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Understanding people’s preference is key to
bringing technology to our daily life
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How AI can act like a social/
friendly/ intelligent/ real person?

• People’s decision making often involves…
– Long-term planning vs. short-term gain
– Risk seeking vs. risk aversion
– Individual preferences over outcomes
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How AI can act like a social/
friendly/ intelligent/ real person?

• Three learning paradigms..
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Game theoretic
approach

- Task as cooperative/
noncooperative game

- Agent as utility
maximizer: Nash
equilibrium

(Anand 1993, Stackelberg 2011)

Behavior cloning

- Directly learn the
teacher’s policy using
supervised learning

- Mapping from state
to action

(Pomerleau, 1989; Sammut et al., 
1992; Amit & Mataric, 2002)

Teacher Agent

Inverse learning

- Learn the succinct
reward function

- Derive the optimal
policy from rewards

(Ng and Russell, 2000; Abbeel
and Ng, 2004; Ratliff et al.,
2006, Levine et al. )

AgentTeacher

reward func.
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How to learn an agent’s
intention by observing a limited

number of demonstrations?



Outline
• Inverse reinforcement learning (IRL)

problem formulation

• Gaussian process reward modeling
• Incorporating the representation learning
• Variational inference

• Experiments
• Conclusion
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RL vs. IRL

Key challenges:
• Providing a formal specification of the control task.
• Building a good dynamics model.
• Finding closed-loop controllers. 7

Reinforcement 
Learning

Controller/ 
Policy

Demos/ 
TracesReward function

State 
Representation

?

Prescribes	action	to	
take	for	each	state

Dynamics 
Model T

Probability	distribution	
over	next	states	given	
current	state	and	action

Describes	desirability	of	
being	in	a	state.		

(Adapted from Abbeel’s slides on “Inverse reinforcement learning”)



IRL in a nutshell:
given demonstrations, infer reward

• Input: 
– Dynamics model 𝑃"#(𝑠&'(|𝑠&, 𝑎&)
– No reward function 𝑟∗(𝑠)
– Demonstration ℳ: 𝑠0, 𝑎0, 𝑠(, 𝑎(, 𝑠1, 𝑎1, …

(= trace of the teacher’s policy 𝜋∗)
• Desired output: 

– Reward function 𝑟(𝑠)
– Policy 𝜋3: 𝑆 → 𝐴, which (ideally) has performance 

guarantees, e.g., expected reward difference (EVD)

𝔼 9𝛾&𝑟∗(𝑥&)
<

&=0

|𝜋∗ − 𝔼 9𝛾&𝑟∗(𝑥&)
<

&=0

|𝜋3
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Parametric vs. nonparametric
representation of reward function

• Linear representation:
𝑟 𝑠 = 𝒘A𝝓(𝑠)

– Maximum margin planning (MMP): (Ratliff et al, 2006)

– Maximum Entropy IRL (MaxEnt): (Ziebart et al., 2008)
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Limited
representative power

• Nonparametric representation:
– Gaussian Process IRL: (Levine et al., 2011)

• Nonlinear representation:
– Deep NN: (Wulfmeier et al., 2015)

More representative power, can
be data-efficient, but can be

limited by feature representation

Needs significant
demonstrations to
avoid overfitting

Deep Gaussian	Process	IRL:	(Jin et al., 2017)



Two slides on Gaussian Process

• A Gaussian distribution depends on a mean 
and a covariance matrix.

• A Gaussian process depends on a mean and 
a covariance function.

• Let’s start with a multivariate Gaussian Distr.:
𝑝 𝑓(, 𝑓1, … , 𝑓", 𝑓"'(, 𝑓"'1, … , 𝑓F ~𝒩(𝝁,𝑲)

𝝁 =
𝝁K
𝝁L and 𝑲 = 𝑲KK 𝑲KL

𝑲LK 𝑲LL
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(Adapted from Damianou’s slides on “System identification and control with (deep) Gaussian process”)

𝒇𝑨 𝒇𝑩



Two slides on Gaussian Process
• In the GP context, we deal with an infinite

dimensional Gaussian distribution:
𝝁 = 𝝁P

⋯ and 𝑲 = 𝑲PP ⋯
⋯ ⋯

Conditional distribution:
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(Adapted from Damianou’s slides on “System identification and control with (deep) Gaussian process”)

Gaussian distribution

Given 𝑝 𝒇𝑨, 𝒇𝑩 ~𝒩(𝝁,𝑲)
Then the posterior distribution:

𝑝 𝒇𝑨|𝒇𝑩 ~𝒩(𝝁𝑨|𝑩, 𝑲𝑨|𝑩)
with 𝝁𝑨|𝑩 = 𝝁𝑨 + 𝑲𝑨𝑩𝑲𝑩𝑩

S𝟏(𝒇𝑩 − 𝝁𝑩)
𝑲𝑨|𝑩 = 𝑲𝑨𝑨 − 𝑲𝑨𝑩𝑲𝑩𝑩

S𝟏𝑲𝑩𝑨

Gaussian process

Given 𝑝 𝒇𝑿, 𝒇∗ ~𝒩(𝝁,𝑲)
Then the posterior distribution:

𝑝 𝒇∗|𝒇𝑿 ~𝒩(𝝁∗|𝑿, 𝑲∗|𝑿)
with 𝝁𝑨|𝑩 = 𝝁𝑨 + 𝑲𝑨𝑩𝑲𝑩𝑩

S𝟏(𝒇𝑩 − 𝝁𝑩)
𝑲𝑨|𝑩 = 𝑲𝑨𝑨 − 𝑲𝑨𝑩𝑲𝑩𝑩

S𝟏𝑲𝑩𝑨



Reward function modeled by a
Gaussian process

• Reward is a function of states: 𝑟 𝒙 ∈ ℛ
• We discretize the world into 𝑛 states, each

described by a feature vector 𝒙Z ∈ ℛ[:

𝑿 =
𝒙(A
⋮
𝒙]A

∈ ℛ]×[, 𝒓 =
𝑟(𝒙()
⋮

𝑟(𝒙])
∈ ℛ]

• It can be modeled with a zero-mean GP prior:
𝒓|𝑿, 𝜽~𝒩(𝟎,𝑲𝑿𝑿)
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Parameter of the
covarince function



How to find out the reward given
demonstrations?

• GPIRL trains the parameters by maximum
likelihood estimation (Levine et al., 2011):

𝑝 ℳ 𝑿, 𝜽 = b𝑝 ℳ 𝒓 𝑝 𝒓 𝑿, 𝜽 𝑑𝒓
�

�

• Prediction of the reward at any test input is
found through the conditional:

𝑟∗|𝒓, 𝑿, 𝒙∗~𝒩(𝑲𝒙∗𝑲𝑿𝑿
S𝟏𝒓, 𝑘𝒙∗𝒙∗ − 𝑲𝒙∗𝑿𝑲𝑿𝑿

S𝟏𝑲𝑿𝒙∗)
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RL term (Ziebart et al., 2008) GP prior



Can we improve the complexity of
reward function w/o overfitting?

• Step function example:
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𝑓(()(𝒙()

GP
𝑿(

𝑓 1 (𝑓(() 𝒙( )

GP
𝑿( 𝑿1

GP

𝑓 f (𝑓(1)(𝑓(() 𝒙( ))

GP
𝑿( 𝑿1

GP GP
𝑿f

Predictive draws of step function

Overfitting does not appear to be a problem for
a deeper architecture…

…the main challenge is to train such a system!

Figures adapted from http://keyonvafa.com/deep-gaussian-processes/



Can we improve the complexity of
reward function w/o overfitting?

• IRL with reward modeled as GP: (Levine et al., 2011)

𝑝 ℳ 𝑿,𝜽 = b𝑝 ℳ 𝒓 𝑝 𝒓 𝑿, 𝜽 𝑑𝒓
�

�

• IRL with reward modeled as deep GP:

𝑝 ℳ 𝑿,𝜽 = b𝑝 ℳ 𝒓 𝑝 𝑿𝟐,… , 𝑿𝑳, 𝒓 𝑿, 𝜽 𝑑(𝑿𝟐,… , 𝑿𝑳, 𝒓)
�

�
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𝑿
GP

𝒓 RL policy
learning

ℳ

RL policy
learning

ℳ𝑿
GP

𝒓𝑿𝟐
GP

𝑿𝑳
… GP



We need a tractable form of the
likelihood function for training

• Let’s illustrate with a 2-stack GP:

𝑝 ℳ, 𝒓, 𝑫, 𝑩 𝑿 =

𝑝(ℳ|𝒓) ∗ 			𝑝(𝒓|𝑫) 	∗ 	𝑝(𝑫|𝑩) 	∗ 		𝑝(𝑩|𝑿)
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RL policy
learning

Observations
RL

ℳ𝑩 𝑫

Latent
space

𝑿
GP

Original
space

𝒓
GP

Reward
function

IRL

RL probability given by
MaxEnt (Ziebart et al., 2008)

GP prior:𝒩(𝟎,𝑲𝑫𝑫)

Gaussian noise:
𝐷Zl~𝒩(𝐵Zl, 𝜆S()

GP prior:𝒩(𝟎,𝑲𝑿𝑿)

The integral is still intractable…
𝑝 ℳ 𝑿

= b𝑝 ℳ, 𝒓,𝑫, 𝑩 𝑿 𝑑(𝑫,𝑩, 𝒓)
�

�



Introduce inducing points
• Add to each latent layer..

𝑝 ℳ, 𝒓, 𝒇, 𝑫, 𝑩, 𝑽 𝑿, 𝒁,𝑾 =

𝑝 ℳ 𝒓 ∗ 𝑝 𝒓 𝒇,𝑫, 𝒁 ∗ 𝑝 𝒇 𝒁 ∗ 𝑝 𝑫 𝑩 ∗ 𝑝(𝑩|𝑽, 𝑿,𝑾)
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𝑿
GP

𝒓 RL policy
learning

ℳ𝑩 𝑫
GP

𝑾 𝒇𝑽 𝒁

Conditional Gaussian:
𝒩(𝑲𝑫𝒁𝑲𝒁𝒁

S𝟏𝒇, 𝚺𝒓)

GP prior:𝒩(𝟎,𝑲𝒁𝒁)

Conditional Gaussian:
𝒃[~𝒩(𝑲𝑿𝑾𝑲𝑾𝑾

S𝟏 𝒗𝒎, 𝚺𝑩)



Use variational lower bound to
make training tractable

• Introduce variational distribution:
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Model distributions 𝒫

: cond. Gaussian
𝑝 𝑫 𝑩 : Gaussian noise
𝑝 𝑽 𝑾 : 𝐺𝑃(𝟎,𝑲𝑾𝑾)

Variational distributions 𝒬
𝑞 𝑩 𝑽,𝑿,𝑾 = 𝑝 𝑩 𝑽,𝑿,𝑾 𝑞(𝒇)

𝑞(𝑫): ∏𝛿(𝒅[ − 𝑲𝑿𝑾𝑲𝑾𝑾S( 𝒗}[) �
�

𝑞(𝑽):	∏𝒩(𝒗}[, 𝑮[) �
�

• Jensen’s inequality to derive lower bound:

logb𝒫
�

�

 ≥ b𝒬 log
𝒫
𝒬

�

�



Use variational lower bound to
make training tractable

• Derive a tractable lower bound:
log 𝑝 ℳ 𝑿

= logb𝑝 ℳ 𝒓 𝑝 𝒓 𝒇,𝑫 𝑝 𝒇 𝑝 𝑫 𝑩 𝑝 𝑩 𝑽,𝑿 𝑝(𝑽)
�

�

≥ b𝑞 𝒇 𝑞 𝑫 𝑝 𝑩 𝑽,𝑿 𝑞 𝑽 log
𝑝 ℳ 𝒓 𝑝 𝒓 𝒇,𝑫 𝑝 𝒇 𝑝 𝑫 𝑩 𝑝 𝑽

𝑞 𝒇 𝑞 𝑫 𝑞 𝑽

�

�

= ℒℳ + ℒ𝒢 − ℒ�� + ℒℬ −
𝑛𝑚
2 log(2𝜋𝜆S()
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The value can be computed
We can also compute the derivative
with respect to the parameters:

• Kernel function parameters
• Inducing points

Optimizing the objective
turns the variational

distribution 𝒬 into the true
model posterior



Inducing points provide a succinct
summary of data

• Given a new state 𝒙∗, the predicted reward is a
function of the latent representation:

𝑟∗ = 𝑲𝑫∗𝒁𝑲𝒁𝒁
S(𝒇�

• This can be used for knowledge transfer in a
new situation

20

𝑿
GP

𝒓 RL policy
learning

ℳ𝑩 𝑫
GP

𝑾 𝒇𝑽 𝒁
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The original likelihood for the deep GP IRL
is intractable..

Our method introduces inducing points
combined with variational inequality to
derive a lower bound for inference.



Outline
• Inverse reinforcement learning (IRL)

problem formulation

• Gaussian process reward modeling
• Incorporating the representation learning
• Variational inference

• Experiments
• Conclusion
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We use the expected value
difference (EVD) as the metric

• EVD measures the expected reward
earned under the optimal policy 𝜋∗ w/ true
reward and the policy derived by IRL 𝜋3

𝔼 9𝛾&𝑟(𝑥&)
<

&=0

|𝜋∗ − 𝔼 9𝛾&𝑟(𝑥&)
<

&=0

|𝜋3

• We also visually compare the true reward
with that learned by IRL
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ObjectWorld has a nonlinear
reward structure

• Reward: +1: 1step within      & 3 step within
-1 if  only 3 steps within       , 0 otherwise

• Features: min. dist. to an object of each type
• Nonlinear, but still preserves local distance



Both DGP-IRL and GPIRL captures
the correct reward
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Both DGP-IRL and GPIRL captures
the correct reward

Ground	truth DGP-IRL GPIRL

FIRL MaxEnt MMP



BinaryWorld has even more
nonlinear reward structure

• Reward: 
neighborhood           
with 4 blues (+1) 
and 5 blues (-1)
– Nonlinear, 

combinatorial
• Features: ordered 

list of colors (top left 
to bottom right)



DGP-IRL outperforms GPIRL in
this more complex case
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Plot of EVD for the world where
demos are given

Plot of EVD for a new world
where demos are not available

DGP-IRL outperforms others
in the samll data region



DGP-IRL outperforms GPIRL in
this more complex case

Ground	truth DGP-IRL GPIRL

FIRL MaxEnt MMP



DGP-IRL learns the most succinct
feature for the reward
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the original feature space…

…but separable in the
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DGP-IRL also outperforms in
learning the driving behavior
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The goal is to navigate the robot car as fast as possible, but
avoid speeding when the police car is nearby.

DGP-IRL outperforms in EVD …and can avoid tickets



Outline
• Inverse reinforcement learning (IRL)

problem formulation

• Gaussian process reward modeling
• Incorporating the representation learning
• Variational inference

• Experiments
• Conclusion
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How to learn an agent’s intention
by observing a limited number of

demonstrations?
• Model the reward function as a deep GP to

handle complex characteristics.
• This enables simultaneous feature state

representation learning and IRL reward
estimation.

• Train the model through variational inference 
to guard against overfitting, thus work
efficiently with limited demonstrations.
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Future works
• DGP-IRL enable easy incorporation of side 

knowledge (through priors on the latent 
space) to IRL.

• Combine deep GPs with other complicated 
inference engines, e.g., selective attention 
models (Gregor et al., 2015).

• Application domains: mobile sensing for 
health, building and grid controls, 
multiobjective control, and human-in-the-loop 
gamification.
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Additional slides



DGP-IRL also outperforms in
learning the driving behavior

• Three-lane highway, vehicles of specific class 
(civilian or police) and category (car or motorcycle)
are positioned at random, driving at the same 
constant speed.

• The robot car can switch lanes and navigate at up
to three times the traffic speed.

• The state is described by a continuous feature 
which consists of the closest distances to vehicles 
of each class and category in the same lane,
together with the left, right, and any lane, both in 
the front and back of the robot car, in addition to 
the current speed and position.
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