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Abstract

We study the expressibility and learnability of convex opti-
mization solution functions and their multi-layer architectural
extension. The main results are: (1) the class of solution func-
tions of linear programming (LP) and quadratic programming
(QP) is a universal approximant for the Ck smooth model
class or some restricted Sobolev space, and we characterize
the rate-distortion, (2) the approximation power is investigated
through a viewpoint of regression error, where information
about the target function is provided in terms of data observa-
tions, (3) compositionality in the form of a deep architecture
with optimization as a layer is shown to reconstruct some ba-
sic functions used in numerical analysis without error, which
implies that (4) a substantial reduction in rate-distortion can
be achieved with a universal network architecture, and (5) we
discuss the statistical bounds of empirical covering numbers
for LP/QP, as well as a generic optimization problem (possibly
nonconvex) by exploiting tame geometry. Our results provide
the first rigorous analysis of the approximation and learning-
theoretic properties of solution functions with implications for
algorithmic design and performance guarantees.

1 Introduction
We study the object referred to as solution function defined
by the following generic optimization:

π(x, θ) = argmin
z∈R(x,θ)

g(z;x, θ), (1)

where g(·;x, θ) : Rnz → R and R(x, θ) ⊆ Rnz are the ob-
jective function and feasible set (withR : Rnx ×Rnθ ⇒ Rnz

being a set-valued function), respectively, characterized by
both x ∈ Rnx and θ ∈ Θ ⊆ Rnθ . We use semicolon in
g(z;x, θ) to separate optimization variables from parameters.
To make a further distinction, in the context of decision mak-
ing, x can be the input/state, θ is the parameter, and the output
is the decision/action. Since the optimization solution can
be a set, we make proper assumptions to ensure uniqueness
(Dontchev and Rockafellar 2009).

Historically, the solution function (and optimal value func-
tion) has been an important basis for local sensitivity/stability
and parametric analysis in optimization theory (Dontchev
and Rockafellar 2009; Fiacco 2020); see (Amos 2022) for
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renewed interests. However, to the best of the authors’ knowl-
edge, a mathematical theory characterizing the global prop-
erties of solution functions is still missing. Two of the basic
questions are:

(1) which classes of functions can they approximate well?

(2) what is the statistical complexity of the class of solution
functions?

The first question pertains to the expressivity of the func-
tion class. Without proper restrictions, one can easily obtain
a construct with g(z;x, θ) := ∥z − µ(x, θ)∥ and R(x, θ) :=
Rnz so that π(x, θ) can represent any function µ(x, θ) de-
spite being nonconvex or even discontinuous; however, such
construct is neither interesting nor practically relevant. To
prevent such degenerate cases, the optimization in (1) is, in
general, assumed to be convex. In fact, as we show later in
the analysis, further restrictions to LPs or QPs can still pre-
serve the universal approximation property. Perhaps an even
more intriguing and related question is concerning the role
of “depth” by drawing an analogy to contemporary studies
on deep neural networks (DNNs) (see, e.g., (Hanin 2019;
Lu et al. 2021)). Indeed, the idea of concatenating optimiza-
tions as “layers” seems to be catching on (Amos and Kolter
2017; Agrawal et al. 2019; Kotary et al. 2021). Beyond the
current knowledge in the multi-parametric programming lit-
erature that the solution function of an LP/QP is piecewise
affine (PWA) (Grancharova and Johansen 2012), we provide
a simple construction with two layers of LPs/QPs that can
reproduce nonlinear functions such as product operator with
no error; repeated stacking such structures by adding depth
can thus reconstruct any polynomial functions of arbitrary
order. Such blessings of compositionality appear in a very
different form than DNNs, and will be exploited to reduce
the complexity of construction (measured in terms of the
number of variables and constraints). A key issue in training
multi-layer compositions is the ability to backpropagate, for
which we ensure compliance with the disciplined paramet-
ric programming (DPP) rules introduced in (Agrawal et al.
2018). Hence, in the first part of the study, we examine the
expressivity and role of depth from the perspective of ap-
proximation theory (DeVore and Lorentz 1993). The second
question has a bearing on learnability, which, ironically, has
not been well-established despite recent advancements in re-
lated fields (Amos 2022; Kotary et al. 2021; Ebert et al. 2021;



Hewing et al. 2020). We provide partial answers by focusing
on the notion of covering numbers, which is fundamental
to furnishing generalization error bounds and characterizing
sample complexity (Cucker and Zhou 2007).

1.1 Why should we study solution functions?
Optimization is crucial in modeling complex phenomena and
decision-making processes with a wide range of real-world
applications (Boyd, Boyd, and Vandenberghe 2004). In the
following, we contextualize this study by connecting to adja-
cent problems in machine learning, control, and operations
research.

Bi-level formulations of decision-making. In machine
learning, a lot of complex problems with a hierarchical struc-
ture are amenable to a bi-level formulation (Liu et al. 2021),
where the inner-level solution function may correspond to
a learned model (in hyperparameter optimization (Lorraine,
Vicol, and Duvenaud 2020)), task-adaptive features (in multi-
task and meta-learning (Hospedales et al. 2020)), attacked
model (in adversarial learning (Zeng et al. 2022)), or critic
network (in reinforcement learning (Hong et al. 2020)).

Inverse problems. There are also a variety of problems
with an inverse nature, where the decisions are taken as input,
and the goal is to infer an objective and/or constraints that ren-
der these decisions approximately or exactly optimal (Adams,
Cody, and Beling 2022); therein, the solution function of the
corresponding optimization represents some (near-)optimal
policies (in inverse reinforcement learning (Adams, Cody,
and Beling 2022)), optimal controller (in inverse control
(Ab Azar, Shahmansoorian, and Davoudi 2020)), and Nash
equilibrium of noncooperative agents (in inverse game theory
(Bertsimas, Gupta, and Paschalidis 2015; Jia et al. 2018)),
and identifying the parameters of the optimization is tasked
to infer the hidden reward function or utility functions.

End-to-end optimization. The solution function can be
used directly as a predictor or control policy. In decision-
focused learning (Wilder, Dilkina, and Tambe 2019; Feber
et al. 2020), smart predict-then-optimize (Elmachtoub and
Grigas 2020; Loke, Tang, and Xiao 2021), and end-to-end
optimization learning (Kotary et al. 2021), a constrained
optimization model is integrated into the decision-making
pipeline to create a hybrid architecture, where the parameters
of the solution function are trained in an end-to-end fash-
ion (often through implicit gradients (Agrawal et al. 2019)).
Such approaches have been demonstrated for stochastic pro-
gramming (Donti, Amos, and Kolter 2017), combinatorial
optimization (Wilder, Dilkina, and Tambe 2019), and rein-
forcement learning (Wang et al. 2021), with various applica-
tions in operations research (e.g., vehicle routing, inventory
management, and portfolio optimization) (Elmachtoub and
Grigas 2020), and hold the promise to enable structural infer-
ence and decision-making under constraints.

Model-predictive control. The solution function has a
long tradition being used as a policy in model-predictive
control (MPC) (Grancharova and Johansen 2012); recent
advancements in learning-based MPC aim to infer the param-
eterization of the MPC policy, i.e., the cost and constraints,
that lead to better closed-loop performance and account for
safety specifications (Hewing et al. 2020).

None of the above problems can be satisfactorily under-
stood or solved with existing theories (Dontchev and Rock-
afellar 2009; Fiacco 2020), revealing a fundamental need
to study the approximation and statistical properties beyond
local perturbations.

1.2 Contributions
Key contributions are summarized below:

• We develop a new perspective on approximation through
the lens of regression with a fixed design, and establish a
universal approximation theorem of the solution functions
of LPs with constructive proof. The complexity of the
construction is analyzed in terms of the total number of
variables and constraints to obtain an ϵ accuracy (i.e.,
rate-distortion) (Theorem 1).

• Illuminate the role of depth. Compositionality in the form
of multi-layer LPs/QPs is shown to reconstruct polynomi-
als without error (Lemma 2 in appendix). We characterize
complexity with the additional depth measure and show a
substantial reduction in complexity with a universal net-
work architecture in approximating all smooth functions
in some restricted Sobolev space (Theorem 2).

• We discuss statistical bounds using empirical covering
numbers. For LQs/QPs, we provide bounds that depend
on the number of constraints and some condition number
associated with constraints (Theorem 4). For a generic
convex optimization problem, we crucially leverage the
development in tame geometry by showing that the solu-
tion map is Whitney stratifiable (Theorem 5). Our proof
technique is broadly applicable to piecewise smooth func-
tions with a bounded number of pieces. The result also has
direct implications for provable convergence guarantees
when training these functions with subgradient descent.

1.3 Related work
Deep architecture with optimization as a layer. Inspired by
the remarkable effectiveness of DNNs, a line of work consid-
ers architectures with differentiable optimization as a layer
(Amos and Kolter 2017; Agrawal et al. 2019; Kotary et al.
2021). Since conventional activation functions such as ReLU
and max pooling can be reconstructed as LP solution func-
tions, such an architecture can capture more complex struc-
tures and richer behaviors (Amos and Kolter 2017). However,
a systematic study of approximation or statistical complexity
is lacking in the literature.

Approximation and learning theory for DNNs. The uni-
versal approximation capacity of neural networks has been
well-known (Hornik, Stinchcombe, and White 1989); for in-
stance, to achieve ϵ approximation accuracy of a Ck smooth
function with input dimension nx, one needs O(ϵnx/k) num-
ber of neurons (Pinkus 1999). But that alone does not explain
why neural networks are so effective in practice, since func-
tions such as polynomials, splines, and wavelets also produce
universal approximants. Recent papers aim to elucidate this
matter, with a particular focus on the role of depth (Allen-
Zhu and Li 2020; Lu et al. 2021). The role of depth has also
been examined from the perspective of approximation theory
(Yarotsky 2018; Chen et al. 2019), along with various other



measures such as the number of linear regions (Serra, Tjan-
draatmadja, and Ramalingam 2018) and Betti numbers (Bian-
chini and Scarsell 2014) (see (DeVore, Hanin, and Petrova
2021) for a recent survey). We also mention a very general
approach to expressiveness, in the context of approximation,
named the method of nonlinear widths (DeVore, Howard, and
Micchelli. 1989). Existing results on statistical complexity
of DNNs include bounds for the Vapnik-Chervonenkis (VC)
dimension (Bartlett, Maiorov, and Meir 1998; Anthony and
Bartlett 1999) and fat-shattering dimension (Anthony and
Bartlett 1999), with some recent developments on tighter
characterizations (Bartlett et al. 2019). The present study can
be seen as parallel development for the solution function and
its multi-layer architecture.

Explicit MPC and inverse optimality. Explicit MPC ex-
ploits multiparametric programming techniques to compute
the solution function offline and has been investigated for
LP/QP, nonlinear convex programming, and mixed-integer
programming (Grancharova and Johansen 2012). Another
closely related topic studied in the control community is in-
verse MPC, a.k.a., inverse parametric programming, which
aims to construct an optimization such that its optimal so-
lution is equivalent to a given function (Baes, Diehl, and
Necoara 2008). This inverse optimality problem has led to
interesting results for general nonlinear continuous func-
tions (Baes, Diehl, and Necoara 2008) and more recently
for continuous PWA functions based on techniques such as
difference-of-convex (DC) decomposition (Hempel, Goulart,
and Lygeros 2014) and convex lifting (Nguyen et al. 2018).
When the target function is only accessible through samples,
inverse optimization can be applied to determine an optimiza-
tion model that renders the set of sampled decisions approx-
imately or exactly optimal (see, e.g., (Ebert et al. 2021) for
a recent survey). Despite these developments, the questions
of approximation or estimation errors of solution functions
have largely eluded attention.

Max-affine and PWA regression. Max-affine regression,
originated in (Hildreth 1957), aims to recover an optimal
piecewise linear approximant to a convex function through
either parametric (Magnani and Boyd 2009; Hannah and
Dunson 2013; Ghosh, Pananjady, and A. Guntuboyia 2019)
or nonparametric regression (Hildreth 1957; Balázs, György,
and Szepesvári 2015; Balázs 2022). Recent studies provide
theoretical guarantees on near-optimal minimax rate (Ghosh,
Pananjady, and A. Guntuboyia 2019; Balázs, György, and
Szepesvári 2015) and adaptive partitioning (Balázs 2022).
PWA regression generalizes the function class to nonconvex
candidates; an affine fit is computed separately for each par-
tition of the space, which can be either predefined (Toriello
and Vielma 2015) or adaptively determined (Siahkamari et al.
2000). These two lines of work are closely linked through
DC modeling (Bačák and Borwein 2011).

2 Preliminaries
2.1 Model class assumptions
We consider the uniform error as ∥f − f̃∥∞ =

max x∈[0,1]nx |f(x) − f̃(x)|. To provide a meaningful
discussion of the approximation rate, we state the as-

sumptions on the function class (commonly referred
to as model class assumptions). Consider a Sobolev
space Wk,∞([0, 1]nx) defined as the space of functions
on [0, 1]nx with derivatives up to order k. The norm
in Wk,∞([0, 1]nx) is defined as ∥h∥Wk,∞([0,1]nx ) =

maxk:|k|≤k ess sup
z∈[0,1]nx

|Dkh(z)|, here k ∈ {0, 1, . . . }nx ,

|k| =
∑nx

i=1 ki, and Dk := ∂|k|

∂x
k1
1 ···∂xknx

nx

is the stan-

dard derivative operator. A restrictive subclass of functions
Fk,nx =

{
h ∈ Wk([0, 1]nx) : ∥h∥Wk([0,1]nx ) ≤ 1

}
can be

considered as a unit ball in Wk,∞([0, 1]nx) consisting of the
functions with all their derivatives up to order k bounded
by unity. In addition, the class Ck([0, 1]nx) consists of func-
tions continuously differentiable up to order k. Without loss
of generality, we assume the input space X := [0, 1]nx and
omit its dependence in the above definitions. We use ∥ · ∥ for
the standard Euclidean norm.

2.2 Disciplined parametrized programming
The DPP rule, as a subset of Disciplined Convex Program-
ming (DCP), places mild restrictions on how parameters can
enter expressions. We briefly describe the DPP rule and refer
the reader to (Agrawal et al. 2019, Sec. 4.1) for more details.

Let us begin with some basic terminologies. We refer to
x and θ in (1) as parameters, which, once instantiated with
values, are treated as constants by optimization algorithms; by
contrast, z is referred to as variables, the value of which will
be searched for optimal solutions. Suppose that the feasible
set is defined by a finite set of constraints:

R(x, θ) = {z ∈ Rnz : gi(z;x, θ) ≤ 0, i ∈ [m1]

hi(z;x, θ) = 0, i ∈ [m2]},

where we use the shorthand [m] = {1, ...,m}. As in DCP,
we assume that the objective function g and constraints
{gi}i∈[m1] and {hi}i∈[m2] are constructed from a given li-
brary of base functions, i.e., expressions. In DPP, an expres-
sion is said to be parameter-affine if it does not involve vari-
ables and is affine in its parameters, and it is parameter-free
if it does not have parameters. Under DPP, all parameters
are classified as affine, just like variables. Also, the prod-
uct of two expressions is affine when at least one of the
expressions is constant, or when one of the expressions is
parameter-affine and the other is parameter-free. For exam-
ple, let {A, a, λ} be parameters and z be variable. Then,
Az − a = 0 is DPP because Az is affine (A is parameter-
affine and z is parameter-free), −g is affine, and the sum of
affine expressions is affine. Similarly, λ∥z∥2 ≤ 0 is DPP
because λ∥z∥2 is affine (λ is parameter-affine and ∥z∥2 is
parameter-free). It is often possible to re-express non-DPP
expressions in DPP-compliant ways. For instance, let θ1, θ2
be parameters, then θ1θ2 is not DPP because both arguments
are parametrized; it can be rewritten in a DPP-compliant way
by introducing a variable z, replacing θ1θ2 with the expres-
sion θ1z while adding the constraint z = p2. Similarly, if A1

is a parameter representing a positive semidefinite matrix, the
expression z⊤Az is not DPP; it can be rewritten as ∥A2z∥22,
where A2 is a new parameter representing A1/2

1 . The set of



DPP-compliant optimizations is very broad, including many
instances of cone programs. We make sure to follow the
DPP rule throughout the paper so that the result is practically
relevant to end-to-end optimization that requires differentia-
tion through the solution function for backpropagation (see
(Agrawal et al. 2019)).

3 Approximation through the lens of
regression

In classical approximation theory, approximation rates are
obtained assuming full access to the target function f (De-
Vore and Lorentz 1993; Yarotsky 2018; DeVore, Hanin, and
Petrova 2021). In this section, we develop a new viewpoint of
approximation through the lens of regression with experimen-
tal design, where we leverage an estimation procedure that
learns the target function through a dataset to reason about
the complexity of approximation.

We formulate the approximation problem in a setting
closely related to fixed-design regression (Györfi et al. 2002).
Here, let Dn = {(x1, f(x1)), · · · , (xn, f(xn))} be a dataset
of n ∈ N points, where the locations {xi}i∈[n] ∈ Xn to eval-
uate the target function f can be arbitrarily selected.1 The key
idea of our proof technique is to first construct an estimator
A : (X × R)n → Π, where Π is the class of functions that
we are analyzing (i.e., the set of solution functions in our
setting).2 We then characterize the approximation error based
on the regression error of the estimator; meanwhile, we can
reason about the rate-distortion by examining the complexity
of the constructed function A(Dn).

In the following theorem, we establish the first universal
approximation theorem for the class of solution functions cor-
responding to LPs. Readers are referred to the supplementary
material for details of proof in the main document.
Theorem 1 (Approximation of C2 by max-affine regression).
For any target function f ∈ C2 and ϵ > 0, there exists a
solution function π of an LP with O

( (
nx

ϵ

)nx
2

)
constraints

and nx + 1 variables, such that ∥f − π∥∞ ≤ ϵ.

The proof exploits the fact that any C2 function can be
approximated by a DC function (Bačák and Borwein 2011);
we then construct a numerical procedure by extending the
algorithm from (Balázs, György, and Szepesvári 2015) for
max-affine regression to learn the potentially nonconvex tar-
get function from some dataset Dn.

Note that in statistical learning theory, it is uncommon to
impose a model class assumption on the target function that
gives rise to the data, so the generalization error is compared
with the best-in-class; while the generalization error may

1Note that, for the purpose of analyzing approximation power,
the labels received in the dataset are assumed to be accurate (i.e.,
noiseless observations). Noisy data can be processed by combining
the proposed method with standard regression techniques.

2In general, we can allow the estimator to have infinite com-
putational power to solve a nonconvex optimization to arbitrary
accuracy; however, for practical purposes, we restrict it to being a
computationally efficient procedure so that we can obtain an approx-
imant with a reasonable amount of time by learning from a finite
dataset Dn.

vanish as more data is collected, the approximation error may
always be bounded away from zero because the target func-
tion may not lie in the function class of estimators (Cucker
and Zhou 2007). The critical implication of the above result
is that we can approximate any smooth function to arbitrary
precision by constructing an LP with enough constraints and
variables. This is not without surprise, as LPs have arguably
the simplest form within the broad classes of optimization
(Boyd, Boyd, and Vandenberghe 2004).

If we count a “neuron” in a neural network the same way
we count a constraint in optimization, then the above ap-
proximation scheme gives the same order of complexity in
terms of ϵ as a one-layer neural network (DeVore, Hanin,
and Petrova 2021); however, the authors admit that a head-
to-head comparison may not be fair (indeed, we later refer
to an entire optimization program as a generalized neuron).
Interestingly, complexity is mainly reflected in the number of
constraints; the number of variables can be kept at the same
level as the input dimension. Lastly, it is not our intention
to exhaust all possible construction methods to derive the
rate-distortion; other methods may also apply (He et al. 2020;
DeVore, Hanin, and Petrova 2021).

4 The role of depth
In this section, we illuminate the role of depth in using deep
architectures with solution functions. Interestingly, depth
plays a very different role herein compared to DNNs (Yarot-
sky 2018; DeVore, Hanin, and Petrova 2021). We begin by
introducing some formalities to characterize the architecture,
which may be of independent interest.

4.1 Optimization-induced network architecture
We consider a deep network as a directed acyclic graph
(DAG), N := (V, E), where V and E are finite sets of ver-
tices (a.k.a., nodes) and directed edges. The set V consists of
the set Vi of input vertices as placeholders for independent
variables (i.e., inputs x), the set Vo of output vertices (i.e.,
corresponding output), and the set Vh := V \ {Vi,Vo} of
hidden vertices, which store certain intermediate values to
compute the output. The output of each v ∈ V \Vi is given by
the solution function (parameterized by θv), πv(·; θv), which
takes as input from incoming edges; for each edge e ∈ E , an
affine transformation he(·; θe) is applied to the output of the
incident node. Analogous to DNNs, we define a general no-
tion of a neuron as a computational unit associated with each
node v ∈ V , which takes as input the (possibly vector-valued)
outputs xv′ from the incident nodes v′ ∈ V \Vo with an edge
e = (v′, v) ∈ E directed to v, and produces the output

xv := πv({he(xv′ ; θe)}e=(v′,v)∈E , θv). (2)
As a convention, outputs from input nodes v ∈ Vi are exter-
nally provided function inputs; outputs from neurons associ-
ated with output nodes v ∈ Vo are given by affine transfor-
mation of values from adjacent incoming nodes. Thus, we
define the output function fN : Rnx → Rno of the network
N by

fN (x) := (xv, v ∈ Vo). (3)
Since a vector-valued function can be regarded as a concate-
nation of scalar-valued functions, for simplicity, we will only



consider the case where no = 1. The collection of {θv, θe}
for v ∈ V and e ∈ E are referred to as the trainable parame-
ters of N . For a fixed architecture, the set of output functions
forms a parameterized nonlinear manifold.

For the exposition, we can also organize the nodes of N
into layers. The zeroth layer, called the input layer, consists
of all nx input vertices in Vi. The input layer is followed
by hidden vertices organized into L hidden layers, with the
j-th layer Hj consisting of all nj vertices that are j-hop
away from the input layer excluding the output vertices, for
j ∈ [L]. Finally, the output layer consists of all output nodes
Vo, which contains at least one node that is L+ 1-hop neigh-
bor of the input layer (otherwise, the depth must be less than
L). The main distinction with conventional DNNs is that
the computation of a neuron is given by some solution func-
tion instead of the usual coordinate-wise activation function
(e.g., ReLU). Since the computational complexity of an opti-
mization family (e.g., LPs/QPs) can usually be characterized
by the number of variables and constraints, we measure the
width of each layer by the total number of variables and con-
straints among nodes therein, due to a simple fact that we
state without proof.
Proposition 1 (Concatenation rule). The concatenation of
solution functions {πv(·, θv)}v∈V′ , where πv(·, θv) is as-
sociated with an optimization with nzv variables and ncv
constraints, can be written as a solution function of some
optimization with

∑
v∈V′ nzv variables and

∑
v∈V′ ncv con-

straints (up to some additive constants no larger than
|V ′|+ 1).

Henceforth, we refer to the integers W v
j :=

∑
v∈Hj

nzv
and W c

j :=
∑

v∈Hj
ncv as the variable width (v-width) and

constraint width (c-width) of the j-th layer, respectively, and
L as the depth of the network. We usually use the maximum
v-width and c-width among all hidden layers, denoted byW v

and W c respectively, to characterize the network width.
Definition 1. We define ΥWv,W c,L as the family of functions
fN in (3) with width and depth bounded by W v,W c, and L.

The set of solution functions Π =
{π(·; θ) : Rnx → R | θ ∈ Θ} can be regarded as a
single-layer network where the output transformation
is identity. In the sections pertaining to approximation
property, we will focus exclusively on LP/QP solution
functions. Also, to make a distinction between networks and
network architectures: We define the latter as the former with
unspecified weights. The universal approximation property
of a network architecture is discussed in the sense that we
can approximate any function from a model class F with
error ϵ by simply some weight assignment.

4.2 Exact construction of Taylor polynomials
In the recent work of (Yarotsky 2018), it is shown that DNNs
can approximate some elementary functions such as the mul-
tiplication operator with progressive accuracy by increasing
depth, which is then used to establish the improvement of
approximation due to depth. The first intriguing role of depth
for optimization-induced architecture is that we can exactly
construct the product function with a network of only two
layers. This is based on the following simple observations:

• The solution to {minz −z s.t. x1z ≤ x2}, where
x1, x2 ∈ (0, 1] are the parameters of the optimization (i.e.,
inputs), is exactly x2/x1.

• A two-layer architecture, with {minz −z s.t. x1z ≤ 1}
as the first layer, the output of which is provided as input
to {minz −z s.t. □z ≤ x2} as the parameter value for □,
has an output of x1x2 for any x1, x2 ∈ (0, 1].

Both observations can be directly verified by writing the
Karush–Kuhn–Tucker (KKT) conditions.3 Note that in the
above, we do not consider the measure-zero event that any
coordinate of x can be 0. Most importantly, observe that the
above constructions comply with the DPP rule (e.g., x1z
is affine because x1 is parameter-affine and z is parameter-

free). In the following, we use
(
k
n

)
to denote the binomial

coefficient n choose k and ⌈·⌉ as the ceiling function.

Theorem 2. There exists a universal multilayer LP architec-
ture that:

(a) can approximate any function from Fk,nx
with uniform

error bounded by ϵ > 0;
(b) has a depth of at most 2k and the widest layer has

at most
(
2nx + 2 + 2

(
nx

k + nx

))
Nnx constraints

and
(
1 +

(
nx

k + nx

))
Nnx variables, where N =

⌈nx( 1
k!ϵ )

1/k⌉.

The theorem above provides an upper bound for approxi-
mation complexity with a universal network architecture to
approximate all functions in Fk,nx

. For DNNs to achieve
the same error ϵ (Yarotsky 2017), one needs a depth of
O(ln(1/ϵ)) with O(ϵ−nx/k ln(1/ϵ)) weights; in contrast, for
optimization-induced networks, we only need a fixed depth
that does not grow with the accuracy requirement ϵ and
O(ϵ−nx/k) constraints and variables. The removal of the
dependence of depth on ϵ is due to the fact that instead of
approximating some Taylor polynomial, as is done for DNNs
with ReLU activation, we are able to exactly reconstruct
the polynomial function with a deep optimization-induced
network, which eliminates any approximation error due to re-
construction. We can also remove a factor of 2n

2
x/k from the

number of constraints and variables relative to what would
yield without exploiting the special advantage of solution
functions. This is based on another simple observation:

• The solution to {minz∈[0,1] −z s.t. (x − 1)z ≤ 0, (x +
1)z ≥ 0}, where x ∈ R is the optimization parameter (i.e.,
input), is exactly the bump function

ψ(x) =

{
1, |x| ≤ 1

0, otherwise
;

3The first observation, in particular, may be contradictory to the
common belief held in the multi-parametric programming literature
that the solution function of an LP is always piecewise linear (Gran-
charova and Johansen 2012). A close examination of their argument
reveals that it holds true only when the LP is free of any expression
in its constraints where parameters multiply with variables.



• More generally, for an arbitrary union of intervals
∪i∈I [ai, bi], the solution to {minz∈[0,1] −z s.t. (x −
bi)z ≤ 0, (x− ai)z ≥ 0,∀i ∈ I}, where x ∈ R, is exactly
the multi-bump function that is 1 if x ∈ ∪i∈I [ai, bi] and 0
otherwise.

The proof relies on partitioning the input space into a grid
of (N + 1)nx functions. With the above bump functions, we
can decrease the size of the grid N from ⌈( ϵk!

2nxnk
x
)−1/k⌉ in

(Yarotsky 2018) to ⌈( ϵk!
nk
x
)−1/k⌉ by a factor of 2nx/k, resulting

in an overall reduction of 2n
2
x/k in complexity, which can

be substantial for high dimensions. Interestingly, from the
construction of bump functions, the solution function can
act as some switching mechanism or logical expressions
(e.g., if-then-else), similar to the role of a binary variable in
mixed-integer programming. To sum up, Sections 3 and 4
answered the first question posed in the introduction, namely,
the approximation properties of the solution functions. We
now proceed to answer the second question, namely, the
statistical complexity of the solution functions.

5 Definability and Whitney stratification
Real-world optimization often has some nice structures that
can be exploited (Ioffe 2009). Given some mild assumptions
about objective/constraint functions, we can show that the
solution function enjoys a nice property, namely, whitney
stratification, which induces desirable computational guar-
antees (Ioffe 2009; Davis et al. 2020). In this section, we
resume the generality of a convex optimization problem.

First, let us recall some fundamental concepts in tame
geometry (Van den Dries and Miller 1996; Ioffe 2009).

Definition 2 (Whitney Stratification). A Whitney Ck stratifi-
cation of a set I is a partition of I into finitely many nonempty
Ck manifolds, called strata, with the following conditions:

1) For any two strata Ia and Ib, Ia ∩ Ib ̸= ∅ implies that
Ia ⊂ clIb holds, where clIb is the closure of the set Ib.

2) For any sequence of points xk in a stratum Ia, converging
to a point x⋆ in a stratum Ib, if the corresponding normal
vectors vk ∈ NIa(xk) converge to a vector v, then the
inclusion v ∈ NIb(x

⋆) holds. Here, NIa(xk) denotes the
normal cone to Ia at xk.

Roughly speaking, stratification is a locally finite partition
of a given set into differentiable manifolds, which fit together
in a regular manner (property 1) in Def. 2). Whitney stratifi-
cation as defined above is a special type of stratification for
which the strata are such that their tangent spaces (as viewed
from normal cones) also fit regularly (property 2)). There are
several ways to verify Whitney stratifiability. For example,
one can show that the function under study belongs to one of
the well-known function classes, such as semialgebraic func-
tions, whose members are known to be Whitney stratifiable
(Van den Dries and Miller 1996). However, to study the solu-
tion function of a general convex optimization problem, we
need a far-reaching axiomatic extension of semialgebraic sets
to classes of functions definable on “o-minimal structures,”
which are very general classes and share several attractive
analytic features as semialgebraic sets, including Whitney

stratifiability (Van den Dries and Miller 1996); the definition
of o-minimal structures can be found in the appendix.

Assumption 1. The function g and the set-valued map R are
definable in some o-minimal structure.

This is a mild assumption as practically all functions from
real-world applications, including deep neural networks, are
definable in some o-minimal structure (Davis et al. 2020);
also, the composition of mappings, along with the sum, inf-
convolution, and several other classical operations of analysis
involving a finite number of definable objects in some o-
minimal structure remains in the same structure (Van den
Dries and Miller 1996).

Theorem 3. The solution function (1) is Whitney stratifiable.
In addition, any function in the class ΥWv,W c,L is Whitney
stratifiable for any positive integers W v,W c, and L.

The far-reaching consequence of definability, exploited
in this study, is that definable sets and functions admit, for
each k ≥ 1, a Ck–Whitney stratification with finitely many
strata (see, for instance, (Van den Dries and Miller 1996,
Result 4.8)). This remarkable property, combined with the
result that any stratifiable functions enjoy a nonsmooth Kur-
dyka–Łojasiewicz inequality (Bolte et al. 2007), provides
the basis for convergence analysis of many optimization al-
gorithms (Drusvyatskiy and Lewis 2018). In particular, the
application of subgradient methods to solution functions or
optimization-induced networks is endowed with rigorous
convergence guarantees (see, e.g., (Davis et al. 2020)).

6 Covering number bounds
In this section, we provide covering number bounds for the
solution functions of LPs, QPs, and in general, any convex
programs. We focus on the empirical L1 covering number
N1(ϵ,Π, n), which is a variant of the covering number for a
set of functions Π at ϵ accuracy with respect to the empirical
L1 metric defined over n data points.

Definition 3 ((Zhang 2002), empirical L1 covering number).
Given observations Dn = {x1, ..., xn} and vectors f(Dn) =
[f(x1), ..., f(xn)] ∈ Rn for any f ∈ F , the empirical L1

covering number, denoted as N1(ϵ,F ,Dn), is the minimum
number m of a collection of vectors g1, ..., gm ∈ F , such
that ∀f ∈ F , there exists an gj such that

∥f − gj∥Dn
:=

1

n

n∑
i=1

|f(xi)− gj(xi)| ≤ ϵ.

We define N1(ϵ,F , n) = supDn
N1(ϵ,F ,Dn). The set

{g1, ..., gm} above is called the (empirical) ϵ-cover of F and
the logarithm of covering number logN1(ϵ,F , n) is known
as the entropy number.

6.1 The class of LPs and QPs
Consider the function

πQP (x; θ) := argmin
z∈R(x,θ)

(
1

2
A0z + Ux

0 x+ Uθ
0 θ + b0

)⊤

z,

(4)



with R(x, θ) := {z : A1z ≤ b1 + Ux
1 x + Uθ

1 θ,A2z =
b2+U

x
2 x+U

θ
2 θ}, where x and θ are the parameters, z ∈ Rnz

is the optimization variable, and all the rest are fixed hyper-
parameters of compatible dimensions; in particular, A0 ≻ 0
is positive definite, and m1 and m2 are the number of in-
equality and equality constraints, respectively. We can also
define πLP (x; θ) by setting A0 = 0 in (4). Now, let us also
introduce

κ⋆LP = max
ι⊆{1,...,m1},|ι|≤nz−m2

∥∥∥ÃLP (ι)
∥∥∥
2
, (5)

where

ÃLP (ι) =

[
[A1]ι
A2

]−1 [
[Ux

1 ]ι
Ux
2

]
. (6)

Similarly, define

κ⋆QP = max
ι⊆{1,...,m1},|ι|≤nz−m2

∥ÃQP (ι)∥2, (7)

where ÃQP (ι) is given as

ÃQP (ι) =M
(
[A1]ιA

−1
0 Ux

0 + [Ux
1 ]ι
)
−A−1

0 [Ux
0 ]ι (8)

withM = A−1
0 [A1]

⊤
ι

(
[A1]ιA

−1
0 [A1]

⊤
ι

)−1
. Here, ∥·∥2 is the

spectral norm, and [A1]ι is the submatrix formed by the rows
of A1 indexed by ι, and the inverse is understood as pseudo-
inverse in the case of a rectangular matrix. The quantities
κ⋆LP and κ⋆QP are some condition numbers associated with
the optimization parameters. For instance, under the linear
independence constraint qualification (Luo, Pang, and Ralph
1996), the inverse matrix in (6) is always full-rank; the align-
ment of some constraints, on the other hand, will result in
larger values of κ⋆LP , since it will yield larger dual variables.
In this section, we assume standard constraint qualifications,
including Mangasarian-Fromovitz constraint qualification,
constant rank constraint qualification, and strong coherent
orientation condition (Luo, Pang, and Ralph 1996), such that
both κ⋆LP and κ⋆QP are bounded. We also assume that Θ is
compact and m1 + m2 ≥ nz , where nz is the dimension
of the variables in (4); this assumption is easy to be relaxed
with a slightly more complicated (but not necessarily more
insightful) bound, thus we make the restriction to streamline
the presentation. We define Π□ = {π□(·, θ) : θ ∈ Θ}, where
□ can be LP or QP.

Theorem 4. The empirical L1 covering number of Π□ over
bounded input space is controlled by

logN1(ϵ,Π□, n) ≲
κ⋆2□
ϵ2

∑
0≤i≤nz−m2

(
m1

i

)
,

where □ can be either LP or QP.

The above bound implies that the complexity of the class
of LPs and QPs increases by the number of inequality con-
straints (which agrees with our approximation results ob-
tained so far) and also depends on the conditional numbers
κ⋆LP and κ⋆QP that bound the maximum slope of affine func-
tions among all pieces.

6.2 Generic optimization class
More generally, we consider any optimization (possibly non-
convex) with a definable objective and constraints. We note
that bounding the entropy numbers of the classes Ck with
respect to the supremum norm was were among the first
results after the introduction of the concept of covering num-
bers (e.g., (Cucker and Smale 2002)). However, the solution
function does not belong to Ck since the function is only
piecewise smooth and may be even not differentiable at the
boundary between two pieces; besides, each piece may be
nonconvex, but existing results assume that the domain is
convex.

Theorem 5. Consider the set Π := {π(·, θ) : θ ∈ Θ}, where
π is defined in (1) and X and Θ are compact. Then,

logN1(ϵ,Π, n) ≲ n (1/ϵ)
1/k

+ knx log (1/ϵ) ,

where the constant depends on the number of strata in the
Ck-Whitney stratification, which is always finite.

The proof exploits the result from the last section that
the solution function of any optimization given by defin-
able objective and constraints is Whitney stratifiable. This
provides us with a starting point to bound the complexity,
since any Whitney stratifiable function is piecewise-smooth
with bounded pieces (Van den Dries and Miller 1996). We
also proved an empirical L1 covering number bound for Ck

functions, which can be of independent interest. Note that
(Pontil 2003) proved that the empirical covering number is
on the same order of the standard covering number for the
smooth function class, in the sense that the empirical cover-
ing number can be lower bounded by the standard covering
number on a larger scale (see the lower bound in (Pontil 2003,
Thm. 1)). However, for their lower bound to be non-vacuous,
we need the size of the dataset to be on the same order as
a covering set of the entire space. This only applies when
the number of data scales exponentially with dimension nx,
which is rarely the case with practical problems. On the other
hand, our result makes explicit the dependence on the num-
ber of data points n and recovers the bound for the standard
covering number when n = O ((1/ϵ)nx) in view of (Pontil
2003).

To summarize this section, the key implication of Theo-
rems 4 and 5 is that the solution function of any definable
optimization is statistically learnable.

7 Conclusion
In this paper, we provide definite (but partial) answers to
fundamental questions about the approximation and learning-
theoretic properties of solution functions. The results pro-
vided in the paper can be used to understand questions about
sample complexity and approximation capacity in the prac-
tice of decision making, and can help guide practice in vari-
ous engineering domains discussed in the Introduction. Given
the importance of this class of functions in the practical and
theoretical arena, we expect our results to advance the un-
derstanding of algorithm design and spur further research on
this problem.



8 Acknowledgments
The authors acknowledge the generous support by NSF, the
Commonwealth Cyber Initiative (CCI), C3.ai Digital Trans-
formation Institute, and the U.S. Department of Energy.

References
Ab Azar, N.; Shahmansoorian, A.; and Davoudi, M. 2020.
From inverse optimal control to inverse reinforcement learn-
ing: A historical review. Annual Reviews in Control, 50:
119–138.
Adams, S.; Cody, T.; and Beling, P. A. 2022. A survey of
inverse reinforcement learning. Artificial Intelligence Review,
1–40.
Agrawal, A.; Amos, B.; Barratt, S.; Boyd, S.; Diamond, S.;
and Kolter, J. Z. 2019. Differentiable convex optimization
layers. Advances in neural information processing systems,
32.
Agrawal, A.; Verschueren, R.; Diamond, S.; and Boyd, S.
2018. A rewriting system for convex optimization problems.
Journal of Control and Decision, 5(1): 42–60.
Allen-Zhu, Z.; and Li, Y. 2020. Backward Feature Correction:
How Deep Learning Performs Deep Learning. arXiv preprint
arXiv:2001.04413.
Amos, B. 2022. Tutorial on amortized optimization for learn-
ing to optimize over continuous domains. arXiv preprint
arXiv:2202.00665.
Amos, B.; and Kolter, J. Z. 2017. OptNet: Differentiable
optimization as a layer in neural network. In International
Conference on Machine Learning, 136–145. PLMR.
Anthony, M.; and Bartlett, P. L. 1999. Neural network learn-
ing: Theoretical foundations. Cambridge university press
Cambridge, 9.
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A Appendix
B Proofs for approximation through the lens of regression 3

We begin with some notations. Following (Balázs, György, and Szepesvári 2015; Balázs 2022), we introduce the class of convex,
bounded, subdifferentiable, and uniformly Lipschitz functions on the set X as the following

CX,B,L :=

{
f : X → R

∣∣∣∣ f is convex, ∥f∥∞ ≤ B, and ∥s∥∞ ≤ L, ∀s ∈ ∂f(x)

}
, (9)

with scalars B,L > 0. We also introduce the class of max-affine functions that are uniformly bounded and uniformly Lipschitz
with at most K ∈ N hyperplanes:

MK
X,B,L :=

{
h : X → R

∣∣∣∣ h(x) = max
k=1,...,K

p⊤k x+ qk, ∥pk∥∞ ≤ L, h(x) ∈ [−Bd, B], ∀x ∈ X

}
, (10)

where Bd := B + nxL. We also denote diam(X ′) := maxx,x′∈X′ ∥x − x′∥∞ as the diameter of the set X . For example,
diam(X) := 1 by the assumption that X := [0, 1]nx . We start with a simple observation with nontrivial implications.

Lemma 1. Any function h ∈ MK
X,B,L can be written as a solution function of some LP with K constraints and nx+1 variables.

In addition, any function of the form f = h1 − h2, where h1, h2 ∈ MK
X,B,L, can be written as a solution function of some LP

with 2K + 1 constraints and nx + 3 variables.

Proof. Suppose h(x) = max
k=1,...,K

p⊤k x+ qk. It can be seen that by introducing an additional variable t and K constraints in the

form of p⊤k x+ qk ≤ t and changing the maximum to minimum, we have constructed an equivalent optimization with solution
equal to h(x). This is known as the epigraph reformulation of an optimization. The construction for f = h1 − h2 is performed
by introducing ti and K constraints for each hi, i = 1, 2, plus an additional variable t3 and an additional constraint t1 + t2 ≤ t3,
with the objective to minimizes over t3.

B.1 Proof of Theorem 1
Proof. By (Bačák and Borwein 2011), any function f ∈ C2 can be written as a DC function: f = ϕ1 − ϕ2, where ϕi ∈ CX,B,L

for some B and L. The following proof extended the algorithm of (Bronshteyn and Ivanov 1975; Balázs, György, and Szepesvári
2015), which is designed for convex max-affine functions, to the case of piecewise affine functions (not necessarily convex).
For any x ∈ X and convex function ϕ, let ∇ϕ(x) ∈ ∂ϕ(x) be an arbitrary fixed subgradient of ϕ at x. For any t > 0 and
i = 1, 2, define Rt := 1 + 2tL, νi(x) := x+ t∇ϕi(x) that combines the point x and ∇ϕi(x) weighted by t, and Ki := {νi(x) :
x ∈ X} ⊂ Rnx as an expanded set of X along the direction ∇ϕi. Note that since the subgradient of a convex function is
monotone, νi(·) is strictly monotone, so νi(x) ̸= νi(y) for any x ̸= y. This also implies that νi(·) is a bijection and its inversion
is well-defined. Let Kϵ,i ⊆ Ki be an

√
ϵ-net of set Ki with respect to Euclidean norm ∥ ·∥, andXϵ,i ≜

{
ν−1
i (z) ∈ X : z ∈ Kϵ,i

}
be its preimage corresponding to the mapping νi for i = 1, 2. Since Rt ≥ diam(Ki), by standard covering number argument
(Wainwright 2019) and the fact that ∥x∥ ≤ √

nx∥x∥∞ for any x, |Kϵ,i| = |Xϵ,i| ≤
(
9nxR

2
t /ϵ
)nx/2 for all ϵ ∈ (0, 9nxR

2
t ]. Note

that since Kϵ,i is an
√
ϵ-net of set Ki, by definition, for any x ∈ X , there exists x̂i ∈ Xϵ,i such that ∥νi(x) − νi(x̂i)∥ ≤

√
ϵ.

Hence,

∥x− x̂i∥2 + t2∥∇ϕi(x)−∇ϕi(x̂i)∥2

≤ ∥x− x̂i∥2 + 2t(x− x̂i)
⊤(∇ϕi(x)−∇ϕi(x̂i)) + t2∥∇ϕi(x)−∇ϕi(x̂i)∥2

= ∥νi(x)− νi(x̂i)∥2

≤ ϵ,

where the first inequality is due to the convexity of ϕi. This implies that for any x ∈ X , there exists x̂i ∈ Xϵ,i such that ∥x− x̂i∥
is controlled by

√
ϵ and ∥∇ϕi(x)−∇ϕi(x̂i)∥ is bounded by

√
ϵ/t .

Now, consider K :=
(
18nxR

2
t /ϵ
)nx/2 and set XK,i ≜

{
x̂
(i)
1 , . . . , x̂

(i)
K

}
⊆ X such that Xϵ/2,i ⊆ XK,i. Then, we introduce

the following piecewise affine function h : X → R

h(x) = max
k=1,...,K

{
ϕ1(x̂

(1)
k ) +∇ϕ1(x̂(1)k )⊤(x− x̂

(1)
k )
}

− max
k=1,...,K

{
ϕ2(x̂

(2)
k ) +∇ϕ2(x̂(2)k )⊤(x− x̂

(2)
k )
}
.



Hence, for any x ∈ X, we have that

|f(x)− h(x)| ≤
∣∣∣∣ϕ1(x)− max

k=1,...,K

{
ϕ1(x̂

(1)
k ) +∇ϕ1(x̂(1)k )⊤(x− x̂

(1)
k )
}∣∣∣∣

+

∣∣∣∣ϕ2(x)− max
k=1,...,K

{
ϕ2(x̂

(2)
k ) +∇ϕ2(x̂(2)k )⊤(x− x̂

(2)
k )
}∣∣∣∣

=
∑
i=1,2

ϕi(x)− max
k=1,...,K

{
ϕi(x̂

(i)
k ) +∇ϕi(x̂(i)k )⊤(x− x̂

(i)
k )
}
,

where the last equality is because the function maxk=1,...,K

{
ϕi(x̂

(i)
k ) +∇ϕi(x̂(i)k )⊤(x− x̂

(i)
k )
}

is a uniform lower bound of
ϕi by convexity. Let us define the selective function

ki(x) = argmin
k=1,...,K

∥∥∥ν−1
i (x)− ν−1

i (x̂
(i)
k )
∥∥∥ ,

which selects the index of the point in XK,i such that x(i)k is closest to x as measured by ν−1
i . Since XK,i is the preimage of

Kϵ/2,i, which is, by definition, an ϵ/2-cover of Ki,

|f(x)− h(x)| ≤
∑
i=1,2

ϕi(x)− ϕi(x̂
(i)
ki(x)

) +∇ϕi(x̂(i)ki(x)
)⊤(x− x̂

(i)
ki(x)

)

≤
∑
i=1,2

∥∇ϕi(x)−∇ϕi(x̂(i)ki
)∥∥x− x̂

(i)
ki
∥

≤ ϵ

t
,

where the first inequality is by plugging ki(x) into the maximum operator, the second inequality is due to Cauchy-Schwarz, and
the last inequality follows from the fact that ∥x− x̂i∥ is controlled by

√
ϵ/2 and ∥∇ϕi(x)−∇ϕi(x̂i)∥ is bounded by

√
ϵ/2/t

by the aforementioned reasoning. Therefore, we have shown that h can uniformly approximate f by accuracy ϵ/t.

From K :=
(
18nxR

2
t /ϵ
)nx/2, we have ϵ = 18nxR

2
tK

−2/nx . Therefore,

∥f − h∥∞ ≤ ϵ

t
=

18nxR
2
t

t
K−2/nx .

Optimizing over t optimal, we obtain t∗ = 1
2L . Therefore, by choosing K∗ =

(
ϵ

144nxL

)−nx
2

, we have that ∥f − h∥∞ ≤ ϵ. The
proof is concluded by recalling Lemma 1.

C Proof in Section “the role of depth”
Before we prove the main theorem, we first establish an intermediate result regarding the exact reconstruction of polynomial
functions.

Lemma 2. Let Pm(x) := (x− 2m+1
2N )n =

∏nx

i=1(xi −
2mi+1
2N )ni be a polynomial of order k ≥ 2, where m := (m1, ...,mnx

) ∈
{0, 1, ..., N − 1}nx and n ∈ {0, 1, ..., k}nx such that |n| =

∑
i ni ≤ k. Suppose that xi ̸= 2mi+1

2N for all i ∈ [nx]. Then, we
can reconstruct Pm(x) by a chain graph with depth of at most 2(k − 1), where each node is an LP with at most 1 variable and 2
constraints.

Proof. The proof is inspired by the observation that we can exactly reconstruct a product function by a composition of LPs. In
particular, we deal with the case that the input can be negative or translated with some minor modifications to the reconstruction.
First, the solution to {minz −z s.t. (x1−a1)z ≤ x2−a2, (x1−a1)z ≥ x2−a2}, where x1 ̸= a1 is exactly (x2−a2)/(x1−a1).
Second, a two-layer architecture, with {minz −z s.t. (x1 − a1)z ≤ 1, (x1 − a1)z ≥ 1} as the first layer, the output of which
is provided as input to {minz −z s.t. □z ≤ x2 − a2, □z ≥ x2 − a2} as the value for parameter □, has an output that is
(x1 − a1)(x2 − a2) for any x1 ̸= a1. Thus, the result follows by repeated composition of product functions.

C.1 Proof of Theorem 2
Proof. The proof follows the idea of (Yarotsky 2017, Thm. 1) that performs local Taylor approximation for each cell of a
partition of controlled resolution. We will focus mainly on the deviation points.



Consider a partition of the space [0, 1]nx into Nnx cells of equal size. Denote

Im(x) =

{
1 if

∣∣xi − 2mi+1
2N

∣∣ ≤ 1
2N , ∀i = 1, ..., nx

0 otherwise

as the indicator function of the cell indexed by m, where m = (m1, . . . ,mnx
) ∈ {0, 1, . . . , N − 1}nx . Also, let

hm(x) =
∑

n:|n|≤k

Dnf

n!

∣∣∣∣
x= 2m+1

2N

(
x− 2m+ 1

2N

)n

be the Taylor approximation of f within the cell indexed by m or order n, where the point of approximation is selected at the
center of the cell. Here, n! =

∏nx

i=1 ni! as usual. Let f̂(x) =
∑

m Im(x)hm(x), which pieces together local approximations for
each cell of the partition. Then the approximation error can be bounded by the standard argument for Taylor’s expansion:∣∣∣f(x)− f̂(x)

∣∣∣ = ∣∣∣∣∣∑
m

Im(x) (f(x)− hm(x))

∣∣∣∣∣ (11)

≤ max
m:|xi−

mi+1
2N |< 1

2N ∀i
|f(x)− hm(x)| (12)

≤ nkx
k!

(
1

N

)k

max
n:|n|=k

ess sup
x∈[0,1]nx

|Dnf(x)| (13)

≤ nkx
k!

(
1

N

)k

, (14)

where the first equality is due to f(x) =
∑

m Im(x)f(x), the first inequality is because there is no overlapping among the
supports of Im, the second inequality is a standard Taylor approximation bound, the last inequality is due to the model class
assumption. Substituting N = ⌈nx( 1

k!ϵ )
1/k⌉ gives the error of ϵ. Note that the second step (13), a reduction at the order of 2nx/k

compared to (Yarotsky 2017, Thm. 1) is achieved due to the exact partitioning of the space with the bump function.
What is left of the proof is to reconstruct the function

∑
m Im(x)hm(x). To this end, we first recognize that

Im(x) = argmin
z∈[0,1]

− z

s.t.
(
xi −

2mi + 1

2N
− 1

2N

)
z ≤ 0 ∀i = 1, ..., nx(

xi −
2mi + 1

2N
+

1

2N

)
z ≥ 0 ∀i = 1, ..., nx,

which is a bump function in nx-dimensional space. Notice that the above optimization has 2nx + 2 constraints and 1 variable.
Also, note that hm(x) can be reconstructed by first reconstructing each polynomial separately, which requires a chain with at

most 2(k − 1) depth, where each node is an LP with at most 1 variable and 2 constraints. Then, we take a weighted sum over all
polynomials, which is simply an affine transformation on the outputs of each chain graph, so no additional layers are needed.

Thus, in total, we can have a graph with a depth of at most 2(k − 1), where each layer has at most
(

nx
k + nx

)
LPs, each with at

most 1 variable and 2 constraints.
Finally, to reconstruct f̂(x), we can first multiply the outputs of Im(x) and hm(x), which requires an additional 2 LP layers.

Also note that the width of the first layer is also increased by 2nx + 2 constraints and 1 variable due to the need for Im. Since
there are in total Nnx possible choices of m, to implement the product, we need Nnx 2-layered LPs, each with 3 constraints and
1 variable, whose outputs are then summed up in the last layer.

Summing up, we have constructed a network with a depth of 2k, where the first layer has
(
2nx + 2 + 2

(
nx

k + nx

))
Nnx

constraints and
(
1 +

(
nx

k + nx

))
Nnx variables, and the last layer has 3Nnx constraints and Nnx variables. Observe that the

widest layer is the first layer. The result follows by plugging in N = ⌈nx( 1
k!ϵ )

1/k⌉ in the above.

Remark 1. By comparing with the order given in (Yarotsky 2018, Thm. 1) for the case of DNN, we can see that our construction
has a fixed depth that does not grow with the accuracy requirement ϵ, and also a width that is reduced by the order of 2n

2
x/k,

which can be substantial for high-dimensional problems.



Figure 1: Reconstruction of Taylors’ polynomial, where we use “(i)” to denote an optimization to obtain the inverse of the input, further
“(ii)” denotes an optimization to obtain the product of two inputs.

Remark 2. To stress on the exact reconstruction, we provide an example of how we perform efficient reconstruction of
2∏

k=1

ψ(4Nxk)︸ ︷︷ ︸
ϕ0(x)

x31x2, visualized in Figure 1.

D Proof in Section “Definability and whitney stratification”
For the sake of completeness, let us recall some fundamental concepts/results in tame geometry, which allow us to study the
global geometry of the solution function of a wide range of optimization problems. More information can be found in (Van den
Dries and Miller 1996; Ioffe 2009; Davis et al. 2020).

Definition 4 (Whitney Stratification). A Whitney Ck stratification of a set I is a partition of I into finitely many nonempty Ck

manifolds, called strata, satisfying the following compatibility conditions:

1. For any two strata Ia and Ib, the implication Ia ∩ Ib ̸= ∅ implies that Ia ⊂ clIb holds, where clIb denotes the closure of the
set Ib.

2. For any sequence of points xk in a stratum Ia, converging to a point x⋆ in a stratum Ib, if the corresponding normal vectors
vk ∈ NIa(xk) converge to a vector v, then the inclusion v ∈ NIb(x

⋆) holds. Here NIa(xk) denotes the normal cone to Ia at
xk.

Roughly speaking, stratification is a locally finite partition of a given set into differentiable manifolds, which fit together in a
regular manner (property 1 in Def. 4). Whitney stratification as defined above is a special type of stratification for which the
strata are such that their tangent spaces (as viewed from normal cones) also fit regularly (property 2).



There are several ways to verify Whitney stratifiability. For example, one can show that the function under study belongs to
one of the well-known function classes, such as semialgebraic functions (Van den Dries and Miller 1996), whose members are
known to be Whitney stratifiable. However, to study the solution function of a general convex optimization problem, we need a
far-reaching axiomatic extension of semialgebraic sets to classes of functions definable on “o-minimal structures,” which are
very general classes and share several attractive analytic features as semialgebraic sets, including Whitney stratifiability (Davis
et al. 2020; Van den Dries and Miller 1996).
Definition 5 (o-minimal structure). (Van den Dries and Miller 1996) An o-minimal structure is defined as a sequence of Boolean
algebras Ov of subsets of Rv , such that for each nv ∈ N, the following properties hold:

1. If some set X belongs to Ov , then X × R belong to Ov+1.
2. Let Pproj : Rv × R → Rv denote the coordinate projection operator onto Rv, then for any X in Ov+1, the set Pproj(X)

belongs to Ov .
3. Ov contains all sets of the form {x ∈ Rv : y(x) = 0}, where y(x) is a polynomial in Rv .
4. The elements of O1 are exactly the finite unions of intervals (possibly infinite) and points.

Then all the sets that belong to Ov are called definable in the o-minimal structure.
Definable sets have broader applicability than semialgebraic sets (in the sense that the latter is a special kind of definable sets)

but enjoy the same remarkable stability property: the composition of definable mappings (including sum, inf-convolution, and
several other classical operations of analysis involving a finite number of definable objects) in some o-minimal structure remains
in the same structure.

D.1 Proof of Theorem 3
Proof. Let gR(z;x, θ) := g(z;x, θ) + IR(x,θ) be the penalized formulation of the optimization problem in 1. By Assumption 1,
the definability of the indicator function, and the fact that definability is preserved under addition and composition, which is due
to the definable counterpart of the Tarski-Seidenberg theorem (Van den Dries and Miller 1996), gR(z;x, θ) is definable on the
same o-minimal structure.

Let g∗(x, θ) := minz {g(z;x, θ) | subject to z ∈ R(x, θ)} = minz gR(z;x, θ) be the optimal value function. Since definabil-
ity is preserved under inf projection, g∗(x, θ) is definable. Also, recognize that π(x, θ) = {z : gR(z;x, θ) = g∗(x, θ)}, by
definition, π(x, θ) is definable on the same o-minimal structure. Since the output of any function in ΥWv,W c,L is given by finite
operations of affine transformation and the composition of definable functions (as stipulated by network construction), it is
definable by the same reasoning as above.

E Proof in Section “Covering number bounds”
We start with some basic definitions (see, e.g., (Van Der Vaart et al. 1996; Mohri, Rostamizadeh, and Talwalkar 2018; Wainwright
2019)).
Definition 6 (Covering number and entropy). For a given metric d and ϵ > 0, the covering number N (ϵ,F , d) is the
minimal number of balls Bϵ(f) := {g ∈ F : d(g, f) ≤ ϵ} of radius ϵ and center f ∈ F needed to cover the set F , i.e.,
N (ϵ,F , d) = min{n | F ⊆ ∪n

i=1Bϵ(fi), for some fi ∈ F}. The entropy is the logarithm of the covering number.
It is often the case that tighter bounds are possible by measuring complexity in a data-dependent manner. We can define

the empirical versions of the above notions by defining the empirical metric with respect to a dataset Dn := {x1, ..., xn}. In
particular, we define the set F(Dn) ∈ Rn as follows:

F(Dn) := {(f(x1), ..., f(xn))|f ∈ F},
along with a distance measured in terms of the empirical ℓ1-norm:

∥f − g∥Dn
:=

1

n

n∑
i=1

|f(xi)− g(xi)|.

Using the above empirical ℓ1-norm as the metric and taking the supremum over all possible datasets Dn will lead to the definitions
of empirical L1 covering number. For simplicity of notation, we will use N1(ϵ,F , n), where n is the number of data points.

E.1 Proof of Theorem 4
For convenience, we recall the setup here. Consider the function

πQP (x, θ) := argminz∈R(x,θ)

(
1

2
A0z + Ux

0 x+ Uθ
0 θ + b0

)⊤

z,

with
R(x, θ) := {z : A1z ≤ b1 + Ux

1 x+ Uθ
1 θ,A2z = b2 + Ux

2 x+ Uθ
2 θ},



where x and θ are the input and parameter, respectively, z ∈ Rnz is the optimization variable, and all the rest are fixed
hyperparameters of compatible dimensions; in particular, A0 ≻ 0 is positive definite, and let m1 and m2 be the number of
inequality and equality constraints, respectively. We can also define πLP (x, θ) by setting A0 = 0. Define Π□ = {π□(·, θ) : θ ∈
Θ}, where □ can be LP or QP, and Θ is compact.

Next, we develop some elementary results for our settings. Note that similar derivations can be also found in the multi-
parametric literature (see, e.g., (Grancharova and Johansen 2012; Bemporad, Baillieul, and Samad 2015; Pistikopoulos, Diange-
lakis, and Oberdieck 2020)). We restate the lemmas for easy reference.
Lemma 3. Consider QP (4) with A0 ≻ 0. Denote I∗(x, θ) be the set of active inequality constraints for any given pair of (x, θ)
such that the corresponding inequalities hold with equality:

[A1]I∗(x,θ)πQP (x, θ) = [b1]I∗(x,θ) + [Ux
1 ]I∗(x,θ)x+ [Uθ

1 ]I∗(x,θ)θ

Let
ÃQP (I∗) = A−1

0 [A1]
⊤
I∗

(
[A1]I∗A−1

0 [A1]
⊤
I∗

)−1 (
[A1]I∗A−1

0 Ux
0 + [Ux

1 ]I∗
)
−A−1

0 [Ux
0 ]I∗ ,

where we used the shorthand I∗ for I∗(x, θ). Then, the solution function can be written in the form:

πQP (x, θ) = ÃQP (I∗)x+ b̃QP (θ, I∗),

for some (herein unspecified) bias function b̃QP (θ, I∗) that no longer depends on x if I∗(x, θ) is given.

Proof. By complementarity, the set of inactive inequality constraints is given as N ∗(x, θ) := {1, ...,m1} \ I∗(x, θ). In the
following, we omit the notational dependence of I∗(x, θ) or N ∗(x, θ) on (x, θ), and denote z∗ as the optimal solution πQP (x, θ)
for simplicity and λ∗ as the optimal dual variables. The optimal solution z∗ for a fixed (x, θ) is fully characterized by the
Karush-Kuhn-Tucker (KKT) conditions:

A0z
∗ + Ux

0 x+ Uθ
0 θ + b0︸ ︷︷ ︸

b̃0(x,θ)

+[A1]
⊤
I∗λ∗ = 0 (15a)

[A1]I∗z∗ = [b1]I∗ + [Ux
1 ]I∗x+ [Uθ

1 ]I∗θ︸ ︷︷ ︸
b̃1(x,θ,I∗)

(15b)

[A1]N∗z∗ < [b1]N∗ + [Ux
1 ]N∗x+ [Uθ

1 ]N∗θ (15c)

λ∗⊤([A1]I∗z∗ − [b1]I∗ − [Ux
1 ]I∗x− [Uθ

1 ]I∗θ) = 0 (15d)
λ∗ ≥ 0 (15e)

If [A1]I∗ has full row rank (which can be satisfied by some standard constraint qualifications (Pistikopoulos, Diangelakis, and
Oberdieck 2020)), we have that

λ∗ = −
(
[A1]I∗A−1

0 [A1]
⊤
I∗

)−1
(
[A1]I∗A−1

0 b̃0(x, θ) + b̃1(x, θ, I∗)
)

and consequently,

z∗ = A−1
0 [A1]

⊤
I∗

(
[A1]I∗A−1

0 [A1]
⊤
I∗

)−1
(
[A1]I∗A−1

0 b̃0(x, θ) + b̃1(x, θ, I∗)
)
−A−1

0 b̃0(x, θ).

Hence, the conclusion follows by grouping terms by whether they depend on x conditioning on I∗(x, θ). In other words, given
the set of active constraints I∗(x, θ), the optimal solution is an affine function within the region where such active constraints
hold (specified by (15b) and (15c)).

Lemma 4. Consider LP (4) with A0 = 0. Denote I∗(x, θ) be the set of active inequality constraints for any given pair of (x, θ)
such that the corresponding inequalities hold with equality:

[A1]I∗(x,θ)πLP (x, θ) = [b1]I∗(x,θ) + [Ux
1 ]I∗(x,θ)x+ [Uθ

1 ]I∗(x,θ)θ

Let

ÃLP (I∗) =

[
[A1]I∗

A2

]−1 [
[Ux

1 ]I∗

Ux
2

]
,

where we used the shorthand I∗ for I∗(x, θ). Then, the solution function can be written in the form:

πLP (x, θ) = ÃLP (I∗)x+ b̃LP (θ, I∗),

for some (herein unspecified) bias function b̃LP (θ, I∗) that does not depend on x given I∗(x, θ).



Proof. We follow the proof of Lemma 3 and only focus on the deviation points. With the same notations set up, the optimal
solution z∗ for a fixed (x, θ) is fully characterized by the KKT conditions:

Ux
0 x+ Uθ

0 θ + b0 + [A1]
⊤
I∗λ∗ = 0 (16a)

[A1]I∗z∗ = [b1]I∗ + [Ux
1 ]I∗x+ [Uθ

1 ]I∗θ (16b)

A2z
∗ = b2 + Ux

2 x+ Uθ
1 θ (16c)

[A1]N∗z∗ < [b1]N∗ + [Ux
1 ]N∗x+ [Uθ

1 ]N∗θ (16d)

λ∗⊤([A1]I∗z∗ − [b1]I∗ − [Ux
1 ]I∗x− [Uθ

1 ]I∗θ) = 0 (16e)
λ∗ ≥ 0 (16f)

If [[A1]
⊤
I∗ A⊤

2 ]
⊤ has full rank (which can be satisfied by some standard constraint qualifications, e.g., LICQ (Pistikopoulos,

Diangelakis, and Oberdieck 2020)), we have that

z∗ =

[
[A1]I∗

A2

]−1 [
[Ux

1 ]I∗

Ux
2

]
x+

[
[A1]I∗

A2

]−1([
[Uθ

1 ]I∗

Uθ
2

]
θ +

[
[bθ1]I∗

bθ2

])
Hence, the conclusion follows by grouping terms by whether they depend on x conditioning on I∗(x, θ). In other words, given
the set of active constraints I∗(x, θ), the optimal solution is an affine function within the region where such active constraints
hold (specified by (16b)-(16d)).

Let us also recall that κ⋆LP = maxι⊆{1,...,m1},|ι|≤nz−m2

∥∥∥ÃLP (ι)
∥∥∥
2
, and κ⋆QP = maxι⊆{1,...,m1},|ι|≤nz−m2

∥ÃQP (ι)∥2,

where ∥ · ∥2 is the spectral norm, and ÃQP (ι) and ÃLP (ι) are specified in (8) and (6), respectively by replacing I∗ with ι (i.e.,
treating ι as a set of active inequality constraints).

Theorem 6. The L1 covering number of Π□ over bounded input space is controlled by

logN1(ϵ,Π□, n) ≲
κ⋆2□
ϵ2

∑
0≤i≤nz−m2

(
m1

i

)
,

where □ can be either LP or QP.

Proof. Due to the known results in multi-parametric programming (Grancharova and Johansen 2012; Bemporad, Baillieul,
and Samad 2015), the active set depends on the set of active inequalities. By linear algebra, the maximum number of active
constraints cannot be greater than the dimension of the decision variable nx. Let us consider the set K, which contains all the
sets of possible active constraints. Then, for each set ι ∈ K, we can uniquely define a region CRι (a.k.a., critical region) in the
space X ×Θ, and the restriction of the solution function to each region is an affine function (Pistikopoulos, Diangelakis, and
Oberdieck 2020):

[π□(x, θ)]CRι
= Ã□(x, ι)x+ b̃□(θ, ι), (17)

where □ can be LP or QP, with corresponding matrices defined in (6) and (8), respectively, and [π□(x, θ)]CRι denotes the
restriction of the function π□(x, θ) to CRι.

To bound the class of mp-LP or mp-QP, our strategy is to bound the number of critical regions and combine it with a bound on
the L1 covering number among all the region. The number of critical regions for mp-LP and mp-QP can be bounded by:∑

0≤i≤nz−m2

m1!

(m1 − i)!(i)!
, (18)

which simply enumerates all the possible combinations of inequality constraints (from none up to nz −m2 of them). Next, by
(Kakade, Sridharan, and Tewari 2008, Cor. 9), the covering number of the affine function within each critical region can be
bounded (up to some constant) by κ⋆2

□
ϵ2 , where □ can be LP or QP (note that (Kakade, Sridharan, and Tewari 2008, Cor. 9) is

proved for an even stronger case of L2 covering number, which provides an upper bound on the L1 covering number). Combining
these bounds, we get the overall bound.

E.2 Proof of Theorem 5
Before we prove the main theorem, we will first provide an empirical L1 covering number bounds for the Ck smooth function
class. We note that bounding the entropy numbers of the classes Ck with respect to the supremum norm was were among the
first results after the introduction of the concept of covering numbers (e.g., see the proof in (van der Vaart 1994, Theorem 2.7.1));
however, we remark that we extend the proof to the case of empirical L1 covering bound.



Lemma 5 (Empirical L1 covering number bound for Ck smooth functions). Let F be a class of Ck smooth functions defined
over the domain region X , where X ⊂ Rnx is a bounded, closed convex set. Then, the following bound holds:

logN1(ϵ,F , n) ≲ n

(
1

ϵ

)1/k

+ knx log

(
1

ϵ

)
. (19)

Proof. As the function class F is Ck smooth, we can apply the standard argument of Taylor’s theorem to any interior point
x ∈ intD. Let δ = ϵ1/k, we first form a δ-net for the n points in Dn; then we augment this set so that the new set, denoted by
Dn,δ = {x̃1, ..., x̃m}, has an additional “star” property, that there exists a point, say x̃1 without loss of generality, such that for
any point x̃j , there exists a path (x̃1, x̃j1 , x̃j2 , ..., x̃j) of variable length, such that the distance between any two adjacent point is
bounded by δ. Note that this set is typically much less than the δ-cover set of the entire space D, especially when n≪ 1/δnx . In
particular, we can construct such a set with O(n/δ) points (up to the constant determined by the diameter of Dn), by simply
linking each point xn to the center of the star x̃1 and discretizing the path into segments of length δ. We also make sure that Dn

is included in the set Dn,δ , the inclusion of which does not change the order of the size of the set.
Similar to the proof of Theorem 2, let n = (n1, . . . , nnx) ∈ {0, 1, . . . , k}nx and |n| ≤ k. Also, let

Anf =

(⌊
Dnf(x̃1)

δk−|n|

⌋
, ...,

⌊
Dnf(x̃m)

δk−|n|

⌋)
∈ Rm,

where ⌊·⌋ is the floor function, and recall that Dn := ∂|n|

∂x
n1
1 ···∂xnnx

nx

is the standard differential operator. Then, the vector

δk−|n|Anf consists of the values Dnf(x̃j) discretized on a grid of mesh-width δk−|n|.
If two function f, g ∈ F satisfy Anf = Ang for each n with |n| ≤ k, then, by standard error bound of Taylor expansion, we

have that

∥f − g∥Dn
=

1

n

n∑
i=1

|f(xi)− g(xi)|

≲ sup
i∈[n]

inf
j∈[m]

∣∣∣∣∣∣
∑

n:|n|≤k

Dn(f − g)

n!

∣∣∣∣
x=x̃j

(xi − x̃j)
n + ∥xi − x̃j∥k

∣∣∣∣∣∣
≲

∑
n:|n|≤k

δk−|n|

n!
δn + δk

≤ δk(1 + enx),

where the second inequality is by simply selecting the point x̃j = xi, which is possible since Dn ⊂ Dn,δ . The constants omitted
above only depend on the diameter of the set. Note that δk is the resolution observed at the zero-th order Anf when n = 0. Here,
hn/n! =

∏nx

i=1 h
ni
i /ni! as usual. Informed by the above result, our strategy to bound the covering number N1(ϵ,F , n) is based

on bounding the number of different matrices

Af =


A0,0,...,0f
A1,0,...,0f

...
A0,0,...,kf

 ,

where each row corresponds to Anf for some n such that |n| ≤ k and f ranges over the class of Ck smooth functions.
By a simple combinatorial argument, the number of rows in Af is less than (k + 1)nx for any f ∈ Ck. By the definition

of Anf and that |Dnf(x̃j)| ≤ 1 for each j ∈ [m], the number of possible values of each element in row Anf is bounded by
2/δk−|n|+1, which does not exceed 2δ−k+1 since δ < 1. Thus, each column of the matrix can have at most (2δ−k+1)(k+1)nx

different values.
By our construction, for any j ∈ [m] there is a path linking x̃j to x̃1, where the distance between any two consecutive

points is bounded by δ. Therefore, we can organize the index in such a way that for each j > 1, there is an index i < j such
that ∥x̃i − x̃j∥ < δ. Then, use the crude bound previously obtained for the first column, and for each subsequent column,
corresponding to x̃j , there exists a point x̃i with ∥x̃i − x̃j∥ ≤ δ and i < j. By Taylor’s theorem,

Dnf(x̃j) =
∑

|n|+|n′|≤k

Dn+n′
f(x̃i)

(x̃i − x̃j)
n′

n′!
+R,



where |R| ≲ ∥x̃i − x̃j∥k−|n|. Thus, with Bnf = δk−|n|Anf , we have that∣∣∣∣∣∣Dnf(x̃j)−
∑

|n|+|n′|≤k

Bn+n′f(x̃i)
(x̃i − x̃j)

|n′|

n′!

∣∣∣∣∣∣
≲

∑
|n|+|n′|≤k

∣∣∣Bn+n′f(x̃i)−Dn+n′
f(x̃i)

∣∣∣ (x̃i − x̃j)
|n′|

n′!
+ δk−|n|

≤
∑

|n|+|n′|≤k

δk−|n|−|n′| δ
|n′|

n′!
+ δk−|n|

≲ δk−|n|.

Thus, given the values in the i-th column of Af , the values Dnf(x̃j) range over an interval of length proportional to δk−|n|.
By normalizing with δk−|n|, it follows that the values in the j-th column of Af range over integers in an interval of length
proportional to δk−|n|/(δk−|n|) = 1. Thus, by a combinatorial argument, there exists a constant C depending only on k and nx
such that the number of distinct matrices Af is bounded by (2δ−k + 1)(k+1)nx

Cm−1. The theorem follows by replacing δ by
ϵ1/k and m by its upper bound n/δ = nϵ−1/k.

We are now ready to prove the main result for a general optimization problem. As implied by the Whitney stratification of the
solution map (Theorem 3), there exists a finite partition of the domain, where the function restricted to each partition region is
smooth. However, in general, we note that the partition region may be nonconvex.

E.3 Proof of Theorem 5

Proof. We know from Theorem 3 that the solution mapping of a general optimization is Ck smooth in each partition region. In
addition, the number of partition regions dk is finite due to whitney stratification (Van den Dries and Miller 1996; Ioffe 2009).
We will first bound the bracketing number (van der Vaart 1994) for the function class F , which can be used to bound the overall
covering number of the function class Π. As we are dealing with a general nonlinear optimization problem, unlike the polytope
partition for LP or QP, the partition regions might be nonconvex.

Let each partition region (possibly nonconvex) be denoted by Ij . To leverage the result from Lemma 5, we form convex hulls
for each partition region of the domain, denoted by I ′j . Note that it is possible and permitted to have overlaps between these
convex hulls.

Create an ϵ-net Fj,ϵ = {fj,1, ..., fj,pj} for the set of Ck functions defined on each convex hull I ′j with respect to the empirical
L1 distance measured on Dn. Note that we do not have any assumptions about the distribution of points in Dn, thus we consider
the case in the worst sense. Then, using Lemma 5, pj can be selected to satisfy

log pj ≲ n

(
1

ϵ

)1/k

+ knx log

(
1

ϵ

)
. (20)

Consider the set of functions

Fϵ :=

f : f =

dk∑
j=1

fj,ij I(Ij), ∀ ij ∈ [pj ]

 ,

where each member function pieces together one of the ϵ-set from every region. Hence, |Fϵ| =
∏dk

j=1 pj . Since Fj,ϵ is an ϵ-cover
on the region of I ′j ⊇ Ij , there exists a selection function ij(π) such that for any π ∈ Π, supD′

n∈In
j
∥π(x)− fj,ij(π)(x)∥D′

n
≤ ϵ.

Let Dn,j = {x : x ∈ Ij ∩ Dn} be the subset of data that lie in Ij . To bound the empirical L1 distance between any function



π ∈ Π to the set Fϵ:

min
f∈Fϵ

∥π − f∥Dn

= min
f∈Fϵ

1

n

n∑
i=1

|π(xi)− f(xi)|

= min
f∈Fϵ

1

n

dk∑
j=1

∑
xi∈Dn,j

|π(xi)− f(xi)|

≤ 1

n

dk∑
j=1

|Dn,j |
|Dn,j |

∑
xi∈Dn,j

|π(xi)− fj,ij(π)(xi)|

≤ 1

n

dk∑
j=1

|Dn,j |ϵ

≤ ϵ,

where the first inequality is by the selection of f =
∑dk

j=1 fj,ij(π)I(Ij) ∈ Fϵ, the second inequality is because N1(ϵ,F , n′) ≤
N1(ϵ,F , n) for any n′ ≤ n, and the last equality is due to n =

∑dk

j=1 |Dn,j |. Thus, Fϵ forms an ϵ-net of Π. The result follows
by taking the logarithm of |Fϵ|.

F Numerical experiments
In this section, we provide numerical examples to demonstrate the expressiveness of solution functions on two types of data:
(1) image processing, and (2) reconstruction of SciPy test functions 4. The authors note that these are not actual or intended
applications of solution functions, but rather visual examples showing some complex functions that solution functions can
represent. Throughout this section, we limit ourselves to the solution functions of linear programs.

F.1 Image reconstruction with solution functions
We consider an original image of 256× 256 and partition on its domain (coordinate-axes) using triangular partitions. In each
partition, an affine function represents the RGB pixel values of the image at each corner of the domain. This function takes the
input as x,y-position (for 2-dimensional images) and outputs RGB pixel values. We reconstruct each color channel separately.
Now, we reconstruct this piecewise affine function as a LP solution function using CVX Matlab combination (Grant and Boyd
2013, 2008). The reconstructed solution function corresponds to an LP with 2 variables and a total number of 130,050 constraints.
Total computation time at 100% complexity is 47 seconds.

Now, we investigate the approximation capability by removing a random subset of the inequalities in the LP; we then
reconstruct the image as the solution function of the new LP (with reduced complexity). In Figure 2 and Table 1, we report
complexity (number of constraints) as the percentage of the original constraints. Mean squared error (MSE) measures the
difference between the original image and the reconstructed image. We observe that MSE increases with decreasing complexity.
However, it is interesting to see that the visual quality has only begun to decline beyond 90% reduction.

complexity
Original 50% 20% 10% 5%

# of constraints 130050 65025 26010 13000 6500
MSE 0 0.0078 0.008 0.026 0.061

Table 1: Complexity and MSEs of the reconstructed solution functions.

F.2 Reconstruction of SciPy test functions
For the second experiment, we verify the approximation power of layered architecture on benchmark test functions 5. For ease of
presentation, in this experiment, we have selected three 2-dimensional functions, namely, Alpine, Parsopoulos, TridiagonalMatrix,
and a four-dimensional function, i.e., Powell. For these functions, we also report the reconstruction error by increasing the

4http://infinity77.net/go_2021/scipy_test_functions.html#scipy-test-functions-index
5http://infinity77.net/go_2021/scipy_test_functions.html#scipy-test-functions-index



0 50 100 150 200 250

0

50

100

150

200

250

(a) Original image.
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(e) complexity: 5%

Figure 2: Image reconstruction with respect to changing complexity (number of constraints).

number of partitions (N ) as in Theorem 2. Note that these functions belong to C∞, which is a superset of Ck for any k; we
report the reconstruction error for different smoothing orders k. From Figures 3, 4, 5, and 6, we can accurately reconstruct the
test functions. The MSE plots show that the error decreases as the number of partitions (N ) increases.

In Figure 3, we reconstruct an objective function of Alpine multimodal minimization problem, defined for nx-dimension input
x ∈ Rnx as follows

f(x) =

nx∏
i=1

√
xi sinxi.

For ease of representation, we reconstruct this in 2-dimension (nx = 2) for the inputs xi ∈ [0, 10] for i = 1, 2. Figure 3 on
the left shows the original and reconstructed functions, which look almost identical; on the right is the decreasing MSE with
increasing partitions N . We have reconstructed this for smoothness orders k ∈ {3, . . . , 10}. The higher the order, the fewer
partitions are needed to achieve the same accuracy. Note that the reconstruction of the first plot in Figure 3 is for maximum
smoothness k = 6.

Figure 3: Reconstruction of Alpine.

In Figure 4, we reconstruct an objective function of a Parsopoulos multimodal minimization problem,

f(x) = cos(x1)
2 + sin(x2)

2.

We solve this problem for xi ∈ [−5, 5] for i = 1, 2. In Figure 4, the first plot is the reconstruction for smoothness k = 6 and the
second is the decreasing MSE error with increasing partitions N for maximum smoothness k ∈ {4, . . . , 7}.



Figure 4: Reconstruction of Parsopoulos.

In Figure 5, we reconstruct an objective function of Trid multimodal minimization problem,

f(x) =

k∑
i=1

(xi − 1)2 −
k∑

i=1

(xi − 1)2.

The function is reconstructed for xi ∈ [−20, 20] for i ∈ {1, 2}.

Figure 5: Reconstruction of TridiagonalMatrix.



For Figure 6, we consider an objective function of multimodel optimization problem, Powell in 4-D, as follows

f(x) = (x3 − 10x1)
2 + 5(x2 − x4)

2 + (x1 − 2x2)
4 + 10(x3 − x4)

4.

We reconstruct the above for xi ∈ [−4, 5], for i ∈ {1, . . . , 4}. Note that, this is a 4-D function and, for representation, we only
provide MSE variation with changing the number of partitions N .

Figure 6: MSE of the reconstruction for Powell (4-D).


