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Understanding people’s preference is key to
bringing technology to our daily life




How Al can act like a social/
friendly/ intelligent/ real person?

* People’s decision making often involves...
— Long-term planning vs. short-term gain
— Risk seeking vs. risk aversion
— Individual preferences over outcomes

Burn Calories, There is no elevator

Not Electricity tosuccess.
You have to take L

K-

LifeTastes\Well:com



How Al can act like a social/
friendly/ intelligent/ real person?

* Three learning paradigms..

Game theoretic Behavior cloning

approach
Do B0
\ f Teacher Agent

‘ - Directly learn the

teacher’s policy using
supervised learning

- Task as cooperative/
noncooperative game

- Mapping from state
to action

- Agent as utility
maximizer: Nash
equilibrium

(Anand 1993, Stackelberg 2011)  1992; Amit & Mataric, 2002)

(Pomerleau, 1989; Sammut et al.,

Inverse learning g
- reward func.

Teacher

Agent

- Learn the succinct
reward function

- Derive the optimal
policy from rewards

(Ng and Russell, 2000; Abbeel
and Ng, 2004; Ratliff et al.,
2006, Levine et al.)
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RL vs. IRL

Probability distribution

State | Dynamics over next states given
Representation Model T current state and action

v v

Reward functich [ Reinforcement — Controller/ —» Demos/
s Learning < Policy Traces

Prescribes action to J

take for each state

Describes desirability of
being in a state.

Key challenges:

* Providing a formal specification of the control task.
 Building a good dynamics model.

* Finding closed-loop controllers.

(Adapted from Abbeel’s slides on “Inverse reinforcement learning”)



IRL in a nutshell:
given demonstrations, infer reward

* |nput:
— Dynamics model P, (s¢4+1|S¢, at)
— No reward function r*(s)
— Demonstration M': sy, agy, S1, a4, Sy, Ay, ...
(= trace of the teacher’s policy *)
» Desired output:
— Reward function r(s)

— Policy 7: S — A, which (ideally) has performance
guarantees e.g., expected reward dlfference (EVD)

; Zytr*(xa | Zytr*(xt) 7




Parametric vs. nonparametric
representation of reward function

* Linear representation: i Limited J
tative power
T'(S) — WT¢(S) represen
— Maximum margin planning (MMP): (Ratiliff et al, 2006)
— Maximum Entropy IRL (MaxEnt): (Ziebart et al., 2008)

. . - A
* Nonlinear representation: 4 Needs significant

| demonstrations to
— Deep NN: (Wulfmeier et al., 2015) avoid overfitting

* Nonparametric representation:
— Gaussian Process\lRL: (Levine et al., 2011)

Deep Gaussian Process IRL: (Jin et al., 2017) |
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Two slides on Gaussian Process

« A Gaussian depends on a mean
and a covariance

* A Gaussian process depends on a mean and
a covariance function.

¢ Let’s start with a multivariate Gaussian Distr.:

pfirfor o f (S+1,fs+z, o )~ N (1, K)

fA . K
_ d K = |Fas AB]
”B] and [KBA Kgpg

(Adapted from Damianou’s slides on “System identification and control with (deep) Gaussian process”)



Two slides on Gaussian Process

* |n the GP context, we deal with an infinite
dimensional Gaussian distribution:

p=[and k=" 7]

Conditional distribution:

Gaussian distribution Gaussian process
Given p(fa, fg)~N (1, K) Given p(fx, f)~N (1, K)
Then the posterior distribution: Then the posterior distribution:
p(falfe)~N (1ap Kap) p(flfx)~N (. x, K. x)
with pap = pa + KapKgp(fp — pp)  With pap = g + KapKps(fz — 1p)
Kap = Kas — KapKgpKpa Kap = Kaa — KapKppKpa

(Adapted from Damianou’s slides on “System identification and control with (deep) Gaussian process”)



Reward function modeled by a
Gaussian process

 Reward is a function of states: r(x) € R

 We discretize the world into n states, each
described by a feature vector x; € R™:

_x{_ (X))
X=|:|lerRM™ r=] : |€eR"
X5 7r(x,).
* |t can be modeled with a zero-mean GP prior:
r|X,0~N(0,Kyyx)

Parameter of the
covarince function




How to find out the reward given
demonstrations?

GPIRL trains the parameters by maximum

likelihood estimation (Levine et al., 2011):

p(M|X, 8) = f p(MP)p(rlX, 8)dr

[ RL term (ZiEbart/eml GP prior I

found through the conditional:

|1, X, X ~N (K, Ky g, Ky o

Prediction of the reward at any test input is

_ Kx*XK)_()l(KXx*)



Can we improve the complexity of
reward function w/o overfitting®?

° Step funCtiOn example: Predictive draws of step function

GP
©—

FO () w
Overfitting does not appear to be a problem for
a deeper-architecture... X

— Y WY(xy)) | e "'I .II"'s '
e

..the main challenge is to train such a system!

X1 GP . GP ‘ GP

FOUDED )

Figures adapted from http://keyonvafa.com/deep-gaussian-processes/



Can we improve the complexity of
reward function w/o overfitting®?

¢ IRL W|th reward mOdeled as GP (Levine et al., 2011)

GP RL policy @
learning

p(MIX, 8) = f (M |r)p(r|X, 0)dr

 |RL with reward modeled as deep GP:
GP ~ GP ... O GP @ " RL policy I
a Gy & | learning m

p(M|X, 0) = fp(mr)p(xz, X, T|X,0)d(Xg, ..., X[, T)




We need a tractable form of the
likelihood function for training

e Let’s illustrate with a 2-stack GP:
IRL
’ |

The integral is still intractable... tions
p(M|X) !

- [ p(M, 7, D, BIX)A(D, B.7)

Kxx)

N ~
p(M|r) = p(r[D) x p(D|B) * p(B|X)

RL probability given by Gaussian noise:
MaxEnt (ziebart et al., 2008) D;j~N(B;;, A1)




Introduce inducing points

« Add to each latent layer..

(@O0 O—0)
et | @
p(M,r,f,D,B,V|X,ZW) =
GP prior: NV'(0, K z7)

~—
p(M|r) «p(r|f,D,Z) xp(f|Z) « p(D|B) * p(B|V,X, W)

Conditional Gaussian: Conditional Gaussian:
N(KpzKz7f. ) b™~N (K xw Ko™ Zp)




Use variational lower bound to
make training tractable

* |ntroduce variational distribution:

Model distributions P Variational distributions Q

. cond. Gaussian q(B|V,X,W) = p(B|V,X,W)q(f

p(D|B): Gaussian noise o
p(VIW): GP(0, Kyyw) q(D): T16(d™ — Kxw Ky ™)
q):[IvVE™ ™)

» Jensen’s inequality to derive lower bound:

og[7 = [ 2 1og?
og > 0g —
Q



Use variational lower bound to
make training tractable

 Derive a tractable lower bound:
logp(M|X)

= log j p(M[Pp(rlf, DYp(Hp(DIB)P(BIV, X)p(V)

p(M|r)p(r|f,D)p(f)p(D|B)p(V)

> [ 4(Da@BIV, W) log A

nm _1

- S

The value can be computed Optimizing the objective
We can also compute the derivative turns the variational
with respect to the parameters: distribution Q into the true
e Kernel function parameters _ model posterior )

* |Inducing points
\_ &P J




Inducing points provide a succinct
summary of data

« Given a new state x*, the predicted reward is a
function of the latent representation:

*x —-17%
r" = KpzKzz
GP GP RL policy
learning m

« This can be used for knowledge transfer in a
new situation




-« The original likelihood for the deep GP IRL
 is intractable.. T

Our method introduces
= combined with
% derive a lower bound for inference.
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We use the expected value
difference (EVD) as the metric

 EVD measures the expected rewarad

earned under the T W/
and the policy derived by IRL 7t

E| ) yirGe) o[ = E| ) yireo) |7
Lt=0 . Lt=0 i
* We also visually compare the

with that learned by IRL

23



ObjectWorld has a nonlinear
reward structure

 Reward: +1: 1step within ® & 3 step within @
-1 1f only 3 steps withig , O otherwise

« Features: min. dist. to an object of each type
* Nonlinear, but still preserves local distance

p ~ 4 PN Optimal Policy
® ©® Example Reward-building Objects

D 0 Example Distractor Objects

Reward (low to high)




Both DGP-IRL and GPIRL captures
the correct reward

Plot of EVD for the world where Plot of EVD for a new world
demos are given where demos are not available
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Both DGP-IRL and GPIRL captures
the correct reward

DGP-IRL GPIRL

Ground truth
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BinaryWorld has even more
nonlinear reward structure

 Reward:
neighborhood -7
with 4 blues (+1)
and 5 blues (-1)

— Nonlinear,
combinatorial
* Features: ordered
list of colors (top left
to bottom right)

&
°




DGP-IRL outperforms GPIRL in
this more complex case

Plot of EVD for the world where Plot of EVD for a new world
demos are given where demos are not available
30
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or . . DGP-IRL outperforms others
4 8 128

sm in the samll data region
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DGP-IRL outperforms GPIRL in

this more complex case
Ground truth DGP IRL GPIRL
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DGP-IRL learns the most succinct

The reward is not separable in
feature space...

the

X2

feature for the reward

ol B
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DGP-IRL also outperforms in
learning the driving behavior

The goal is to navigate the robot car as fast as possible, but
when the police car is nearby.

...and can avoid tickets

DGP-IRL outperforms in EVD

alue difference

160 -

—
N
o

— DGPIRL — LEARCH
— GPIRL — MaxEnt

MMP

0.03

1

Methods
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How to learn an agent’s intention
by observing a limited number of

demonstrations?

* Model the reward function as a deep GP to
handle complex characteristics.

* This enables simultaneous feature state
representation learning and IRL reward
estimation.

 Train the model through variational inference

to guard against overfitting, thus work
efficiently with limited demonstrations.



Future works

 DGP-IRL enable easy incorporation of side
knowledge (through priors on the latent
space) to IRL.

 Combine deep GPs with other complicated
inference engines, e.g., selective attention
models (Gregor et al., 2015).

 Application domains: mobile sensing for
health, building and grid controls,
multiobjective control, and human-in-the-loop
gamification.
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Additional slides



DGP-IRL also outperforms in

learning the driving behavior

highway, vehicles of specific class
(civilian or police) and category (car or motorcycle)
are positioned at random, driving at the same
constant speed.

The robot car can switch lanes and navigate at up
to three times the traffic speed.

The state is described by a continuous feature
which consists of the closest distances to vehicles
of each class and category in the same lane,
together with the left, right, and any lane, both in
the front and back of the robot car, in addition to
the current speed and position.



