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Abstract— Bayesian Regression of Infinite Expert Forecasters
(BRIEF) as proposed in the study is a prediction algorithm for
time-varying systems. The method is based on regret minimiza-
tion by tracking the performance of an inifinite pool of experts
for single and multiple time series. The inverse correlation
weighted error (ICWE) employed in BRIEF takes into account
the dependency structure among multiple time series, which
can also be adapted to multi-step ahead predictions. Theoretical
bounds show that the cumulative regret grows at rate O(log T )
with respect to the oracle that can select the best strategy
in retrospect. As the per round regret vanishes, BRIEF is
indistinguishable to the oracle when the horizon increases.
Also since the bound applies to any choice of input subject
to the euclidean norm constraint, the method can be applied
to adversarial settings. Experimental results verify that BRIEF
excels in single and multiple steps ahead prediction of ARMAX
simulated data and building energy consumptions.

I. INTRODUCTION

Consider the indexed class of models, M = {Qθ :
θ ∈ Θ}, where Θ is a compact convex set of a finite
dimensional linear space, and assume for a time-varying
system ∃θ∗t ∈ Θ such that Qt is reasonably well modeled by
the linear model Qθ∗t , the task is to predict output yt given
input xt, i.e. ŷt = x>t θt, where xt can be past values of yt
or exogenous variables {ut}. Inasmuch as we are not limited
in the selection of xt ∈ Rd, we can deal with nonlinearity
through the process of “lifting” by augmenting the set of
predictors with nonlinear transformations of the features.

Due to the familiarity of the problem to adaptive con-
trol [1], algorithms such as stochastic gradient descent and
pseudo linear regression can be applied, where convergence
properties for time-varying systems are proven using Lya-
punov functions [2]. The assumption on the time-varying
parameter, nevertheless, is not suitable in the adverserial
setting where the parameter is chosen by the opponent.

Online convex optimization (OCO) has been developed for
sequential decision-making in the presence of time-varying
uncertainty [3]. The loss of θ, also known as an “expert”,
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up to time t is given by

Lt(θ) = 1
2

t∑
i=1

(
x>i θ − yi

)2
. (1)

The empirical loss incurred by the forecaster is L̂t =
1
2

∑t
i=1 (ŷi − yi)2. To assess the performance we define the

notion of regret with respect to the best possible expert
θ∗ = argθ minLt(θ) in retrospect [3]:

Rt = L̂t −min
θ
Lt(θ) (2)

Note that θ∗ is regarded as an “oracle” as it is not possible
to know beforehand which expert performs the best until
we have already seen all the trajectory. The objective of
time series prediction is thus to minimize the regret to be
sublinear, i.e. o(t), so the per round regret is vanishing as t
grows.

Previous works based on iterative minimization of a con-
vex functional includes proximal point [4], mirror descent
algorithm [5], and adptive online gradient descent [6]–[8].
Raginsky et. al. have shown the application to a generaliza-
tion of classical adaptive control schemes and supervisory
controller switching policy [9]. Mixture forecasters have
been introduced by Vovk [10] in the optimization literature
and Clarke and Barron [11] in the bayesian literature, and
later developed by Kakade and Ng [12].

Bayesian Regression of Inifinite Expert Forecasters
(BRIEF) belongs to the category of prediction methods with
log loss using infinite families of probability distributions
[13]. In addition to the closed form prediction which brings
computational advantage, we have also proven that the regret
grows at rate O(log T ) as performance guarantee.

The rest of the paper is organized as follow. Section II-
A and II-B introduce the BRIEF algorithm for single and
multiple time series respectively, where the bounds on regret
is proven in Section II-C. Section III reports experimental
results on simulation and building energy prediction. We
conclude in Section IV with future works.

II. BRIEF METHODOLOGY

Generally, BRIEF is a method of tracking the performance
of “experts” in an infinite pool in order to make forecasts
in a systematic way. In the following we first derive the
algorithm for single and multiple time series (Section II-A
and II-B), then we provide bounds on regret as a guarantee
of performance (Section II-C).



A. BRIEF with Single Time Series

Compared to the mixture of experts model [14] whose
forecast is based on a weighted sum of opinions from a finite
set of experts, the approach of BRIEF bears similarities with
Bayesian regression, such as Ridge regression, where the sta-
tistical analysis is undertaken by assuming prior distributions
on the model’s parameters.

Assume a prior on the distribution of experts θ ∈ Rd,
θ ∼ N (µ0,Σ0), which is the initial weights imposed on the
experts. The transfer function σ(y,θ · x) = e−(θ·x−y)

2/2

relates the loss incurred at round t for expert θ to its weight
updates, as can be seen in Ln(θ) = − ln

∏n
t=1 σ(yt,θ ·xt).

The posterior density of experts at round t is thus

qt(θ)=
q0(θ)e−Lt−1(θ)∫
q0(v)e−Lt−1(v)dv

=
q0(θ)

∏t−1
s=1 σ(ys,θ · xs)∫

q0(v)
∏t−1
s=1 σ(ys,v ·xs)dv

,

(3)
where the cumulative loss is defined in (1). Intuitively, ex-
perts with poor performances (larger loss) are downweighed
through the exponential updates. The following result pro-
vides the core of BRIEF as the expected output ŷt given the
input xt.

Theorem 1: For any prior distribution θ ∼ N (µ0,Σ0), if
the updates law follows (3), then given xt, the expectation
of Y is given by

Ep̂t [Yt|xt] =
x>t A

−1
t at−1

1− x>t A
−1
t xt

(4)

where at = Σ−10 µ0+
∑t
s=1 ysxs,At = Σ−10 +

∑t
s=1 xsx

>
s ,

and p̂t(y,xt) =
∫
σ(y,θ · xt)qt(θ)dθ is the projected

distribution given xt.
Proof: Since the prior and transfer function form a

conjugate pair, the posterior distribution is still Gaussian
whose expectation is contained in the exponent:

p̂t(y|xt) =

∫
σ(y, u · xt)qt(θ)dθ

∝
∫
e
− 1

2

(
(θ·xt−y)2+(θ−µ0)

>Σ−1
0 (θ−µ0)+

t−1∑
s=1

(θ·xs−ys)2
)
dθ

∝ e
− 1

2

(
y2+

t−1∑
s=1

y2
s−(yxt+at−1)

>A−1
t (yxt+at−1)

)

∝ e
− 1−x>t A

−1
t xt

2

(
y−x

>
t A
−1
t at−1

1−x>t A
−1
t xt

)2

,

from which we have

Yt ∼ N (
x>t A

−1
t at−1

1− x>t A
−1
t xt

, (1− x>t A
−1
t xt)

−1). (5)

Remarks: It is interesting to point out the close connec-
tion of BRIEF with the well-known Vovk-Azoury-Warmuth
forecaster [10], which predicts at time t with ŵ>t xt, where

ŵt = arg min
θ∈Rd

[
‖θ‖2 +

t−1∑
s=1

(θ>xs − ys)2 + (θ>xt)
2

]
.

(6)

Without the term (θ>xt)
2, the above formulation becomes

the ridge regression forecaster [15]. The additional term
can be viewed as (θ>xt − 0)2 that shrinks the prediction
towards 0. It is easy to derive the solution to (6) as x>t ŵt =
x>t A

−1
t at−1, which differs from BRIEF by the scaling

factor. Instead of arbitrarily shrinking towards 0, BRIEF
keeps track of the posterior distribution and shrinks towards
the mean, which makes BRIEF a more sensible approach to
adopt.

B. BRIEF with Multiple Time Series

Consider the prediction problem with multiple time series
{yt}, yt ∈ RM . One might straightforwardly apply the fore-
caster in the previous section to each series independently.
For highly correlated time series, this amounts to using the
cumulative loss as the independent sum of individual losses,∑t
i=1(X>i θ − yi)>I(X>i θ − yi), where

X>i =


x>1,i 0 · · · 0

0 x>2,i
. . . 0

0 0 · · · x>M,i

 (7)

is the input matrix augmented with input vector xj,i for series
j at time i, θ =

[
θ>1 · · · θ>M

]
is the augmented expert

vector, and I is the identity matrix.
Motivated by the maximum likelihood estimation of mul-

tivariate Gaussian, the following loss function is designed,

Lt(θ) = 1
2

t∑
i=1

(X>i θ − yi)>Γ−1(X>i θ − yi), (8)

where the prediction error for each time series is weighted by
the inverse correlation matrix Γ−1 to capture the correlated
structure.1 The regret defined in (2) is the discrepancy of loss
incurred by the forecaster with a group of oracle experts.

The following theorem provides with the BRIEF forecaster
for multiple time series, where the transfer function

σ(y,X>θ) = e−
1
2 (X>θ−y)

>
Γ−1(X>θ−y) (9)

is used in the posterior weight updates of (3).
Theorem 2: For the prior distribution θ ∼ N (µ0,Σ0) on

the augmented expert θ =
[
θ>1 · · · θM

]
, and correlation

matrix Γ, if the updates law follows (3), then given Xt as
(7), the expectation of Y ∈ RM is given by

Ep̂t [Y t|Xt] = B−1t Γ−1X>t A
−1
t at−1 (10)

1The correlation matrix Γ has 1 on the diagonal and Γij =
Cov(Yi,Yj)√

V ar(Yi)V ar(Yj)
∈ [−1, 1] as the correlation between time series

{Yi} and {Yj} as the off-diagonal entry. In practice Γ can be learned
from training data or designed by experts to account for the correlation
structures.



Algorithm 1: Pseudo-code of BRIEF
Init : Set a0 = Σ−1

0 µ0, A0 = Σ−1
0 , B0 = Γ−1, where µ0,

Σ0, and Γ are hyperpriors provided by the users.
for t = 1, · · · , T do // round of predictions

1 Observe yt−1 ∈ RM

2 Xt is revealed s.t. λmax(Xt) is bounded.
3 Perform updates for at−1, At, Bt as in Theorem 2.
4 Predict ŷt = B−1

t Γ−1X>t A
−1
t at−1

where

at = Σ−10 µ0 +

t∑
s=1

XsΓ
−1ys

At = Σ−10 +

t∑
s=1

XsΓ
−1X>s

Bt = Γ−1 − Γ−1X>t A
−1
t XtΓ

−1,

and p̂t(y|xt) =
∫
σ(y,X>θ)qt(θ)dθ is the projected dis-

tribution given Xt.
Proof: The proof is similar to that of the single

time series, using the fact that affine transformation of
Gaussian random variable is still Gaussian. For presentation
let ‖x‖2A = x>Ax, the key steps involves:

p̂t(y|xt) =

∫
σ(y,X>θ)qt(θ)dθ

∝
∫
e
− 1

2

(
‖X>t θ−y‖

2
Γ−1+‖θ−µ0‖

2

Σ
−1
0

+
t−1∑
s=1
‖X>s θ−ys‖

2
Γ−1

)
dθ

∝ e
− 1

2

(
‖y‖2

Γ−1+
t−1∑
s=1
‖ys‖

2
Γ−1−‖XtΓ

−1y+at−1‖2
A
−1
t

)

∝ e−
1
2

∥∥∥B1/2
t y−B−1/2

t Γ−1X>t A
−1
t at−1

∥∥∥2

,

from which we have

Y t ∼ N (B−1t Γ−1X>t A
−1
t at−1,B

−1
t ). (11)

The implementation of BRIEF with single and multiple
time series (BRIEF-S, BRIEF-M) is shown in Algorithm 1,
where the choice of Γ = I (identity matrix) for BRIEF-
M is equivalent to BRIEF-S when applied independently to
individual signals.

Remarks: The inverse correlation weighted error (ICWE)
metric proposed in the study is an extension of the mean
squared error (MSE) in multiple time series to correlated
structures [16]. Potential applications include energy pre-
diction of buildings in the neighborhood that are subject
to the same set of exogenous inputs not captured in the
model, or prediction with extended horizon where each step
is highly correlated with each other. See Section III for the
experimental results.

C. Performance Bounds on Regret

The regret as in (2) compares the forecaster with the “or-
acle forecaster”, which chooses its strategy, θ∗, in retrospect

once all the {yt} are seen. In the task of prediction, it is
impossible to see the values in the future. We provide bounds
on the regret as performance guarantees for BRIEF with
single and multiple time series as follow.

Proposition 1 (KL divergence for Gaussians [17]):
The KL divergence, D(p0 ‖ p1), between two Gaussian
distributions p0, p1 parameterized by mean µ0,µ1 and
covariance matrices Σ0,Σ1 is given by:

D(p0 ‖ p1) = 1
2

(
ln |Σ1|
|Σ0| − d+ tr(Σ−11 Σ0) + ‖µ0 − µ1‖2Σ−1

1

)
(12)

where we use the shorthand notation

‖µ0 − µ1‖2Σ−1
1

= (µ0 − µ1)>Σ−11 (µ0 − µ1) (13)

for the rest of the paper.
Lemma 1 (Maximum Differential Entropy [17]): For any

multivariate density q on Rd with zero mean
∫
θq(θ)dθ = 0

and covariance matrix Σ, the differential entropy h(q) =
−
∫
q(θ) ln q(θ)dθ is maximized at d2 ln(2πe)+ 1

2 ln det(Σ),
which is achieved by the multivariate normal density with
covariance matrix Σ.

Lemma 2 (Descent Lemma [18]): The following holds
for f ∈ C1

L with Lipschitz continuous gradient, i.e.
‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2:

f(x) ≤ f(y) + 〈∇f(y),x− y〉+ L
2 ‖x− y‖

2
2 (14)

The following theorems bounds the regret for BRIEF.
Theorem 3 (BRIEF with single time series): The regret

of BRIEF, under the same conditions as Theorem 1, with
respect to any expert θ is bounded by:

L̂n − Ln(θ) ≤ c1 + d
2 ln

(
tr(Σ−1

0 )
d + nc

d

)
(15)

where c1 = 1
2‖µ0− θ‖2Σ−1

0

+ 1
2 ln |Σ0|, |Σ0| is the determi-

nant of Σ0.
Proof: The proof is similar to that of Theorem 4.

Theorem 4 (BRIEF with multiple time series): For
BRIEF with multiple time series forecasting as detailed
in Theorem 2, the regret with respect to any expert θ is
bounded by

L̂n − Ln(θ) ≤ c1 + d
2 ln

(
tr(Σ−1

0 )
d + ncMλmax(Σx)

d

)
(16)

where c1 = 1
2‖µ0 − θ‖2Σ−1

0

+ 1
2 ln |Σ0|, λmax is the upper

bound on the eigenvalue of the feature matrix Σx = XtX
>
t ,

which is equal to the largest euclidean norm on the input
vector maxj ‖xj,t‖2 as in (7).

Proof: Using the argument of Lemma 2.1 in [12], which
is essentially the same as Theorem 1 in [19], we introduce
the auxiliary density qεθ with mean θ and covariance matrix
ε2I which has the cumulative loss Ln(qεθ) given by:

Ln(qεθ) =

∫
Ln(v)qεθ(v)dv (17)

Step 1: Relate Ln(qεθ) to the loss incurred by the corre-
sponding expert θ. Let Hy(z) = − lnσ(y, z) where σ(y, z)



is the transfer function given in (9), then by the descent
lemma (2), ∀y, z, z0 ∈ RM , we have

Hy(z) ≤ Hy(z0)+〈∇Hy(z0), z − z0〉+ c
2‖z−z0‖

2
2. (18)

Denote V to be a random variable with density qεθ, and
let z = X>t V , z0 = X>t E[V ] = X>t θ, by taking the
expectation on both sides of (18),

EHy(X>t V ) ≤ Hy(X>t θ) + cM
2 ε2λmax(Σx), (19)

where we used the fact that E((V −θ)>XtX
>
t (V −θ)) ≤

Mε2λmax(Σx) with Σx = XtX
>
t .

Since
∑n
t=1Hyt(x

>
t θ) = Ln(θ) by definition and∑n

t=1 EHyt(x
>
t V) = Ln(qεθ), we obtain

Ln(qεθ) ≤ Ln(θ) + ncM
2 ε2λmax(Σx) (20)

Step 2: Relate Ln to the loss of expert θ. We proceed by
bounding the difference between Ln and Ln(qεθ):

L̂n − Ln(qεθ)
1
= − ln

n∏
t=1

p̂t(yt|Xt) +

∫
qεθ(v)Ln(v)dv

=

∫
qεθ(v) ln

∏n
t=1 σ(yt,X

>
t v)∏n

t=1 p̂t(yt|Xt)
dv

2
=

∫
qεθ(v) ln

qn(v)

q0(v)
dv

=

∫
qεθ(v) ln

qεθ(v)

q0(v)
dv︸ ︷︷ ︸

D(qεθ‖q0)

−
∫
qεθ(v) ln

qεθ(v)

qn(v)
dv︸ ︷︷ ︸

D(qεθ‖qn)

3
≤ D(qεθ ‖ q0),

where p̂t(y|Xt) =
∫
σ(y,θ · Xt)qt(θ)dθ in 1 , and 2

follows from the definition of qn(θ) in (3), and 3 follows
from nonnegativity of KL divergence. Together with (20),

L̂n − Ln(θ) ≤ D(qεθ ‖ q0) + ncM
2 ε2λmax(Σx) (21)

Step 3: Optimizing the bound. By Prop. 1 and Lemma 1,
we have the RHS of (21) minimized by the choice of qεθ as
Normal with mean θ and covariance ε2I . Optimizing over ε
obtains the bound.

Remarks: The bound on regret with respect to a single or
a group of best experts for BRIEF involves a constant term
and a term that grows logarithmically with n, i.e. O(log n).
Also the role of Xt is very flexible, which can be chosen
adversarially subject to the euclidean norm constraint that
λmax(Σx) = maxi ‖xi,t‖2 is bounded, where xi,t is the
input vector for the j-th time series as in (7). It is not required
to know the bound a priori for the method to work.

III. EXPERIMENTAL EVALUATION

A. Simulation by ARMAX

We first evaluate BRIEF on data artificially generated
according to the stochastic autoregressive moving-average
model with auxiliary input (ARMAX) [16]:

A(ρ−1)y(t) = B(ρ−1)u(t) + C(ρ−1)ω(t) (22)
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Fig. 1. Distribution of root mean squared error (RMSE) in one-step ahead
prediction, evaluated for the persistent model (PS, the prediction is the

previous observation), stochastic gradient algorithm (SGA), pseudo linear
regression (PLR), seasonal ARMA with auxiliary input (SARMA-X),

BRIEF, and oracle (least square regression in retrospect). The two
experimental conditions are with noise N (0, 1) and N (0, 2) respectively.
The input vector xt is chosen as the previous 2 points together with the

input variable at time t.
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Fig. 2. Distribution of RMSE in multiple step ahead prediction with
horizon 100 the same as the period of the input u(t). The experiments

with noise level 1 and 2 are performed for the persistent model (taking the
previous period as prediction), SARMA-X, BRIEF, and oracle, which have
straightforward generalization to multi-step ahead predictions. The input
vector xt is chosen as the previous 2 points, and 1 point at seasonal lag

(100), together with the input variable at time t.

where {y(t)} and {u(t)} denote the output and inputs, and
{ω(t)} is the innovations sequence with ω(t) ∼ N (0, σ2

ω).
A(ρ−1) = 1 +

∑n
i=1 aiρ

−i, B(ρ−1) =
∑m
i=0 biρ

−i, b0 6= 0,
C(ρ−1) = 1 +

∑l
i=1 ciρ

−i, where ρ is the lag operator.
The simulation adopts coefficients with autoregressive order
n = 2, moving-average order l = 1, and auxiliary input order
m = 0. The input {u(t)} is periodic square wave.

BRIEF is evaluated against Seasonal ARMAX (SARMA-
X), stochastic gradient algorithm (SGA), and pseudo linear
regression algorithm (PLR) in the task of one-step and multi-
step ahead predictions.2 Results are illustrated in Fig. 1 and
2, where the root mean squared error (RMSE) is given by√

1
n

∑n
i=1(ŷi − yi)2. As can be seen, BRIEF is comparable

to the oracle in both tasks, and outperforms the persistent
model and seasonal ARMAX (SARMA-X) model in the
multi-step ahead prediction.

As is shown in Fig. 3, which illustrates the per round regret

2See Chpater 7 and 9 in [1] for implementation details of SGA and PLR.
The parameters of the SARMA-X models are estimated by maximum
likelihood, which is implemented by the standard package in R.
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Fig. 5. Per round regret Rt/t in one-day ahead energy prediction of
Davis Hall. Each point shows the mean regret in the 5-fold

cross-validation.
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Fig. 6. Per round regret Rt/t in one-day ahead energy prediction of
Soda Hall. The performance of the persistent model is worse than

SARMA-X, while BRIEF remains the superior.
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Fig. 7. Selected period of energy consumption ground truth and
predicted time series by SARMA-X, BRIEF, and oracle for Soda Hall,

where the consumption remains regular throughout the period.
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Fig. 8. Selected period of energy consumption ground truth and
predicted time series by SARMA-X, BRIEF, and oracle for Soda Hall,

where there is a sudden drop in consumption during the period.

Rt/t where Rt is given in (2), the performance of BRIEF
converges to the oracle.

B. Use Case: Building Energy Prediction

Prediction of building energy consumption, which ac-
counts for approximately 40% of all energy usage in the
U.S., facilitates demand-response for energy savings [20],
[21]. We collected energy consumption of 10 buildings on
UC Berkeley campus at a resolution of 15 minutes and 1
hour, together with local weather, from 2014 Feb. 10 to 2015
Feb. 10, as shown in Fig. 4.

The results of the one-day ahead prediction by BRIEF
(for single and multiple time series) and two popular models
among utility companies, i.e. ARIMA, and persistent model
(taking the previous period as prediction), are shown in

Table I.3 As can be seen, the performance of BRIEF-M is
closer to the oracle than BRIEF-S due to the employment
of the inverse-correlation matrix weighted cost (8), and both
methods excel the SARMA-X and PS models in most cases.

The per round regrets Rt/t for the prediction of two
buildings (Davis and Soda Hall) are shown in Fig. 5 and
6. While the persistent and SARMA-X models have large
per round regret, BRIEF exhibits convergence to the oracle
as t increases.

Close inspection of the predicted time series reveal that
while SARMA-X behaves reasonably well for periodic sig-

3Since building consumption exhibits strong seasonality, we extract the sea-
sonal trend learned from training data before predictions. The correlation
matrix Γ is calculated for the seasonally adjusted data. For the choice
of xt we choose the power consumption in the prevoius 2 hours together
with the consumption one day before at the same time, and the temperature
forecast for the next hour.



TABLE I. Root mean squared error (kW) in one-day ahead energy prediction for 10 buildings on the UC Berkeley campus by the persistent model,
Seasonal seasonal ARMAX (SARMA-X), BRIEF with single and multiple time series (BRIEF-S, BRIEF-M), and the oracle.

Persistent SARMA-X BRIEF-S BRIEF-M Oracle
Davis Hall 24.28 22.72 18.67 18.49 16.37
Calvin Lab 7.08 3.48 2.55 2.53 2.22
Cory Hall 69.61 31.23 25.00 24.65 21.82
Stanley Hall 80.00 45.39 43.63 42.69 35.08
Doe Library 14.01 14.77 18.06 16.00 13.08
Lawrence Lab 21.60 20.38 19.65 19.22 16.59
Wheeler Hall 20.14 17.09 14.94 14.81 12.77
Soda Hall 47.98 31.16 26.60 26.25 23.87
Haas Pavilion 128.21 116.73 102.60 97.13 80.48
Etcheverry Hall 9.48 6.00 5.79 5.74 5.22
Mean error: 42.27 30.89 27.75 26.75 22.75

nals (see Fig. 7) , it fails to capture the change in consump-
tion as in Fig. 8. On the contrary BRIEF quickly responds
to the change, as in Fig. 8, similar to the oracle.

IV. CONCLUSION

Bayesian Regression of Inifinite Expert Forecaster
(BRIEF) approaches time series prediction by consulting an
infinite pool of experts, whose performances are tracked to
provide the weights of their opinions. The method, based on
regret minimization, is free of any strong assumptions on the
parameters of the time-varying system.

Based on the posterior updates of the experts’ weights by
accounting for their past performances, simple update rules
have been derived which offer computational advantage.
For multiple time series prediction, the inverse correlation
weighted error (ICWE) is employed as a guiding criterion
motivated by maximum likelihood estimation of multivariate
Gaussian distributions. Performance bounds show that the
cumulative regret increases at rate O(log T ), which guaran-
tees that BRIEF behaves indistinguishably as the oracle with
the per round regret Rt/t decreases at rate O( log T

T ). As
the proofs stand, we can allow adversarial choice of the Xt

subject to the euclidean norm constraint. Additionally for the
algorithm to work it is not required to have prior knowledge
on the constraints.

Through simulation and real data on building energy pre-
diction, BRIEF is demonstrated to outperform other models,
such as the persistent model, stochastic gradient algorithm,
pseudo linear regression, and SARMA-X. The per round re-
gret is also shown to be converging as the horizon increases.

As we can select any forms of transfer functions subject
to the regularization conditions required by the proof of
regret bounds, the logistic loss σ(y,u>x) = 1

1+e−yu>x
is

a viable candidate for binary valued data as an extension of
the current method on real valued signal. We also want to
investigate the application of BRIEF to adaptive and robust
controls to benefit from its performance guarantee.
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