work, we take a step back and re-
examine the utility learning step using statistical methods
that provide greater accuracy in the estimation and prediction
of player decision-making. In future work, we will fold
the new estimation scheme into the overall incentive design
framework.

To describe the occupant game, let the number of oc-
cupants participating in the game be denoted by n. We
model the occupants as utility maximizers having utility
functions composed of two terms that capture the tradeoff
between comfort and desire to win. We model their comfort
level using a Taguchi loss function which is interpreted as
modeling occupant dissatisfaction in such a way that it is
increasing as variation increases from their desired lighting
setting [16]. In particular, each occupant has the following
comfort function:

ψi(xi, x−i) = − (x̄− xi)2 (1)

where xi ∈ R is occupant i’s lighting vote, x−i =
{x1, . . . , xi−1, xi+1, . . . , xn}, and

x̄ = 1
n

∑n
i=1 xi (2)

1http://www.lutron.com

is the average of all the occupant votes and is the lighting
setting which is implemented. Hence, this term measures the
discomfort an occupant feels given that its vote is xi and the
state of the environment is actually x̄. We acknowledge that
an occupant may have some internal comfort level that is
different than its vote; in particular, the occupant may realize
that voting an extreme value pushes the average toward a
more desirable setting. We set this type of gaming aside for
the time being, and focus instead on the unknown preferences
between comfort and winning resulting in a different kind of
asymmetric information.

In addition, each occupant has the following winning
function:

φi(xi, x−i) = −ρc (xi)
2 (3)

where ρ is the total number of points distributed by the
building manager and c is a scaling factor which we set
to 10−4. The points are distributed by the leader using the
relationship

ρ xb−xi

nxb−
∑n

j=1 xj
(4)

where xb = 90 is the baseline setting for the lights, i.e. the
lighting setting that occurred before the implementation of
the social game in the office. In our previous work [14] we
modeled the function φi, i.e. the desire to win, using the
natural log of (4). We found that the form of φi as defined
in (3) provides a better estimation and prediction of all the
occupant’s behavior. It appears that it captures the occupants’
perceptions about how the points are distributed and the value
of the points as determined by each of the occupants more
accurately.

Each occupant’s utility function is then given by

fi(xi, x−i) = ψi(xi, x−i) + θiφi(xi, x−i) (5)

where θi is parameter unknown to the leader, the source
of asymmetric information in the leader–follower(s) game.
Hence, the i-th occupant faces the following optimization
problem:

max
xi∈Si

fi(xi, x−i) (6)

where Si = [0, 100] ⊂ R is the constraint set for xi. The
constraint set can be described as follows. Let hi,j(xi, x−i)
for j ∈ {1, 2} denote the constraints on occupant i’s
optimization problem. In particular, following Rosen [17],
for occupant i, the constraints are

hi,1(xi) = 100− xi (7)
hi,2(xi) = xi (8)

so that we can define Ci = {xi ∈ R| hi,j(xi) ≥ 0, j ∈
{1, 2}} and C = C1 × · · · × Cn. In this framework, the
occupants are non-cooperative agents in a continuous game
with convex constraints. We model their interaction using the
Nash equilibrium concept.

Definition 1: A point x ∈ C is a Nash equilibrium for
the game (f1, . . . , fn) on C if

fi(xi, x−i) ≥ fi(x′i, x−i) ∀ x′i ∈ Ci (9)



for each i ∈ {1, . . . , n}.
The interpretation of the definition of Nash is as follows:
no player can unilaterally deviate and increase their utility.
Additional constraints on the parameters {θi}ni=1 ensure that
the game is a concave n-person game on a convex set.

Theorem 1 (Rosen [17]): A Nash equilibrium exists for
every concave n-person game.

Define the Lagrangian of each player’s optimization prob-
lem as follows:

Li(xi, x−i, µi) = fi(xi, x−i)+
∑
j∈Ai(xi)

µi,jhi,j(xi) (10)

where Ai(xi) is the active constraint set at xi. The differen-
tial game form [18], [15] is given by

ω(x, µ) = [D1L1(x, µ1)T · · · DnLn(x, µn)T ]T (11)

where DiLi denotes the derivative of Li with respect to xi.
Definition 2 (Ratliff [15]): A point x∗ ∈ C is a differ-

ential Nash equilibrium for the game (f1, . . . , fn) on C if
ω(x∗, µ∗) = 0, zTDiiLi(x

∗, µ∗i )z < 0 for all z 6= 0 such
that Dihi,j(x

∗
i )
T z = 0, and µi,j > 0 for j ∈ Ai(x∗i ).

These conditions are sufficient for defining a local Nash
equilibrium.

Proposition 1 (Ratliff [13]): A differential Nash equilib-
rium of the n-person concave game (f1, . . . , fn) on C is a
Nash equilibrium.
A sufficient condition guaranteeing that a Nash equilibrium x
is isolated is that the Jacobian of ω(x, µ), denoted Dω(x, µ),
is invertible [15]. We refer to such points as being non-
degenerate.

III. ROBUST UTILITY LEARNING

In this section we provide the theoretical formulation of
our robust utility estimation method. The main contribution
is the implementation of heteroskedasticity inference for
correlated errors in the resulting utility regression models.
In addition, we infer noise structures using residuals of the
constrained least squares fitting.

A. Utility Estimation

The utility estimation problem is formulated as a convex
optimization problem by using first–order conditions for
Nash equilibria [15], [18]. At the observed Nash equilibrium
the gradient of each occupant’s Lagrangian should be iden-
tically zero. We define an ε–approximate differential Nash
equilibrium as follows:

Definition 3: Given ε > 0, a point x∗ ∈ C is an ε–
approximate differential Nash equilibrium for (f1, . . . , fn)
if ω(x∗, µ∗) = ε, zTDiiLi(x

∗, µ∗i )z < 0 for all z 6= 0 such
that Dihi,j(x

∗
i )
T z = 0, and µi,j > 0 for j ∈ Ai(x∗i ).

This is to essentially say that the first–order condition is
approximately met.

We assume that each observation x(k) corresponds to an ε–
approximate Nash equilibrium where the superscript notation
(·)(k) indicates the k-th observation. Thus, we can consider
first-order optimality conditions for each occupants optimiza-
tion problem and define a residual function capturing the
amount of suboptimality of x(k)i [19], [20].

Define the residual of the stationarity and complementary
conditions for occupant i’s optimization problem by

r
(k)
s,i (θi, µi) = Difi(x

(k)
i , x

(k)
−i ) +

∑2
j=1 µ

j
iDihi,j(x

(k)
i )

(12)

and

r
j,(k)
c,i (µ) = µjihi,j(x

(k)
i ), j ∈ {1, 2} (13)

respectively.
Define r

(k)
s (θ) = [r

(k)
s,1 (θ1, µ1) · · · r(k)s,n (θn, µn)]T and

r
(k)
c = [r

(k)
c,1 (µ1) · · · r

(k)
c,n(µn)]T where r

(k)
c,i (µi) =

[r
1,(k)
c,i (µi) r

2,(k)
c,i (µi)] and µi = (µ1

i , µ
2
i ).

Given the data from the occupants’ actions, we solve the
following convex optimization problem:

min
µ,θ

∑K
k=1 χ(r

(k)
s (θ, µ), r

(k)
c (µ))

s.t. θi ≥ θLB , µi ≥ 0 ∀ i ∈ {1, . . . , n}
(P)

where θLB is a lower bound for the unknown parameters
{θi}ni=1 that ensures the inferred game is concave and
χ : Rn × R2n → R+ is a nonnegative, convex penalty
function satisfying χ(z1, z2) = 0 if and only if z1 = 0
and z2 = 0, i.e. any norm on Rn × R2n, the inequality
µi ≥ 0 is element-wise. To determine θLB we utilize the
second derivative condition on players’ utility functions; in
particular, if D2

iifi(x) = −2(1−1/n)2−2θicρ < 0 for each
i, then the game is concave. Hence, θi > −c−1ρ−1(1−n−1)2

where the right-hand side is a a negative non-increasing
function of n. Thus, using a relaxation, concavity is ensured
regardless of the number of players by setting n = 2,
the minimum number of users in a non-cooperative game.
Then, given fixed ρ and 0 < ζ << 1, the lower bound
θ̄LB = −0.3571 + ζ will guarantee the estimated game is
concave. However, the subgradient projection method applied
to the gradient dynamics ẋ = [D1f1(x)T · · · Dnfn(x)T ]T

and the constraint set defined by (8) are known to converge
to a differential Nash equilibrium of the constrained n-
person concave game [21] and we know the differential Nash
equilibrium is unique if the game Hessian

H =

D11f1 · · · D1nf1
...

. . .
...

Dn1fn · · · Dnnfn

 (14)

is positive definite [18, Theorem 2]. This is automatically
guaranteed for n ≥ 4 provided the constraint defined by
θ̄LB using ζ = 10−2; this is straightforward to verify by
determining the eigenvalues of H as n varies via the method
described in [22]. Hence, we use a lower bound on the θi’s
in (P) that guarantees our the game is not only concave
but has a unique differential Nash equilibrium. In particular,
in (P) we set θLB = −c−1ρ−1(1−4−1)2 +ζ = −0.8035+ζ
for a given ρ and 0 < ζ << 1.

B. Robust Utility Estimation

Let Ki denote the number of data points for player i.
Define the regressor X = diag(X1 · · ·Xn) where Xi =



[(X
(1)
i )T · · · (X

(Ki)
i )T ]T and

X
(k)
i =

Dihi,1(x
(k)
i ) Dihi,2(x

(k)
i ) Diφi(x

(k)))

hi,1(x
(k)
i ) 0 0

0 hi,2(x
(k)
i ) 0

 ,
(15)

the observation matrix Y = [Y1 · · ·Yn]T where Yi =
[−Diψi(x

(1)) 0 0 · · · −Diψi(x
(Ki)) 0 0]T , the regression

coefficient β = [µ1
1 µ2

1 θ1 · · · µ1
n µ2

n θn]T .Using the
Euclidean norm on Rn × R2n for χ in (P) leads to an OLS
problem with inequality constraints:

min
β

{
‖Y −Xβ‖2

∣∣ β > βLB
}

(P1)

where βLB = [0 0 θLB · · · 0 0 θLB ]T . The above stated
problem can be viewed as a classical multiple linear regres-
sion model with inequality constraints described by the data
generation process

Y = Xβ + ε, β > βLB (16)

where ε = (ε1, . . . , εn) is the error term.

We assume heteroskedasticity [23, Chapter 5] and the
data generation process has a nonspherical standard error
ε. With this general statistical model we are able to describe
data generation processes in which the error terms do not
have constant variance or are correlated. Therefore, the
error, drawn from probability distributions with different
variances and errors, can be autocorrelated or serial corre-
lated. Mathematically the nonspherical errors are modelled
by: cov(ε|X) = G � 0, G ∈ Rnd×nd where nd is the total
data points across all players. Given nonspherical standard
errors constrained OLS (cOLS) estimator is biased; hence, it
does not satisfy the Gauss–Markov theorem for Best Linear
Unbiased Estimator (BLUE). However, using the following
adaptation we can derive an unbiased estimator.

Multiplying (16) on the left with G−
1
2 leads to the follow-

ing constrained Generalized Least Squares (cGLS) statistical
model:

(G−
1
2Y ) = (G−

1
2X)β + (G−

1
2 ε), β > βLB (17)

GLS estimators satisfy the BLUE property [23]. However,
in many real regression applications, like the utility learning
problem, we don’t know the explicit form of cov(ε|X) = G.
We impose a heteroskedasticity structure on the covariance
matrix G; in particular, Ĝ = diag(K̃, · · · , K̃) ∈ Rnd×nd

where K̃ ∈ RKi×Ki . As an example, if Ki = 2,

K̃ =

[
K̃11 K̃12

K̃21 K̃22

]
∈ R2×2 (18)

where K̃11 = 2
n

∑n
2
i=1 e

2
2i−1, K̃22 = 2

n

∑n
2
i=1 e

2
2i, K̃12 =

K̃21 = 2
n

∑n
2
i=1 e2i−1e2i and the ei’s are the residuals,

namely the difference between observed and fitted values.
This noise structure is widely used [23], [24].

After estimating Ĝ, we substitute it to the cGLS esti-
mators to get a one-step constrained Feasible Generalized
Least Squares (cFGLS) or constrained Aitken estimators.

We iterate between the estimation of G and β either until
convergence or for a fixed number iterations in order to
prevent overfitting.

C. Bagging

Given the modified GLS framework, we introduce wild
bootstraping, a technique of parametric bootstraping that is
consistent with heteroskedasticity inference and FGLS. In
general, bootstraping is a technique for asympotic approxi-
mation of the bias and standard error of an estimator in a
complex and noisy statistical model [23], [25].

We assume that E(Y |X) = Xβ but simultaneously we
allow for heteroskedasticity by conditioning on the resid-
ual transformations that we imposed in the standard error
structure. Wild or Weighted bootstrap is a technique that is
consistent with our Heteroskedastic noise structure and the
data generation process is given by

Y ∗ = XβcFGLS + Φ(e)ε∗ (19)

where Y ∗ ∈ Rnd×1 is the new response variables vector
(pseudo-vector), βcFGLS ∈ Rnd×1 is the estimator from the
constrained FGLS statistical model, ε∗ ∼ N(0, Ind×nd), e ∈
Rnd×1 is the residuals vector given by e = Y −XβcFGLS
and Φ(e) = Ĝ

1
2 = diag(K̃1/2, . . . , K̃1/2) ∈ Rnd×nd is a

non linear transformation that maps from Rnd×1 to Rnd×1.
It is important to state that E(Φ(e)ε∗|X) = Φ(e)E(ε∗|X) =
Φ(e)E(ε∗) = 0nd×nd and thus, we resample from i.i.d
variables.

Using Wild bootstrapping, the emperical covariance matrix
of β∗est and the average of β∗est − βest are asymptotic
approximations of the covariance matrix and bias, respec-
tively. Moreover, the distribution of β∗est − βest is a good
approximation of βest − β.

The process can be described in two steps: First, we fit
our cFGLS model. Then, we add Gaussian noise to the
predicted values of the cFGLS statistical model and generate
N replicates of pseudo–data which is, in turn, used that to fit
bootstrap estimators by using ensemble methods to combine
several weak cFGLS estimators. This improves accuracy
since our data set is small.

Bagging in regression models and trees is a powerful
technique similar to bootstrapping for reducing the overall
variance [25]. The process is described as follows: Create
N replicates of pseudo–data using wild bootstrapping, train
a different model on each pseudo–data set and, finally,
combine the resulting bootstrapped estimators by averaging.
Bagging works efficient with high variance models and does
not hurt the overall performance of the statistical model.

In the utility learning framework, we combine the estima-
tors generated by cGLS using Bagging:

θBagged = 1
N

∑N
s=1 θ

s
cFGLS (20)

where N is the pseudo–data replicates generated using Wild
bootstrapping and θscFGLS is the estimator using the s–th
pseudo–data sample. We refer to the bagged estimates as
bagged mega-learners since they combine a number of weak
learners.



TABLE I
ROOT MEAN SQUARE ERROR (RMSE), MEAN ABSOLUTE ERROR (MAE) AND

MEAN ABSOLUTE SCALED ERROR (MASE) OF FORECASTING USING BAGGED

UTILITY LEARNERS VS COLS ESTIMATORS. MEAN ABSOLUTE SCALED ERROR

(MASE) IS A NEW DEVELOPED MEASURE OF FORECAST ACCURACY [26] FOR

COMPARING FORECAST ACCURACY ACROSS TIME SERIES. FORECASTING

PREDICTS OCCUPANTS’ DYNAMIC BEHAVIOR GIVEN THE DEFAULT LIGHTING

SETTING IS 20 AND 10. ACTIONS CAN VARY BETWEEN 1 MINUTE TO SEVERAL

HOURS DEPENDENT ON ACTIVITY LEVEL OF THE OCCUPANTS.

Default 20 Utility Learning Method Bagged cOLS
RMSE 8.31 22.53
MAE 5.20 18.35
MASE 2.08 7.34

Default 10 Utility Learning Method Bagged cOLS
RMSE 8.69 18.97
MAE 7.75 15.35
MASE 3.02 5.97

IV. UTILITY LEARNING RESULTS

In this section, we present results of the proposed robust
utility learning method using data collected from the social
game experiment for building energy management.
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Fig. 1. The mean of the observed lighting votes for default lighting setting
of 20 is depicted by the blue dots. The forecasting results via simulation of
the occupant game using the cOLS and bagged mega-learner is indicated
by the black line and the grey line respectively. On the x–axis we indicate
the index of when a choice was made by one or more of the occupants (i.e.
when the implemented lighting setting is changed); the time from one index
to the next may be several minutes to hours depending on the activity of
the occupants. Notice that the mean of the Nash equilibria of the simulated
game using the bagged mega-learner estimates is approximately near the
true mean where the cOLS estimates produce Nash equilibria with a large
error.

Using occupant voting data we simulate the game defined
by the estimated utility functions and show that the estimated
model using our robust utility learning method significantly
improves predictions for occupant behavior as compared to
classical OLS (see Table I). Moreover, in Figure 1 we can see
that our model using the estimated parameters obtained via
bagging captures most of the variation in the true votes and
provides significant improvement over predictions obtained
via cOLS.
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Fig. 2. The vertical red line represents the cFGLS estimator. The histogram
depicts the estimates using the wild bootstrapping technique. Subfigure
(a) depicts the unbiased estimator for occupant 2 where (b) depicts the
biased estimator for occupant 8. In the unbiased estimator example, we have
approximately a Gaussian distribution around the initial cFGLS estimator.
In the bias example, the resulting distribution is not normally distributed
around the cFGLS estimator, and thus the cFGLS estimator is biased.

In addition, we are able to approximate bias of the
estimators for each θi. In Figure 2, we show the resulting
cFGLS estimators for two representative occupants obtained
by replicates of data using wild bootstrapping. The particular
occupants we selected represent players that prefer winning
to comfort (occupant 8) and players that prefer comfort to
winning (occupant 2). In Figure 2(b), we see that occupant’s
8 parameter estimation is biased. On the other hand in
Figure 2(a), we see that through heteroskedasticity inference
we infer almost unbiased estimator for occupant 2. We
believe this is largely due to the fact that there is significant
variation in occupant 2’s votes and little variation in occupant
8’s votes, who voted zero most of the time.

In table II we present the cFGLS estimates, the bagged
mega-learner estimates, and the bias for the most active
occupants. For some occupants, the bias is not significantly
reduced. This is likely due to the fact that some occupants
were not nearly as active as others and hence, there was little
variation in their data.

V. DISCUSSION AND FUTURE WORK

We presented a general framework for robust utility learn-
ing using a heteroskedasticity inference adaptation to cGLS.
We applied this method to learn the utility functions of



TABLE II
CFGLS ESTIMATES, BAGGED MEGA-LEARNER ESTIMATES AND BIAS

APPROXIMATION USING WILD BOOTSTRAPPING. IN BOLD, WE DENOTE

THE OCCUPANTS WITH NEARLY UNBIASED ESTIMATORS. THESE ARE

THE OCCUPANTS WITH THE LARGEST VARIATION IN THEIR VOTES.

User id cFGLS Bagged bias
2 -0.69 -0.58 0.11
6 0.5 1.62 1.12
8 298.06 121.2 -176.86

14 337.52 151.26 -186.26
20 -0.8 -0.73 0.07

participants in the building energy mangement social game
that we conducted. We were able to estimate nearly unbiased
estimators for several occupant profiles and show that we
significantly reduced the forecasting error of the occupants’
actions over cOLS. Our robust framework can be extended
to other choices of utility functions that incorporate different
basis functions.

This framework enables us to close the loop around
the building occupant and in effect, vary their behavior in
order to meet, for instance, the requirements of a demand
response program or to simply reduce over all consumption.
Furthermore, such a framework is agnostic to the particular
problem of energy efficiency in buildings and we believe it
can be applied to any social game and could provide a useful
tool in many experimental setups in smart city applications
where learning decision making behavior is crucial.

There are several directions for future research. We are
actively working employing a prior knowledge into the
estimation of player utility functions. This leads to a pe-
nalized cFGLS model and has the potential to lead to more
accurate forecasting. In addition, we are exploring a model
for a mixture of different utility functions using hierarchical
mixture of experts with softmax gates. On the social game
experiment front, we are in the process of implementing
new building energy management social game experiments,
both small- and large-scale in Singapore and on the Berkeley
campus.
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