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Abstract—WiFi fingerprinting-based Indoor Positioning Sys-
tem (IPS) has become the most promising solution for indoor
localization. However, there are two major drawbacks that
hamper its large-scale implementation. Firstly, an offline site
survey process is required which is extremely time-consuming
and labor-intensive. Secondly, the RSS fingerprint database built
offline is vulnerable to environmental dynamics. To address these
issues comprehensively, in this paper, we propose WinIPS, a
WiFi-based non-intrusive IPS that enables automatic online radio
map construction and adaptation, aiming for calibration-free
indoor localization. WinIPS can capture data packets transmitted
in existing WiFi traffic and extract the RSS and MAC addresses
of both WiFi Access Points (APs) and mobile devices in a non-
intrusive manner. APs can be used as online reference points
for radio map construction. A novel Gaussian process regres-
sion model is proposed to approximate the non-uniform RSS
distribution of an indoor environment. Extensive experiments
were conducted, which demonstrated that WinIPS outperforms
existing solutions in terms of both RSS estimation accuracy and
localization accuracy.

Index Terms—Indoor Positioning System (IPS), radio map
construction and adaptation, WiFi, Gaussian process regression.

I. INTRODUCTION

LOCATION Based Service (LBS) has become an indis-
pensable part of our daily lives due to its widespread

applications, e.g., navigation, advertisement, shopping, etc., in
smart buildings. The quality of LBS largely depends on the
localization accuracy [1]. Global Positioning System (GPS)
can provide satisfactory localization accuracy for most out-
door LBS. However, it is incapable of providing sufficient
localization accuracy in indoor environments due to the lack
of line of sight (LoS) propagation channel. Therefore, a lot
of efforts have been devoted to developing Indoor Positioning
Systems (IPSs) in the past two decades [1]–[3]. Among the
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proposed techniques, WiFi has been acknowledged as the
most promising alternative to GPS for indoor localization
because commercial off-the-shelf (COTS) WiFi devices and
infrastructures are widely available in indoor environments
and most of mobile devices (MDs) are equipped with WiFi
modules.

Fingerprinting-based localization algorithm is the most
widely adopted algorithm for WiFi-based IPS due to its ability
to capture signal variances in complex indoor environments
more accurately than other algorithms [4]–[6]. However, there
are two major drawbacks that restrain them for large-scale
implementation. One is that the offline site survey process
is extremely time-consuming and labor-intensive. Multiple
RSS samples need to be measured at numerous calibration
points to ensure localization accuracy. The other is that the
offline calibrated database is vulnerable to environmental
dynamics [7], as the real-time RSS readings collected during
the online localization phase can deviate from those stored
in the offline radio map due to variation in temperature,
humidity, occupancy distribution and multipath effects. Serious
localization errors may be introduced if the radio map is not
updated adaptively. Previous works have tried to use an indoor
radio propagation model for online radio map construction
to replace the laborious offline site survey process [8], [9].
However, the simple log-distance path loss model fails to
capture the non-uniform RSS distribution in complex indoor
environments. Some works deploy fixed reference anchors
to obtain real-time RSS readings for radio map adaptation
[10], [11]. Nevertheless, the requirement of extra hardware
implementation is the bottleneck of these methods. Learning-
based approaches are also introduced to reduce the number
of reference anchors to be deployed [12], [13]. However,
these methods still need to conduct an offline initialization
phase to collect RSS fingerprints as label data for learning
purposes. Although certain crowdsourcing methods have been
introduced in [14], [15] recently to tackle the issues mentioned,
extra user intervention is required. Therefore, an efficient,
easily implementable and non-intrusive scheme for online
radio map construction and adaptation is urgently needed.

In this paper, we propose, WinIPS, a WiFi-based non-
intrusive indoor positioning system that enables automatic
online radio map construction and adaptation for calibration-
free indoor localization to overcome the aforementioned issues
of WiFi fingerprinting-based IPS. For RSS data acquisition,
we develop WinSMS, a novel intelligent wireless system that
can capture data packets transmitted in existing WiFi traffic
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and extract the RSS and MAC addresses of both APs and
MDs in a non-intrusive manner without introducing any extra
hardware. Since we can obtain the real-time RSS measure-
ments of APs, they become natural online reference points for
online radio map construction and adaptation. Therefore, we
can completely avoid the tedious offline site survey process.
Furthermore, in order to build up a more fine-grained radio
map, we propose the Gaussian Process Regression (GPR)
with Polynomial Surface Fitting Mean (PSFM-GPR), a reliable
regression technique dedicated to predict RSS on virtual
reference points (VRPs). It can well capture non-uniform RSS
distributions over complex indoor environments. PSFM-GPR
models the RSS distribution with a two-dimensional surface
which is closer to practical scenarios. Moreover, this online ra-
dio map better adapts and is robust to environmental dynamics
than the traditional offline calibrated RSS database since it is
up-to-date all the time. Since the online radio map is based
on AP generated RSS values, it is not suitable for localizing
MDs directly due to the device heterogeneity issue. Instead
of raw RSS values, we leverage Signal Tendency Index (STI)
[16], which compares the shapes of RSS vectors between RSS
readings of MD and online RSS fingerprint database. Then,
we propose Signal Tendency Index - Weighted K Nearest
Neighbor (STI-WKNN), that adopts the similarity index STI
as a novel weighting scheme for WKNN, to improve the
localization accuracy of WinIPS across heterogeneous devices.
Extensive experiments were carried out over a duration of six
months to validate the effectiveness of WinIPS in a real-world
multi-functional office. The experimental results demonstrate
that PSFM-GPR achieves a 4.8 dBm average RSS estimation
accuracy and a 1.718m average localization accuracy, which
outperforms the existing approaches, such as GPR with Log-
Distance Mean (LDM-GPR) [9] and Geography Weighted Re-
gression (GWR) [17]. Furthermore, STI-WKNN improves the
localization accuracy by 23.95% over traditional algorithms
across heterogeneous MDs.

In summary, we make the following contributions:

• We develop a WiFi-based non-intrusive IPS, WinIPS, that
is able to estimate locations of mobile devices without
app installation on the user’s side.

• For online RSS data acquisition, we design WinSMS
to overhear WiFi traffic and extract RSS values and
MAC addresses of mobile devices and APs from the
data packets in a non-intrusive manner. WinSMS can
be directly implemented on COTS WiFi routers, making
them natural reference points without introducing any
extra hardware infrastructure.

• For online radio map construction and adaptation, we
propose PSFM-GPR, which is able to build up and update
fine-grained radio map automatically over environmental
dynamics and discard the impractical laborious offline
site survey process.

• We introduce STI-WKNN that allows WinIPS to provide
a high localization accuracy consistently across heteroge-
neous mobile devices.

• We prototype WinIPS and test it in real complex in-
door environment. Promising results indicate that WinIPS

makes substantial progress towards fortifying WiFi
fingerprint-based IPS for feasible large-scale commercial-
ization.

The rest of the paper is organized as follows. The related
work is briefly reviewed in Section II. Section III introduces
the detailed system design of WinIPS, as well as the method-
ologies of WinSMS, PSFM-GPR and STI-WKNN. In Section
IV, our experimental testbed and data collection procedure
are described first, and experimental results and performance
evaluation of WinIPS are then reported. We conclude this
paper with Section V.

II. RELATED WORK

In this section, we first present a brief overview on
fingerprinting-based localization algorithms and their limita-
tions, and then introduce existing approaches that try to tackle
the problems.

A. Limitations of Fingerprinting-based Localization Algo-
rithms

Fingerprinting-based localization algorithms can be classi-
fied into two categories: deterministic approaches [4], [11] and
probabilistic approaches [18], [19]. Pioneered by RADAR [4],
deterministic approaches measure the difference between real-
time RSS samples and the mean of RSS fingerprints, calcu-
lating the most matched fingerprints. They can provide meter-
level localization accuracy with a dense radio map. On the
other hand, probabilistic approaches calculate the likelihood
between the real-time RSS samples and RSS distributions of
fingerprints stored in the database. Statistical techniques such
as maximum likelihood estimation [18], maximum a posteriori
estimation [19] and Gaussian process [20] are employed to
estimate the user location.

Several published results have shown that the fingerprinting-
based localization algorithms outperform other methods, such
as the time-of-arrival, angle-of-arrival and model-based ap-
proaches [1]. Some detailed performance analysis of RSS
fingerprinting-based localization algorithms, such as Cramr-
Rao lower bound, are elaborated in [21], [22]. There are
two major drawbacks of the existing fingerprinting-based
algorithms. One is that the offline site survey process is
time consuming, labor exhaustive and expensive. In order
to achieve sufficient localization accuracy, the WiFi RSS
fingerprints from different access points (APs) need to be
measured at a huge number of calibration points, which is
impractical for large indoor environments such as shopping
malls, stadiums and airports. The other drawback is that the
offline calibrated RSS fingerprint database is vulnerable to
environmental dynamics [7]. RSS is known to be susceptible to
various environmental changes including instant interference,
such as the opening and closing of doors and moving metal
objects, as well as continuous interference, such as variations
in temperature, humidity and occupancy distribution. Another
source of interference is multipath effects, which include
reflection, diffusion and diffraction in indoor environments.
As a consequence, the real-time RSS samples collected during
the online localization phase can severely deviate from those
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stored in the offline radio map, leading to serious location
errors. In summary, the laborious and prolonged offline site
survey process and the vulnerability to environmental dy-
namics of fingerprinting-based approaches hinder its further
commercialization.

B. Radio Map Construction and Adaptation
Several schemes have been proposed to reduce the manual

efforts for offline site survey and update the radio map online,
including fixed reference anchor methods [10], [11], [17], [23],
calibration-free methods [8], [9], learning-based methods [12],
[13] and crowdsourcing methods [14], [15].

Specifically, LANDMARC [10] and LEASE [11] devel-
oped an adaptive offset of the RSS variations by employing
reference anchors deployed at known fixed locations with
real-time RSS observations. Nonetheless, these approaches
require a very dense deployment of reference anchors to
construct the radio map accurately. In [17], self-made WiFi
anchors are introduced to obtain real-time RSS observations
and Geography Weighted Regression (GWR) is adopted for
online radio map construction to reduce the workload for
offline site survey. It is noted that all these methods still require
extra hardware to be deployed and are infeasible for large-
scale implementation. A calibration-free method which uses
an indoor radio propagation model for online radio map con-
struction to remove the offline site survey process is presented
in [8]. Nevertheless, the simple log-distance path loss model
cannot describe the complex RSS distribution precisely. In [9],
the idea of employing RSS data among APs to establish a radio
map and using the GPR with Log-Distance path loss model
for RSS modeling is introduced. However, they fail to modify
the AP firmware due to its technical difficulty and instead put
wireless monitors beside each AP. As a result, an extra device
is still needed.

Several learning-based approaches are also introduced to
reduce the number of reference anchors to be deployed [12],
[13], [24]. LEMT [12] performed radio map adaptation by
training the functional relationship between each location
and its neighboring locations based on nonlinear regression
analysis and the model tree method, since neighboring loca-
tions have highly correlated RSS characteristics in general.
The drawback of LEMT is that the process of building
huge numbers of trees in each RSS sniffing period is time-
consuming, which makes it difficult for real-time applications.
Other learning techniques such as multi-view learning [24]
and manifold alignment [13] are also utilized to transfer RSS
information across different times and devices. Nevertheless,
they still need to collect certain numbers of offline RSS
fingerprints as label data for learning purpose.

Crowdsourcing methods, which employ the full sensing
capabilities of MDs, are introduced to reduce the efforts for
radio map construction as well [14], [15]. Zee [14] utilized
inertial measurement unit (IMU), comprised of accelerome-
ters, gyroscopes and magnetometers, and RSS reading from
the MDs to build up a radio map. Walkie-Markie [15] used
landmarks, such as turns, escalators and elevators, to enhance
crowdsourcing performance. Nevertheless, extra user inter-
vention is needed for these approaches and continuous IMU

Fig. 1. WinIPS system architecture, illustrating modules of RSS data
acquisition, online radio map construction and localization.

monitoring will consume a lot of MDs’ batteries, which is an
impractical solution.

III. SYSTEM DESIGN

A. System Overview

The objective of WinIPS is to realize automatic online radio
map construction and adaptation for calibration-free indoor
localization. The system architecture of WinIPS is illustrated
in Fig. 1. It consists of three main parts: RSS data acquisition,
online radio map construction and online localization. For
RSS data acquisition, we develop the WiFi-based non-intrusive
Sensing and Monitoring System (WinSMS), which enables
COTS WiFi APs to intercept the data packets transmitted in the
existing WiFi traffic and extract RSS values in a non-intrusive
manner without extra hardware infrastructure. All the data will
be forwarded to a back-end server for radio map construction
and localization. We propose PSFM-GPR, a reliable regression
technique dedicated for RSS predictions on each VRP to
construct and update a fine-grained online RSS radio map over
various environmental dynamics. For online localization, STI-
WKNN is adopted to estimate the locations of heterogeneous
MDs with consistent high localization accuracy. The users
can use any browser on their MDs to obtain the estimated
location through the WinIPS Web server without the need
of installing an app. The following sections will introduce
the methodologies of WinSMS, PSFM-GPR and STI-WKNN,
respectively.

B. WinSMS for RSS Data Acquisition

The main drawbacks of fingerprinting-based approaches, the
laborious offline site survey process and the vulnerability to
environmental dynamics have been elaborated in Section II. In
addition, Apple Inc. has not provided any RSS API for third-
party developers. Due to these reasons, active WiFi scanning
via MD is not a practical method for establishing radio maps
anymore. Therefore, it is urgent and indispensable to design a
scheme for online RSS radio map construction and adaptation
in an accurate, reliable, efficient, practical and non-intrusive
manner.
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Fig. 2. WinSMS system to collect RSS data from communication among APs
and mobile devices.

To overcome this bottleneck, we develop, WinSMS, an
intelligent wireless system that enables COTS WiFi APs to
overhear the data packets transmitted in the existing WiFi
traffic in real-time without any intrusion on the user side.
It can be implemented on most of the COTS WiFi routers
that support the OpenWrt [25] operating system. WinSMS can
create a WiFi LAN to provide basic Internet services for users
in its wireless network coverage. More importantly, it has the
ability to overhear the data packets transmitted between each
MD and WiFi routers, and accurately retrieve the RSS values
and corresponding MAC addresses as identifiers. Then, all the
information will be sent to a back-end server without requiring
user to install any dedicated app for data acquisition.

Fig. 2 presents the system architecture of WinSMS. The
main components of WinSMS includes the COTS WiFi APs,
a back-end server, as well as users and their MDs. All the
APs in WinSMS perform the following major tasks: capture
the 802.11n data packets in the network, extract relevant
information from the packets, arrange them in a particular
format and forward them to the back-end server. We upgrade
the firmware of APs with OpenWrt and add a designed soft-
ware based on Libpcap [26] to sniff existing WiFi traffic, and
capture as well as analyze the data packets. Unlike traditional
active RSS scanning via a MD which has a limited sampling
rate, APs are able to overhear sustainable amount of data
packets generated by various existing applications on MDs,
such as data stream from watching videos, push notification
services and periodic email fetching, at the maximum rate
around 100 packets per second in a non-intrusive manner.
Furthermore, since WinSMS opportunistically captures the
data packets from existing WiFi traffic, it poses no additional
burden on the battery life of MD. Noticing that usually a
person cannot move a significant distance in a second and the
RSS value cannot change dramatically in such a short time,
the RSS values received within 1 second are averaged out
as a pre-filtering step. In this way, the RSS values collected
by WinSMS are smoother than those by the active scanning
method. The weakest signal strength is set to be −95 dBm. If
a particular data packet is received by only one AP, we set the
value received by the others as −95 dBm which effectively
means that the device is outside the range of that AP. After
that, the retrieved RSS values of MDs with their corresponding

TABLE I
ONLINE RSS OBSERVATIONS AMONG APS CAPTURED BY WINSMS.

AP1 AP2 · · · APn

AP1 RSSAP(1,1)
RSSAP(1,2)

· · · RSSAP(1,n)

AP2 RSSAP(2,1)
RSSAP(2,2)

· · · RSSAP(2,n)

...
...

...
...

...
APn RSSAP(n,1)

RSSAP(n,2)
· · · RSSAP(n,n)
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Fig. 3. Visualization of pairwise RSS matrix among 8 APs (dBm). For
instance, the RSS measurement between AP5 and AP6 is -47 dBm. As
discussed in the main text, we assume the self-sensed RSS of each AP is
-30 dBm.

MAC addresses will be sent to the back-end server through
the UDP protocol. The server is responsible for parsing the
data and building up the online RSS fingerprint database for
localization.

For each AP, in addition to capturing the data packets sent
and received by each MD, it can overhear packets of other
APs as well. Therefore, the RSS measurements at these APs
can be leveraged for online map construction. As summarized
in Table I, all the APs can be used as natural online reference
points for RSS radio map construction and adaptation since we
have their physical coordinates and real-time RSS readings.
Fig. 3 demonstrates the visualized pairwise RSS of 8 APs. In
principle, each AP cannot sense the signal strength of itself.
Therefore, we calibrate the average RSS of two APs placed
side-by-side and assign −30 dBm as the self-sensed RSS to
complete the pairwise RSS matrix of APs as shown in Fig. 3.

As shown in Fig. 4, the RSS values on the limited numbers
of APs may not be good enough to describe a fine-grained RSS
distribution for each AP. In order to obtain a more fine-grained
radio map, we introduce VRPs and propose the PSFM-GPR,
a suitable RSS modeling scheme that is able to accurately
estimate the RSS values of each AP at predefined VRPs for
fine-grained online radio map construction. The methodology
of the PSFM-GPR is introduced in the following section.
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Fig. 4. Scenario of WinIPS implementation in a complex indoor environment.
Following the algorithm outlined in Fig. 1, a fine-grained radio map at virtual
reference points is updated with WinSMS data to localize users in real-time.

C. PSFM-GPR for Online Radio Map Construction and Adap-
tation

1) Gaussian Process Regression Model for RSS Model-
ing: Admittedly, the RSS transmitted from a WiFi AP in
a free space is a log linear delay function of the distance.
Nevertheless, this property does not hold in practice due to
the multipath effects caused by furniture, walls and moving
occupants in complex indoor environments. Therefore, the
ideal log-distance path loss model is not able to predict the
RSS distribution precisely anymore. An efficient and powerful
nonlinear approach is required to model the anomalous distri-
bution of RSS values. As a nonparametric nonlinear regression
approach, GPR is an appropriate method for capturing the
noisy nature of RSS, and predicting RSS values for online
dynamic radio map construction and adaptation. In fact, GPR
has been widely employed in numerous areas, including geo-
statistics, spatial smoothing, robotic applications and machine
learning for probabilistic modeling, inference and prediction
[27]. Moreover, previous works [20], [28] employed GPR for
RSS interpolation to reduce the number of reference points
during the offline calibration phase.

A Gaussian Process (GP) generates data located at any point
of a finite set of random variables Z which follows a joint
multivariate Gaussian distribution. It is characterized by its
mean function m(z) = E[f(z)] and the covariance function
k(z, z′) = E[(f(z) − m(z))(f(z′) − m(z′))], where z ∈ Z.
The marginalization property of GP [27] allows us to predict
the posterior probability with an unknown input z∗ according
to some given inputs z and their corresponding observations.

Since the online radio map construction process of each
AP is similar, we will explain how to use GPR to predict RSS
values of APi as an example, where APi is one of the n
APs. WinSMS enables each AP to scan not only the RSS of
MDs, but also the RSS of other APs. Therefore, all the APs
are natural online reference points (training points) for radio
map construction and adaptation. The corresponding dataset

for each AP consist of pairs of (li, si)
n
i=1, li ∈ L, si ∈ S,

where li = (xi, yi) is the two-dimensional coordinates of an
AP, and si is an RSS value of the AP at location li. The
relationship between the two-dimensional space L and RSS
S can be modeled as a GP:

si = f(li) + εi

where εi is independent and identically distributed (i.i.d.)
additive zero-mean Gaussian noise with variance σ2

ε . Assume
the RSS observations at each AP can be drawn from the GP:

s ∼ GP
(
m(l), k(l, l′)

)
where m(·) and k(·, ·) represent the mean and covariance
function of GP respectively. GP learns the covariance of the
training dataset through the kernel covariance function. In our
case, the input data are the two-dimensional coordinates. The
value of the kernel covariance function is higher when two
points are near to each other and lower when two points are far
away. We utilize the most popular squared exponential kernel
covariance function:

k(l, l′) = σ2
f exp

[
−‖l− l′‖2

2r2

]
+ σ2

ε δ(l, l
′), (1)

where σ2
f and r are the hyperparameters of GP and δ(·, ·)

denotes the Kronecker delta function. Since we have n APs
in the space, we can calculate the covariance of each pair of
APs according to Equation (1) and obtain the n×n covariance
matrix K(L,L) for all pairs of training data. Suppose that we
would like to predict RSS values {sj}mj=1 ∈ S∗ of APi at m
VRPs {lj}mj=1 ∈ L∗ to build up a fine-grained radio map.
The multivariate Gaussian distribution of training data and
predicted RSSs with a zero-mean distribution can be described
as follows:[

S
S∗

]
∼ N

(
0,

[
K(L,L) + σ2

εI K(L,L∗)
K(L∗,L) K(L∗,L∗)

])
,

where K(L,L∗) is an n × m covariance matrix between S
and S∗, and I is the identical matrix. The RSS value of this
AP at an interested point lj can be predicted according to the
posterior mean and variance of GP:

s̄j = K(lj ,L)[K(L,L) + σ2
εI]−1S, (2)

cov(sj) = K(lj , lj)−K(lj ,L)[K(L,L) + σ2
nI]−1K(L, lj),

where s̄j is the estimated mean RSS at this location, cov(sj)
denotes the posterior variance as an estimation confidence
indicator, and K(lj ,L) and K(L, lj) are 1 × n and n × 1
matrices of the covariance between this point and all training
points.

As shown in Equation (2), the GP model usually adopts
the zero-mean function (ZeroM-GPR) as the default settings,
which means that the estimated RSS values will tend to zero
at locations that are far from any training points (APs). This is
obviously impractical for RSS modeling. Previous works [9]
used the Log-Distance path loss model to obtain a general
mean of RSS and then made use of GPR to estimate the
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Fig. 5. Illustration of RSS distribution of an AP in a complex indoor
environment, where the AP location is marked.

residual RSS errors. The estimated RSS at an arbitrary location
lj is calculated by

s̄j = m(lj) +K(lj ,L)[K(L,L) + σ2
ε I]−1(S −m(L)),

m(lj) = PL0 + 10α log(‖lj − lAPi‖/d0) + X , (3)

where ‖lj − lAPi‖ indicates the distance between APi and
location lj , PL0 is the path loss coefficient of the RSS value
at initial distance d0, and α is the path loss gradient, and X
represents the lognormal shadow fading with zero mean noise
with standard deviation σX [29]. These three parameters of the
Log-Distance path loss model in Equation (3) are calculated by
curve fitting with the training points. The Log-Distance Mean
GPR (LDM-GPR) can be used to estimate the RSS distribution
in an open space because it describes the relationship between
RSS and distance. However, in practice, as shown in Fig. 5, the
RSS distribution is much more complicated. The RSS values at
the same distance from the AP are usually distinct due to multi
path effect and shadow fading results from the obstacles that
attenuate signal power through absorption, reection, scattering,
and diffraction in complex indoor environment. Hence, the
LDM-GPR is no longer suitable since it does not consider the
orientation or the surrounding environmental property on each
VRP.

2) Online Radio Map Construction with PSFM-GPR: In
order to address this issue, we propose the PSFM-GPR, which
utilizes a two-dimensional polynomial surface fitting model to
estimate the general mean of the RSS, and then utilizes GP to
estimate the residual RSS errors. First of all, we assume the
RSS distribution of APi to be a two-dimensional polynomial
function as follows:

m(l) = β0 + β1x+ β2y + β3x
2 + β4y

2 + β5xy (4)

where l = (x, y) denotes the coordinates of other APs.
Since the WinSMS can obtain the RSS values of APi at all
other APs’ locations, all the parameters β0, β1, β2, β3, β4, β5
in Equation (4) can be estimated and updated online using
two degree polynomial surface fitting. According to our data
analysis regarding the fitting accuracy and the computational

overhead, we found that two-degree polynomial surface fitting
is good enough to capture the non-uniform RSS distribution.
With this proper mean of RSS, the predicted RSS by the
PSFM-GPR at any arbitrary location lj is calculated by

sj = m(lj) +K(lj ,L)[K(L,L) + σ2
ε I]−1(S −m(L)),

(5)

m(lj) = β0 + β1xj + β2yj + β3x
2
j + β4y

2
j + β5xjyj ,

(6)

where (xj , yj) are the coordinates of location lj .
After estimating the RSS values of all the n APs by

PSFM-GPR at the m VRPs, we can obtain a RSS vector
sj = [s1j , s

2
j , ..., s

n
j ], where 1 ≤ j ≤ m and sji (1 ≤ i ≤ n)

denotes the RSS values from APi at each VRP lj . Therefore,
a m× n RSS fingerprint database can be effectively built up
online to avoid the cumbersome offline site survey process.

3) Online Radio Map Adaptation with PSFM-GPR: The
radio map adaptation is another crucial process of WinIPS
system because it keeps the radio map up-to-date automatically
over various contextual dynamics including time and space.
Since the WinIPS system can obtain the RSS values of all
APs in real time as presented in Table I, each column in n×n
RSS matrix can be used as a trigger to determine whether the
system should initiate the radio map adaptation process for
each AP.

Algorithm 1 Online radio map adaptation algorithm
Initialization:
Input: n - The total number of APs
m - The total number of VRPs
st−1 - n× n RSS matrix of AP as shown in Table 1
st−1i - The RSS vector of APi stored in the fingerprint
database
sti - The RSS vector of APi at the time t
θth - The RSS threshold for AP RSSI differences
Output: stf - m×n Up-to-date RSS fingerprint database at
time t
Check RSS profile of each AP:
for i = 1, · · · , n do

if ‖sti − s
t−1
i ‖ > θth then

RSS profile of APi is required to update
APi ∈ APQ

else
RSS profile of APi is up-to-date

end if
end for
Update RSS fingerprint database:
for q = 1, · · · , Q do

APq → PSFM −GPR to predict RSS on all VRPs
for j = 1, · · · ,m do

sj = sjAPq

end for
end for
return stf

The detailed procedure of radio map adaptation is presented
in Algorithm 1. First of all, we will compare the differences
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Fig. 6. Demonstration of RSS for a router and mobile devices, located at
Location 1 (top plot) and Location 2 (bottom plot), measured by 14 APs
(indexed in x-axis). The shapes of router and mobile device RSS curves
display similar patterns.

between the real-time RSS values sti and the RSS profile st−1i

stored in the database for all the APs. If the RSS distance
between these two RSS vectors ‖sti − st−1i ‖ is larger than
a RSS threshold θth, it implies that the RSS profile of APi
is outdated due to some indoor environmental dynamics, and
the radio map update procedure will be initiated for this AP.
According to our empirical study, we set the threshold θth to
10dBm. The RSS values from this AP at each VRP will be
updated by the PSFM-GPR scheme as introduced in Section
III-C2. In this way, the m×n online RSS fingerprint database
will be up-to-date and be more robust to various contextual
dynamics compared to traditional offline fingerprint database.

D. STI-WKNN Localization Algorithm for Heterogeneous Mo-
bile Device

As introduced in the aforementioned sections, an up-to-date
and fine-grained online RSS fingerprint database is obtained
using WinSMS and PSFM-GPR. However, the RSS values
stored in this database are collected at APs. This database
cannot be applied directly for localization of MDs because the
RSS signatures of AP and MDs are usually different due to
various heterogeneous factors such as distinct WiFi chipsets,
WiFi antennas, hardware driver, and even operating systems
[30], [31]. To illustrate this issue, we conducted an experiment
that collected 500 RSS samples from a TP-Link TL-WR703N
portable router, as well as five different MDs: iPhone 6, Galaxy
S6, Nexus 6, iPad Air and Mi 4 at two identical locations
with respect to 14 commodity WiFi APs in a complex indoor
environment. As observed in Fig. 6, each curve connects the
average RSSs between one device and 14 APs. The RSSs
associated with router and MDs are significantly different,
which verifies the effect of device heterogeneity. Therefore,
the localization accuracy will be severely jeopardized if we
employ the RSS fingerprint database of a router (AP) to
estimate the location of an MD directly.

Meanwhile, another noteworthy observation from Fig. 6
is that the shapes of the curves display certain similarities.
In other words, one curve can be roughly recovered from
another one via translation and scale operations. Thus, to
accommodate the device heterogeneity issue, we leverage
the Signal Tendency Index (STI) [16], which compares the

similarities of the RSS curve shapes by using the ordinary
Procrustes Analysis (PA) method [32] instead of using the raw
RSS for fingerprint matching. To be specific, given a real-time
RSS vector from a MD, sd, the translation step of the ordinary
PA method will produce

s1d − sd, s2d − sd, ..., snd − sd (7)

where

sd =
1

n

n∑
i=1

sid.

Then, in the uniform scaling step, we have

ŝd = [s1d − sd, s2d − sd, ..., snd − sd]/σ̂, (8)

where

σ̂ =

√√√√ 1

n

n∑
i=1

(sid − sd)2.

The ŝd is the transformed object of ordinary PA method. Sim-
ilarly, all the AP-based RSS vectors stored in the fingerprint
database will be transformed as well. All the transformed RSS
fingerprints {ŝj}mj=1 will be compared with ŝd in terms of their
shape similarity. We define the Procrustes distance between the
two vectors ŝd and ŝj , termed signal tendency index (STI),
which is computed by

STIj = ‖ŝd − ŝj‖ (9)

where ‖ · ‖ denotes the Euclidean norm. After that, we
introduce a new weighting scheme which involves STI and
integrate it with the classical localization algorithm, Weighted
K Nearest Neighbor (WKNN), namely STI-WKNN, instead
of using the distance of RSS vectors as the weights. Since we
have calculated the STI value STIj between sd and each sj ,
a smaller STIj indicates that sj is similar to sd. We further
define a weight value wj for each sj , which is calculated as
follows:

wj =
1

STIj∑m
j=1

1
STIj

(10)

Then, the m VRPs are sorted according to their wj in a
descending order. Only top K VRPs and their corresponding
physical coordinates are adopted to estimate the location of
MD (xd, yd), which is calculated by:

(xd, yd) =
1

c

K∑
k=1

(xk, yk) · wk (11)

where (xk, yk) denotes the coordinates of ith VRP and c =∑K
k=1 w

k is the normalization constant.
In summary, the STI-WKNN localization scheme first com-

pares the similarities of the RSS curve shapes between real-
time RSS vector of a MD and those stored in the fingerprint
database by the ordinary PA method. Then, the similarity index
STI is adopted as a novel weighting scheme for WKNN to
estimate the location of heterogeneous MDs.
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(a) Layout of the testbed at T1.

(b) Layout of the testbed at T2.

Fig. 7. Layout of the testbed (a) at the beginning of the experiment (T1), and
(b) six months later after renovation (T2), showing significant indoor structure
changes (shaded region).

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Experimental Setup

To validate the performance of WinIPS comprehensively,
extensive experiments were conducted in a 35.6 × 16.6 m
multi-functional lab for six months. The layout of the testbed
at the beginning of the experiment (labeled as T1) is depicted
in Fig. 7(a), while the layout after renovation six months
later (labeled as T2) is presented in Fig. 7(b). As shown in
Fig. 7, there are several obvious layout differences during
the experiment which definitely affect the RSS distribution
in the area. We leveraged these changes to verify the radio
map adaptation and localization performance of WinIPS under
environmental dynamics. This is different from the traditional
evaluation methods [9], [17] which usually adopt corridors or
open spaces as testbeds, that are favorable for distance-related
RSS modeling. As demonstrated in Fig. 7, our testbed includes
workspaces, cubical offices, an open space for Unmanned
Aerial Vehicle (UAV) testing and a discussion room. This
complex indoor environment is much more suitable than an
ideal environment for performance evaluation of WinIPS.

In our experiments, 10 TP-LINK TL-WR703N router, were
adopted as APs for WinSMS in our experiment. TLWR703N
has a 400 MHz Atheros AR7240 CPU with 4 MB flash
memory and 32 MB RAM. The Atheros AR9331 chipset
is used in its platform working on 2.4 GHz. To implement
WinSMS, we upgraded the firmware to OpenWrt and added
our designed software. As shown in Fig. 7, the TL-WR703N
nano router is small in size and extremely easy to be deployed.
We chose this router to demonstrate that commercial routers
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Fig. 8. Comparison of RSS variations (z-axis) in short-term (left) and long-
term (right), showing much larger long-term variation.

Fig. 9. Comparison of RSS estimation errors for different APs by ZeroM-
GPR [9], LDM-GPR [9], GWR [17] and PSFM-GPR.

are becoming portable and easier for installation nowadays.
Moreover, with the booming development of Internet of Things
(IoT), billions of IoT devices will be densely deployed in
indoor environments for various purposes in the near future.
Equipped with WiFi modules, they can be easily upgraded
to serve as online reference points for dynamic radio map
construction and adaptation. The locations of these 10 APs
are depicted in Fig. 7 and they were fixed on 1.9-meter-high
tripods to keep them on the same height level. One server
is employed to process the RSS data sent by APs, construct
and update the RSS radio map and fingerprint database by
PSFM-GPR, and adopts STI-WKNN to estimate the location
of each MD. 50 testing points (small red circles in Fig. 7) were
randomly selected to evaluate the performance of WinIPS.
To validate the RSS estimation accuracy of PSFM-GPR, we
collected the real RSS values of a TL-WR703N router at these
points as the ground truth. Furthermore, we also collected the
RSS measurements of five MDs, including iPhone 6, Galaxy
S6, Nexus 6, iPad Air and Mi 4, at all the testing points
to evaluate the localization accuracy of STI-WKNN across
heterogeneous devices.

B. RSS Estimation Accuracy

Firstly, we conducted an experiment to continuously mon-
itor the distribution of RSS variations of an AP (AP10) to
understand the fluctuations of RSS caused by various envi-
ronmental dynamics in six months. Fig. 8 demonstrates the
distribution of RSS variation of the AP over one week and
six months. As shown in Fig. 8, the RSS variation over six
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TABLE II
COMPARISON OF RSS ESTIMATION ERRORS FOR DIFFERENT METHODS, SHOWING THE MEAN (ēRSS) AND THE STANDARD DEVIATION (σRSS) (DBM).

Method AP1 AP2 AP3 AP4 AP5 AP6 AP7 AP8 AP9 AP10 ēRSS σRSS

ZeroM-GPR 13.94 11.31 20.15 16.62 14.62 16.62 17.99 14.36 20.30 11.80 15.77 8.00
LDM-GPR 7.64 6.71 9.57 6.78 5.12 7.86 10.44 8.69 6.46 6.22 7.55 6.59

GWR 4.90 5.89 9.52 7.05 5.10 7.72 5.57 7.89 5.89 6.56 6.61 5.85
PSFM-GPR 4.82 4.65 5.43 5.30 4.39 4.81 4.07 3.72 3.74 5.88 4.68 3.51
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Fig. 10. Comparison of RSS estimation errors for AP8 by different methods, showing the spatial distribution.

months (long-term) is much larger than over one week (short-
term). Thus, it indicates that the static radio map calibrated at
a particular time is definitely unable to serve as the reference
for consistent location estimation at all times, since the real
time RSS values can vary significantly, especially in long-
term deployments. Radio map adaptation strategies such as
WinSMS is urgently desired to make the IPS resilient to
environmental dynamics.

For WinSMS, the real-time RSS measurements among the
10 APs collected by it can be summarized as a 10× 10 RSS
matrix, which is similar to Table I. By employing these data,
we predicted RSS values from APs by using PSFM-GPR
at the 50 testing points and compared it with the observed
RSS (ground truth). Fig. 9 and Table II compared the RSS
estimation of PSFM-GPR with ZeroM-GPR, LDM-GPR [9]
and GWR [17] in terms of mean (ēRSS) and standard deviation
(σRSS) of the RSS estimation error. The average estimated
RSS error of PSFM-GPR is 4.68 dBm which is the smallest
among the four methods. It is able to reduce the average RSS
error by 74.24%, 28.60%, and 29.58% compared to ZeroM-
GPR, LDM-GPR and GWR respectively. Moreover, the stan-
dard deviation of RSS error of PSFM-GPR is also the smallest
among the four methods, indicating that RSS predicted by
PSFM-GPR are more stable than existing approaches.

Furthermore, we evaluated the RSS estimation accuracy of
PSFM-GPR in two-dimensional space. To illustrate, Fig. 10
describes the estimated RSS error distribution of AP8 from 4
different RSS modeling methods. As illustrated in Fig. 10(d),
most of RSS errors of PSFM-GPR are smaller than 10 dBm
and are distributed evenly in a low RSS error level. The
reason for such an outstanding performance is that PSFM-GPR
performs two-dimensional surface fitting for RSS predictions,
which well captures non-uniform RSS distributions in a dif-
ferent orientation. In contrast, the RSS errors of ZeroM-GPR
is highest especially at the locations far away from any AP
(online reference points). On the other hand, LDM-GPR and
GWR, failed to capture the non-uniform RSS distribution in
complex indoor environments because only the relationship
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Fig. 11. Cumulative distributions of localization error between different
methods.

between RSS and distance in RSS modeling is considered.

C. Localization Estimation Accuracy
The aforementioned section illustrates the RSS estimation

evaluation of WinIPS. We present the localization accuracy
evaluation of WinIPS in this section. To prepare a fine-
grained online RSS fingerprint database, the back-end server
virtually divided our testbed into a 1.48 × 1.38 m grid and
adopted the PSFM-GPR to predict RSS values from all APs
at the 288 grid points (VRPs). The grid spacing between two
adjacent VRPs was chosen to be around 1.5m according to
the analysis in [33]. For evaluation, we collected 500 RSS
samples of each MD at each testing point, and used the
average location estimated by STI-WKNN to compare with
the physical location of each testing point (ground truth).

1) Comparison of Localization Accuracy Between Different
Online RSS Prediction Methods: First of all, we evaluate the
impacts of different online RSS prediction methods on local-
ization accuracy. In the back-end server, we established three
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Fig. 12. Spatial distributions of localization errors (z-axis) by different methods.

TABLE III
COMPARISON OF LOCALIZATION ERRORS FOR DIFFERENT METHODS IN

TERMS OF MEAN (ēLA) AND STANDARD DEVIATION (σLA). THE
IMPROVEMENT PERCENTAGE IS BASE-LINED AGAINST ZEROM-GPR

PERFORMANCE.

Method ēLA (m) Improve (%) σLA (m) Improve (%)
ZeroM-GPR 3.389 - 2.264 -
LDM-GPR 2.689 20.66 1.509 33.35

GWR 2.560 24.46 1.539 32.02
PSFM-GPR 1.718 49.31 0.803 64.53

online RSS fingerprint databases using ZeroM-GPR, LDM-
GPR and GWR similarly to that of PSFM-GPR. STI-WKNN
was used as the localization algorithm for all the schemes
in this evaluation to make a fair comparison. The statistical
attributes (i.e., the mean (ēLA) and standard deviation (σLA) of
localization accuracy) via PSFM-GPR is compared with three
other existing approaches. The overall performance is sum-
marized in Table III and Fig. 11. It is evident from Table III
that the localization accuracy of WinIPS is much higher when
PSFM-GPR is adopted for RSS prediction on VRPs. Fig. 12
depicts the distance error distribution in 2D over the floor
plan of the four approaches. Similar to the results shown in
Table III, PSFM-GPR has the best performance among the four
approaches. PSFM-GPR + STI-WKNN can provide a 1.718m
average localization accuracy with the smallest σLA = 0.803.
It enhances the precision of indoor positioning by 45.52% over
ZeroM-GPR, 33.16% over LDM-GPR and 35.23% over GWR
respectively. Furthermore, the smallest σLA indicates that the
online RSS fingerprint database generated by the PSFM-GPR
can provide more useful information for reliable localization
service than the other approaches.

We also explored potential correlations between the RSS es-
timation accuracy and the localization accuracy using PSFM-
GPR. Fig. 13 and Table IV compares the RSS estimation
accuracy in terms of mean (ēRSS) and the standard deviation
(σRSS) and the localization accuracy in terms of mean (ēLA)
and standard deviation (σLA) when different number of APs
are utilized. According to the analysis presented in [29], the
RSS variation is proportional to the square of the distance
between routers (router density). It can be seen from Fig. 13
that, RSS estimation errors become smaller when more APs
are leveraged. Due to multi path effect and shadow fading
results from the obstacles that attenuate signal power through
absorption, reection, scattering, and diffraction in complex
indoor environment, the empirical results as shown in Fig. 13
and Table IVmay not perfectly match with the theoretical
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Fig. 13. Plots of the RSS estimation error vs. the localization error, color
coded by the number of APs in use, showing higher RSS estimation accuracy
leads to more accurate localization.

TABLE IV
COMPARISON OF THE RSS ESTIMATION ACCURACY IN TERMS OF MEAN

(ēRSS ) AND THE STANDARD DEVIATION (σRSS ) AND THE LOCALIZATION
ACCURACY IN TERMS OF MEAN (ēLA) AND STANDARD DEVIATION (σLA)

USING DIFFERENT NUMBER OF APS.

No. of AP ēRSS (dBm) σRSS (dBm) ēLA (m) σLA (m)
4 16.16 13.04 9.245 5.187
6 13.24 10.23 5.953 4.010
8 8.58 7.22 2.929 2.575
10 4.68 3.51 1.718 0.803

analysis as presented in [29]. However, as the result of the
linear fitting, the general traces of the empirical results are
similar to the theoretical results, which validates that higher
router density lead to smaller variances of localization error.
Thus, we conclude that there is a positive correlation between
RSS estimation accuracy and localization accuracy for the
PSFM-GPR. Another noteworthy point is that the results in
Table III are comparable to those reported in [20] which rely
on a cumbersome offline calibrated RSS fingerprint database.

2) Comparison between Traditional Offline Site Survey and
PSFM-GPR: In this section, we compare the localization per-
formance of the PSFM-GPR to the traditional offline site sur-
vey method. We collected real RSS measurements of the MDs
on the physical coordinates of each VRP to build up the offline
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TABLE V
COMPARISON OF LOCALIZATION ERROR IN TERMS OF MEAN (ēLA) AND

STANDARD DEVIATION (σLA) BETWEEN OFFLINE SITE SURVEY AND
PSFM-GPR.

Method ēLA (m) σLA (m)
Offline Site Survey (T1) 2.327 1.471
Offline Site Survey (T2) 1.569 1.097

PSFM-GPR (T2) 1.718 0.803

RSS fingerprint database. Although WinSMS is able to collect
RSS values at a fast speed (0.5 seconds/sample), we still spent
5 hours to complete the offline site survey process which
is truly time-consuming and labor-intensive. We performed
two offline site surveys and constructed the corresponding
fingerprint databases at the beginning of the experiment (T1)
and six months later (T2). The testing data was collected on
T2. The overall performance is presented in Table V. When
the up-to-date online RSS fingerprint database generated by
PSFM-GPR is compared with the offline database constructed
on the same day (T2), the average localization accuracy of
it is only a little worse by 8.67% than the offline calibrated
RSS fingerprint database. However, it is impractical to build
up an offline radio map every day for localization purposes.
To illustrate the vulnerability of the transitional offline site
survey method to environmental dynamics, we compared the
performance of an out-of-date offline RSS fingerprint database
(T1) to PSFM-GPR. Under this situation, PSFM-GPR reduces
the localization error by 26.17% compared to the outdated
offline RSS fingerprint database. In summary, PSFM-GPR
can construct and update the RSS fingerprint database au-
tomatically that enables WinIPS to provide consistent high
localization accuracy over various environmental dynamics.
Furthermore, it avoids the cumbersome offline site survey
process which is the major bottleneck for the large-scale
commercialization of WiFi-based IPS.

3) Impact of Device Heterogeneity: To validate the effec-
tiveness of WinIPS under the impact of device heterogeneity,
we collected RSS measurements of five MDs at 50 testing
points for this evaluation. The overall results are summarized
in Table VI. As observed from Table VI, WinIPS can provide a
high localization accuracy (within 2m on average) consistently
across heterogeneous MDs using STI-WKNN. Although the
online RSS fingerprint database established by the PSFM-
GPR is based on data among APs, the device heterogeneity
issue can be largely alleviated by comparing the similarities
of RSS curve shapes (STI) rather than the raw RSS values
for WKNN fingerprint matching. Fig. 14 depicts the distance
error distribution of the original WKNN and STI-WKNN. STI-
WKNN has a much better performance in terms of localization
accuracy compared to the original WKNN. It improves local-
ization accuracy by 23.95% over the original WKNN across
heterogeneous MDs. In summary, the merit of STI-WKNN
enhances the robustness of WinIPS to device heterogeneity
issues for indoor localization.

4) Impact of Occupancy Density: We also analyze the
impact of occupancy density on the localization accuracy of
WinIPS. Fig. 15 demonstrates the functionality of each zone
in the testbed. Our testbed is a real multi-functional lab, that
includes one undergraduate student office (for 20 occupants),
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Fig. 14. Cumulative distribution of localization error with (STI-WKNN) and
without (WKNN) to compensate device heterogeneity.

TABLE VI
COMPARISON OF LOCALIZATION ERROR IN TERMS OF MEAN (ēLA) AND
STANDARD DEVIATION (σLA) BETWEEN DIFFERENT MOBILE DEVICES.

Mobile device ēLA (m) σLA (m)
iPhone 6 1.749 0.733

Galaxy S6 1.683 0.794
Nexus 6 1.785 0.729
iPad Air 1.615 0.912

Mi 4 1.758 0.847

one workplace for graduate students (for 7 occupants), one
UAV testbed (open space), one It includes one undergraduate
student office (for 20 occupants), one workplace for graduate
students (for 7 occupants), one Unmanned Aerial Vehicle
(UAV) testbed (open space), one workplace for undergraduate
students (for 15 occupants), and one graduate student office
(for 45 occupants). As shown in the Fig. 15, the graduate
student office is the most crowded area in the lab, where the
occupancy density is 0.278 p/m2. The functionality of the
UAV testbed is testing the performance of UAV so it is usually
empty, which has the lowest occupancy density within the lab.

Table VII elaborates the zone size, number of common
occupants, occupancy density and the mean localization error
in each zone. As presented in Table VII, the localization
accuracy in low occupancy density area is slightly better in
the high occupancy density area. The mean localization error
in the graduate student office is the largest (1.945m) and it is

Fig. 15. The functionality of each zone in the testbed.
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TABLE VII
COMPARISON OF LOCALIZATION ERROR IN EACH ZONE WITH DIFFERENT OCCUPANCY DENSITY.

Zone ID Zone area (m2) No. of occupants Occupancy density (p/m2) Mean localization error (m)
UAV testbed 80.10 0 0 1.227

Workplace for graduate students 77.36 7 0.09 1.691
Workplace for undergraduate students 159.86 15 0.09 1.464

Undergraduate student office 105.58 20 0.19 1.778
Graduate student office 161.57 45 0.28 1.945

the most crowded area in the lab, while the mean localization
error in the UAV testbed is the minimum (1.227m) which has
the lowest occupancy density. Thus, the experimental results
indicate that higher occupancy density may affect the local-
ization accuracy because the movement of occupants interfere
the signal propagation paths and the multipath components,
which contribute to higher uctuations of received signals.
Potential solution to overcome this issue is to add additional
WiFi routers in the crowded area to provide more RSSI
measurements and features so that the localization accuracy
can still be guaranteed. Furthermore, the localization accuracy
in this can be further improved by optimizing the placement
of APs in our previous work [34].

V. CONCLUSION

In this paper, we proposed, WinIPS, a WiFi-based non-
intrusive IPS that enables automatic online radio map con-
struction and adaptation for calibration-free indoor localiza-
tion. For RSS data acquisition, we developed WinSMS, a
novel intelligent wireless system that can capture data pack-
ets transmitted in the existing WiFi traffic and extract the
RSS and MAC addresses of both APs and MDs in a non-
intrusive manner. We leverage APs as natural online reference
points for online radio map construction and adaptation. To
construct a more fine-grained radio map, we further proposed
the PSFM-GPR, a reliable regression technique dedicated to
predicting RSS on VRPs which can well capture the non-
uniform RSS distribution over complex indoor environments.
The online radio map adapts better and is more robust to
environmental dynamics than traditional offline calibrated RSS
database since it keeps updated with new measurements. To
alleviate the device heterogeneity issue between AP and MD,
we introduced STI-WKNN, which compares the shapes of
RSS vectors between RSS readings of MDs to online RSS
fingerprint database rather than to raw RSS values. Extensive
experiments have been carried out over six months to validate
the effectiveness of WinIPS in a real-world multi-functional
office. The experimental results show that the PSFM-GPR
achieves a 4.8 dBm average RSS estimation error and a 1.718
m average localization accuracy, which outperforms existing
approaches. In summary, WinIPS overcomes the bottlenecks of
WiFi-based IPS, making it promising for large-scale practical
implementations.
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