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Abstract— The integration of sensing and information tech-
nology renders the power grid susceptible to cyber-attacks. To
understand how vulnerable the state estimator is, we study its
behavior under the worst attacks possible. A general false data
injection attack (FDIA) based on the AC model is formulated,
where the attacker manipulates sensor measurements to mislead
the system operator to make decisions based on a falsified
state. To stage such an attack, the optimization problem
incorporates constraints of limited resources (allowing only a
limited number of measurements to be altered), and stealth
operation (ensuring the cyber hack cannot be identified by the
bad data detection algorithm). Due to the nonlinear AC power
flow model and combinatorial selection of compromised sensors,
the problem is nonconvex and cannot be solved in polynomial
time; however, it is shown that convexification of the original
problem based on a semidefinite programming (SDP) relaxation
and a sparsity penalty is able to recover a near-optimal solution.
This represents the first study to solve the AC-based FDIA.
Simulations on a 30-bus system illustrate that the proposed
attack requires only sparse sensor manipulation and remains
stealthy from the residual-based bad data detection mechanism.
In light of the analysis, this study raises new challenges on grid
defense mechanism and attack detection strategy.

I. INTRODUCTION

The convergence of ubiquitous sensing and information
technology enables enhanced efficiency and agility of the
modern grid [1], [2]. Managed by supervisory control and
data acquisition (SCADA) systems, a wealth of data on
transmission and distribution power flows are collected and
used to facilitate power system state estimation (SE) [3], [4]
and demand response [2], [5]. The growing reliance on data
communication raises concerns about cyber-security that is
heightened in the aftermath of severe cyber-attacks [6], [7].
In smart grid where information is sent via remote terminal
units (RTUs), it is imperative to guard against improper
information modification to ensure data integrity [3], [8].

In power grid vulnerability analysis, one critical class of
threat is false data injection attack (FDIA) [7], [9], which
attempts to stealthily modify data to introduce error into grid
SE (Fig. 1). To stage an FDIA, the attacker needs to com-
promise power measurements by hacking the communication
between RTUs and SCADA systems. Pioneered by Liu et al.
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[9] and following the works [10]–[15], a stealth FDIA is
possible to evade bad data detection (BDD) by the control
center, with potential consequences of load shedding [14],
economic loss [7], [16], and even blackouts [17].
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Fig. 1. Illustration of AC-based FDIA, where the attacker takes control
over the RTUs or communication channel to inject false data in order to
influence the grid state estimates.

While previous works on FDIA and countermeasures
primarily focus on a simplified power flow model, i.e.,
DC model [9]–[15], [18], [19], an FDIA based on a more
accurate AC model is within the realm of possibility [20].
In a system where measurements are nonlinear functions
of the state parameters, it is usually not easy to construct
a state that evades BDD. Indeed, DC-based FDIA can be
easily detected by AC-based BDD [8], [21]. On the other
hand, the nonlinearity of equality power-flow constraints
also makes the co-existence of multiple states and spurious
solutions possible, which is a fundamental reason why an
AC-based FDIA with sparse attacks is feasible and perhaps
more detrimental than an DC-based FDIA. Once constructed,
this new class of attack could be hard to detect by existing
methods.

Motivated by the theoretical challenges of continuous
nonconvexity and discrete nonlinearity posed by AC-based
FDIA, we propose a novel convexification framework using
semidefinite programming (SDP), and prove conditions on
exact solution recovery and objective value bounds, which
broadens the perspectives on power system security and
vulnerability analysis. By investigating the least-effort strat-
egy from the attacker’s perspective, this study provides a
realistic metric on the grid security, based on the number of
individual sensors required to thwart an FDIA. The results
also motivate protection mechanisms for AC-based SE, such
as the redesign of BDD [22]. The main contributions of this
work are as follows:
• Formulation of AC-based FDIA and a convexification

framework using SDP and sparsity penalty;



• Analysis of a condition for a near-global attack, and
establishment of objective value bounds;

• Simulation study on a 30-bus system to illustrate that
the planned attack is sparse and stealthy.

The rest of the paper is organized as follows. Previous
works are surveyed in Section II. Section III provides pre-
liminaries on power system modeling and SE. A general
framework of AC-based FDIA is proposed in Section IV,
which is convexified and analyzed in Section V. Experimen-
tal results are discussed in section VI. Conclusions are drawn
in Section VII.

II. RELATED WORK

Previous works on power system vulnerability analysis
have addressed potential adversarial FDIA strategies [9],
[11], [14], [21], [23], negative impacts [14], [17], and pos-
sible defense mechanisms [10], [11]. From a practitioner’s
point of view, there are mainly two categories, based on
either DC or AC models [7], [16]. For DC-FDIA, an
unobservability condition was derived and the attack was
numerically shown to be sparse [9], [11], [14]. Distributed
DC-FDIA with partial knowledge about the topology was
considered in [8], [15]. The vulnerability was quantified
by the minimum number of sensors needed to compromise
in order to stage stealth FDIA [10], [11], [13]. This can
be formulated as a minimum cardinality problem, where
different algorithms were proposed for efficient computation
[18], [19]. As for the attack impact, FDIA was studied on
the electric market [12] and load redistribution [14], causing
significant financial losses.

Only a few works have been published on AC-based
FDIA, due to the recognized complexity of nonlinear sys-
tems [3], [21]. The paper [23] has introduced a graph-
based algorithm to identify a set of compromised sensors
that suffices to construct an unobservable attack; however,
this only offers an upper bound on the cardinality, rather
than resource-constrained sparsity. The work [21] has studied
AC-based FDIA based on linearization around the target
state under the assumption that SE is obtained by a specific
algorithm, which could be too stringent in practice.

Differentiated from prior literature, this study is the first
of its kind to solve a general AC-based FDIA exactly,
with theoretical guarantees of sparsity and unobservability
(Theorem 2). The presented method has both practical and
theoretical implications on solving real-world nonlinear and
nonconvex problems beyond AC-based FDIA.

III. PRELIMINARIES

A. Power system modeling

Consider an electric grid with the graph G = {N ,L},
where N := [nb] and L := [nl] represent its sets of buses and
branches (we use [x] to indicate the discrete set {1, 2, ..., x}).
Denote the admittance of each branch as yst for every
(s, t) : l ∈ L. The mathematical framework of this work
applies to more detailed models with shunt elements and
transformers; but to streamline the presentation, these are
not considered here. The grid topology is encoded in the bus

admittance matrix Y ∈ Cnb×nb , as well as the from and to
branch admittance matrices Yf ∈ Cnl×nb and Yt ∈ Cnl×nb ,
respectively (see [24], Ch. 3). Throughout this paper, we use
v∗ to indicate conjugate transpose of a vector v and use v>

to show its transpose. We also use Hn to denote the set of
n× n Hermitian matrix.

The state is described by v =
[
v1, ..., vnb

]> ∈ Cnb , where
vk ∈ C is the complex voltage at bus k ∈ N with magnitude
|vk| and phase ∠vk. To find the underlying state of the
system, a set of measurements m ∈ Rnm can be obtained:

m = f(v) + e (1)

where f : Cnb 7→ Rnm is the measurement mapping and e
denotes random noise [20]. Based on simplifying assump-
tions, the DC formulation corresponds to measurements that
depend linearly on voltage phases, i.e., f(v) = H× ∠v for
a measurement matrix H [20]. In the AC formulation, the
power flow and voltage magnitude measurement functions
are nonlinear, but can be written in a quadratic form as

fi(v) = trace (Mivv∗), ∀ i ∈ [nm] (2)

where Mi ∈ Rnb×nb depends on line admittances [1], [4].
For instance, the voltage magnitude at bus k follows the
formula |vk|2 = trace (Ekvv∗) and the real power flows on
a branch l connecting buses s and t are given as

pl,f = trace
(
Y

(l)
pfvv∗

)
, pl,t = trace

(
Y

(l)
pt vv∗

)
where

Ek := eke
>
k ,

Y
(l)
pf :=

1

2

(
Y∗fdle

>
s + esd

>
l Yf

)
,

Y
(l)
pt :=

1

2

(
Y∗fdle

>
t + etd

>
l Yf

)
,

and {e1, ..., enb
} and {d1, ...,dnl

} are the sets of canonical
vectors in Rnb and Rnl , respectively.

B. State estimation

Based on noisy measurements, SE is used to monitor the
system operating conditions. In general, the method finds a
state that “almost matches” the observations by minimizing
some distance function:

min
v̂∈V
‖m− f(v̂)‖ (3)

where V is a feasible set, and ‖ · ‖ can be any matrix norm
[4], [20].

For DC models with a 2-norm objective function, the
estimated state has an analytic form corresponding to a least-
square solution [20]. However, due to the nonlinearity of
the AC model, AC-SE is often solved by the Gauss-Newton
algorithm in practice [20]. A convexification framework
using SDP is proposed recently, which can recover the true
state exactly under mild conditions [4]. While existing SE
methods are effective under noisy measurements, the solution
can be misleading under cyber-attacks, as is discussed next.



IV. GENERAL FRAMEWORK OF AC-BASED FDIA

FDIA is one type of cyber-attack, which compromises SE
estimator by injecting false data, namely xa ∈ Rnm , to nm
grid sensors [7], [8], i.e.,

m = f(v) + e + xa, (4)

where f(v) ∈ Rnm is the noiseless measurement function
in (2), and e ∈ Rnm is random noise. The false data is
maliciously injected to lead system operators to believe in
an operating state, namely ṽ, other than the true state v.
As an illustrative example (Fig. 2), the operator will be
“tricked” if the attacker manages to tamper certain power
flow measurements to generate a fake state for the system.
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Fig. 2. Toy example of a 5-bus system, where the bus voltage magnitudes
and branch real power are measured (per unit, or p.u.). The attacker injects
false data (red) to influence the bus phase estimates (green).

A. Stealth attack

The sabotage cannot be detected by common BDD meth-
ods, e.g., hypothesis tests based on residuals (mi − fi(v̂))

2

[3]. This gives rise to the following definition of “unobserv-
ability”, which generalizes previous requirements for DC [9],
[11] to be applicable to AC models.

Definition 1 (Unobservability): An attack xa is unobserv-
able under state v if, in the absence of measurement noise,
there exists a nonzero vector c such that f(v)+xa = f(v+c).

Analogous to the DC-based unobservability condition
in [11], the following lemma provides a sufficient condition
for AC-based attacks.

Lemma 1 (Sufficient condition for unobservability in AC):
An attack xa is unobservable if there exists a nonzero vector
c such that Mic = 0 for every i ∈ [nm] that is not in the
support of xa, i.e., supp (xa).1

Proof: Since fi(v) = trace (Mivv∗), we have

fi(v + c) = trace (Mi(v + c)(v + c)∗) = fi(v),

for every i ∈ [nm] that is not in supp (xa), which indicates
that xa is unobservable.

1The support of a vector xa, denoted as supp (xa), is the set of indices
of the nonzero entries of xa.

Remark 1: Lemma 1 implies that an attack is unobservable
if the state deviation c lies in the null space of the measure-
ment matrices of those sensors the attacker does not tamper
with. This is applicable to the situation discussed in [23]
for a single bus attack. To understand this, consider a vector
c that has zeros everywhere except at location j. Since the
j-th column of Mi, denoted as [Mi]:j , is zero unless Mi

corresponds to the measurement of a branch that connects to
bus j, this delineates a “superset” of sensors needed to hack
to guarantee a stealth attack.

An upper bound on the minimum number of compromised
sensors can be derived for a multi-bus attack; however, the
sufficient condition is too stringent because the attacker only
needs to satisfy xai = trace (Micc∗) + trace (Micv∗) +
trace (Mivc∗) = 0 for all i 6∈ supp (xa) to remain stealthy.
Finding a feasible vector c requires solving a quadratic
constrained program, which is NP-hard in general.

B. Optimal attack

A general strategy for an attacker is to formulate FDIA as
an optimization problem to maximize sabotage with limited
resources and to evade detection:

min
ṽ∈Cnb ,xa∈Rnm

h(ṽ)

s. t. f(ṽ) = m + xa

‖xa‖0 ≤ b

(P0)

where h(·) is an optimization criterion to be specified later,
ṽ is the state that seems correct to the system operator (albeit
erroneously), and the constraints amount to the unobservabil-
ity condition and the sparsity requirement for a given number
b (note that ‖ · ‖0 is the cardinality operator).

Assumption 1: The attacker has access to the grid topol-
ogy and the measurement vector m.

Assumption 1 is recognized as necessary for stealth attack
against AC-SE [16]. Using the full set of measurements, the
attacker can perform AC-SE to estimate the true state v to
form a proxy. If Assumption 1 is violated, the attacker risks
being detected by the BDD [8]. The analysis provided in this
paper is based on Assumption 1 because it helps understand
the behavior of the system under the worst attack possible
(using the full knowledge of the system).

The attacker can choose h(ṽ) in different ways to fulfill
various malicious goals, such as:
• Target state attack: h(ṽ) = ‖ṽ − vtg‖22, which inten-

tionally misguides the operator towards vtg;
• Voltage collapse attack: h(ṽ) = ‖ṽ‖22, which deceives

the operator to believe in low voltages;
• State deviation attack: h(ṽ) = −‖ṽ−v‖22, which yields

the estimated state ṽ to be maximally different from the
true state v.

The program (P0) is challenging due to three reasons:
1) a possibly nonconvex objective function, e.g., concave
for the state deviation attack, 2) nonlinear equalities, and
3) cardinality constraints. In what follows, we will develop
a novel convexification framework using SDP to efficiently
address the above issues.



V. CONVEXIFICATION AND EXACT RECOVERY

In this section, we first derive an SDP relaxation of
problem (P0), and show that it is exact if the solution has
rank one. We then introduce penalty terms for rank and
sparsity, and prove that the solution is guaranteed to be rank-
1 and sparse with established performance bounds under
mild conditions. To streamline the presentation, we focus the
analysis of this paper on the case where h(ṽ) = ‖ṽ−vtg‖22,
with vtg chosen by the adversary a priori. The results hold
for many other objective functions as well.

A. SDP relaxation and sparsity penalty

Define the function h̄(ṽ,W) = trace (W)−ṽ∗vtg−v∗tgṽ,
where W ∈ Hnb . Then, (P0) can be reformulated as:

min
ṽ∈Cnb ,xa∈Rnm ,

W∈Hnb

h̄(ṽ,W)

s. t. trace (MiW) = mi + xai , ∀i ∈ [nm]

‖xa‖0 ≤ b
W = ṽṽ∗

(P0’)
A cardinality-included SDP relaxation of the above noncon-
vex problem can be obtained by replacing W = ṽṽ∗ with a
general positive semi-definite (PSD) constraint:

min
ṽ∈Cnb ,xa∈Rnm ,

W∈Hnb

h̄(ṽ,W)

s. t. trace (MiW) = mi + xai , ∀i ∈ [nm]

‖xa‖0 ≤ b[
1 ṽ∗

ṽ W

]
� 0

(P1)
In addition, we make an assumption about its solution:

Assumption 2: Given a solution (v̂,Ŵ, x̂a) of (P1), as-
sume that v̂ is close to vtg in the sense that:

v̂∗vtg + v∗tgv̂ > 0. (5)

Note that the objective function of (P1) helps with the
satisfaction of Assumption 2 because it aims at making v̂
and vtg be as closely as possible to each other. The following
theorem describes a condition for the equivalence of the
nonconvex problem (P0’) and its cardinality-included convex
relaxation (P1).

Theorem 1: The SDP relaxation (P1) recovers a solution
of (P0’) and finds an optimal attack if it has a solution
(v̂,Ŵ, x̂a) satisfying Assumption 2 such that rank(Ŵ) = 1.

Proof: See Appendix A.
Remark 2: Define:

Ẑ =

[
1 v̂∗

v̂ Ŵ

]
. (6)

Theorem 1 ensures that if rank(Ŵ) = 1, then rank(Ẑ) is
equal to 1 (even thought it could theoretically be 2), in which
case (P1) is able to find an optimal attack. There are still two
challenges: 1) an optimal solution of (P1) is not guaranteed

to be rank-1, and 2) the cardinality constraint ‖xa‖0 ≤ b is
intractable.

To enforce (P1) to possess a rank-1 solution, we aim at
penalizing the rank of its solution via a convex term. The
literature of compressed sensing suggests using the nuclear
norm penalty trace (W) [25]. However, this penalty is not
appropriate for power systems, since it would penalize the
voltage magnitude at each bus and may yield impractical
results. Instead, a more general penalty term in the form of
trace (M0W) will be used as follows:

min
ṽ∈Cnb ,xa∈Rnm ,

W∈Hnb

h̄(ṽ,W) + trace (M0W)

s. t. trace (MiW) = mi + xai , ∀i ∈ [nm]

‖xa‖0 ≤ b[
1 ṽ∗

ṽ W

]
� 0,

(P2)
where the constant matrix M0 is to be designed. Similar
to Lasso [26], we can replace the cardinality constraint
in the above problem with an l1-norm penalty added to
the objective function to induce sparsity, resulting in the
following program:

min
ṽ∈Cnb ,xa∈Rnm ,

W∈Hnb

h̄(ṽ,W) + trace (M0W) + α‖xa‖1

s. t. trace (MiW) = mi + xai , ∀i ∈ [nm][
1 ṽ∗

ṽ W

]
� 0

(FDIA-SDP)
where α is a constant regularization parameter. After this
convexification, (FDIA-SDP) is thus an SDP (after reformu-
lating the norm term in a linear way), which can be solved
efficiently using standard numerical methods (e.g., SeDuMi,
SDPT3) [27]. We analyze its solution next, and derive a rank-
1 condition for the design of a near-global attack, as well as
performance bounds.

B. Exact recovery and performance bounds

Throughout this section, let (v̂,Ŵ, x̂a) denote an optimal
solution of (FDIA-SDP). In light of Theorem 1, it is desirable
to have rank(Ŵ) = 1. Given any attack xa, define g(xa) as
the optimal objective value of (FDIA-SDP) without the l1
penalty:

g(xa) = min
ṽ∈Cnb ,
W∈Hnb

h̄(ṽ,W) + trace (M0W)

s. t. trace (MiW) = mi + xai , ∀i ∈ [nm][
1 ṽ∗

ṽ W

]
� 0

(FDIA-SE)
Note that g(xa) can be considered as a proxy for the sabotage
scale.2 In the following, we study some properties of g(xa).

Lemma 2: g(xa) is convex and sub-differentiable.

2For an optimal solution of (FDIA-SDP), trace
(
M0Ŵ

)
can be bounded

within limited range; as a result, g(x̄a) acts as a “proxy” for h̄(v̂,Ŵ).



Proof: See Appendix B.
Define ∂g(xa) as the subgradient of g(xa). To proceed

with the paper, we consider an “oracle attack” that is able
to solve (P2).

Definition 2 (Oracle attack): The oracle attack xa,? ∈
Rnm is a solution of the nonconvex program (P2). Define
B ⊆ Rnm as the set of all vectors in Rnm with the same
support as xa,?, and define Bc as the complement Rnm \ B.
Let ∆B = arg min∆t∈B ‖∆ − ∆t‖22 be the projection of
a vector ∆ onto the set B. The deviation of (FDIA-SDP)’s
solution from the oracle, namely ∆̂ = x̂a−xa,?, belongs to
a cone.

Lemma 3: For the pair (B,Bc) and α ≥ 2‖∂g(xa,?)‖∞,
the error ∆̂ = x̂a − xa,? belongs to the cone
C(B,Bc; xa,?) = {∆ ∈ Rnm |‖∆Bc‖1 ≤ 3‖∆B‖1}.

Proof: See Appendix C.
To ensure that the optimal solution of (FDIA-SDP),

namely Ŵ, is rank-1, the following assumption is made on
the attack state:

Assumption 3: The attack state v̂ as the solution of
(FDIA-SDP) satisfies the following phase conditions, for all
(s, t) : l ∈ L:

−π ≤ ∠v̂s − ∠v̂t − ∠yst ≤ 0

0 ≤ ∠v̂s − ∠v̂t + ∠yst ≤ π

where yst is the branch admittance between buses s and t.
Since real-world transmission systems feature low resis-

tance to reactance ratios, the angle of the line admittance
yst is close to −π/2 [20], and thus Assumption 3 would be
satisfied under normal conditions where the voltage phase
difference along each line is relatively small.

Assumption 4: For AC-SE, we assume the availability of
voltage magnitude measurements at every bus, and active
power measurements for both from and to ends of a branch
(see Section III-A).

Assumption 5: Let Λ be the set of all regularization pa-
rameters α for which the optimal solution x̂a of (FDIA-SDP)
corresponds to a feasible state, i.e., there exists v ∈ Cnb such
that

f(v) = m + x̂a.

Assume that Λ is not empty and includes at least one value
of α that corresponds to a non-zero injection x̂a.

The following theorem provides performance bounds and
a condition for rank-1 recovery under Assumptions 4 and 5.

Theorem 2: Let M0 in (FDIA-SDP) be given by:

M0 = −I + εvtgv
∗
tg +

∑
l∈L

M̃
(l)
pf +

∑
l∈L

M̃
(l)
pt (7)

where ε > 0 is a constant parameter, and M̃
(l)
pf and M̃

(l)
pt are

arbitrary matrices in Hnb . For every (s, t) ∈ {1, ..., nb} ×
{1, ..., nb}, assume that the (s, t) elements of M̃

(l)
pf and M̃

(l)
pt

are equal to zero if (s, t) 6∈ L and otherwise satisfy the
following inequalities:

−π ≤ ∠yst − ∠M̃ (l)
pf,st ≤ 0 (8)

π ≤ ∠yst + ∠M̃ (l)
pt,st ≤ 2π. (9)

For every α ≥ 2‖∂g(xa,?)‖∞ and some ε, the optimal
solution (v̂,Ŵ, x̂a) of (FDIA-SDP) satisfies the equation:

−2α‖∆̂B‖1≤g(x̂a)−g(xa,?)≤α
(
‖∆̂B‖1−‖∆̂Bc‖1

)
,

where ∆̂ is equal to x̂a−xa,?, i.e., the difference between x̂a

and the oracle xa,?. In addition, the attack x̂a is unobservable
for every α ∈ Λ.

Proof: See Appendix C.
There is a trade-off between attack sparsity and outcome

in the sense that a tighter bound can be achieved with more
entries outside the oracle sparse set B. However, this also
means that the attacker needs to tamper with more sensors.

As for the choice of M0, to conform with (8) and (9),
instead of the term

∑
l∈L M̃

(l)
pf +

∑
l∈L M̃

(l)
pt in (7), we can

use the negative of the susceptance matrix (the imaginary
part of Y) with the exception that its diagonal entries are all
zero. The value of ε can be chosen based on 1

nb
, as discussed

in the proof (see Appendix C).
In what follows, we will conduct some experiments to

verify the above theoretical results and compare them with
the existing literature.

VI. EXPERIMENTS

For the experiment, we study a 30-bus system (shown
in Fig. 3) provided in MATPOWER [24], whose states are
randomly initialized with magnitudes close to 1 and small
phases. The measurements include branch real power flows
and bus magnitudes.

Fig. 3. The IEEE 30-bus test case [24].

Consider the target state attack problem with the measure
h(ṽ) = ‖ṽ − vtg‖2s, where the target vtg is identical to
the true state v except for a random subset of buses whose
voltage magnitudes are deliberately chosen to be low (around
0.95). This would often trigger misguided contingency re-
sponse, in an attempt to recover from a possible voltage
sag [6].

An example of the (FDIA-SDP) solution is shown in
Fig. 4, which depicts the true state magnitudes, |vi|’s against
the falsified state magnitudes |ṽi|’s obtained by the system
operator using the exact convexification technique described
in [4] or any other global optimization techniques (in fact,



the attack is SE-algorithm-agnostic). Even though the system
operates in a normal state, FDIA “tricks” the operator to
assume a potential voltage sag. The operator may then take
falsified harmful contingency actions. The FDIA is triggered
by tampering with a small set of sensors (see the sparsity
pattern in Fig. 5), and the modified measurements are hardly
distinguishable from the original values (Fig. 6).
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Fig. 4. The FDIA effect on SE voltage magnitudes, where the dotted
line indicates identity. Several buses have magnitudes outside the normal
operation region (shaded), from the system operator’s perspective.
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Fig. 6. Comparison of the modified and original values for all sensors,
where the dotted line indicates identity. The influence of FDIA on actual
sensor measurements is hard to detect.

The solution’s sparsity and rank are then examined with
respect to the regularization parameters. While the absence
of the ‖ · ‖1 penalty (i.e., α = 0) results in a dense solution,
as α increases, the attack x̂a becomes significantly sparser
compared to the upper bound provided in [23] (Fig. 7). On
the other hand, the rank of Ŵ increases for large values of
α, since m + x̂a does not correspond to a valid state.

The choice of M0 follows (7), where the part∑
l∈L M̃

(l)
pf +

∑
l∈L M̃

(l)
pt is substituted by the susceptance

matrix with zero diagonal entries. As for the choice of ε,
Theorem 2 provides a guideline to use the equation ε = 1

v∗
tgv̂

(see Appendix C for the proof); while v̂ cannot be known a
priori, it is desirable to be close to v∗tg . Therefore, for the
30-bus system, the value of ε that corresponds to a rank-
1 solution is close to .033, as corroborated in Fig. 8. The
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Fig. 7. Influence of the regularization parameter α on the cardinality of the
solution of (FDIA-SDP). The upper bound is derived according to [23]. Ten
independent experiments were performed to obtain the mean (blue line), and
min/max (shaded region). We used 0.001 as the threshold for computing the
cardinality of xa.
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Fig. 8. Effects of the regularization parameters on the rank of Ẑ defined
in (6). The median (blue line) and the min/max ranks (shaded) are shown.

rank-1 condition also guarantees that v̂ is close to vtg , as
measured by ‖v̂ − vtg‖22 (Fig. 9).
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Fig. 9. Success of FDIA measured by the distance between the operator’s
recovered SE ṽ and target vtg , or ‖ṽ−vtg‖22, as ε varies. Both the mean
(blue line) and the min/max regions (shaded) are shown.
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The rank-1 (FDIA-SDP) solution will evade any residual-
based BDD (Fig. 10). To thwart FDIA, one can place a
set of security sensors at locations under potential attack as
indicated by xa of (FDIA-SDP).

VII. CONCLUSION

In the study, we first formulated a general AC-based FDIA
problem with stealth and sparsity constraints. To address the



problem’s nonconvexity and nonlinearity, a novel framework
using SDP and l1 penalty was proposed in (FDIA-SDP).
A condition on exact recovery was proved (Theorem 2),
providing a first analytical result on the NP-hard AC-based
FDIA problem. From the perspective of power grid security,
(FDIA-SDP) identifies a small subset of grid sensors that
could enable staging a stealth attack. This information is es-
sential for designing a security index based on AC modeling.
As future work, it is important to investigate protection and
BDD strategies against AC-based FDIA.
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APPENDIX

A. Proof of Theorem 1

First, we prove that the equation rank(Ŵ) = 1 implies
that Ŵ = a2v̂v̂∗, for some a such that |a| ≥ 1. Since[

1 v̂∗

v̂ Ŵ

]
� 0, by Schur complement, we have Ŵ � 0,

and Ŵ − v̂v̂∗ � 0. Due to rank(Ŵ) = 1, we can express
Ŵ = ww∗. Since ww∗− v̂v̂∗ � 0, one can write w = av̂,
where |a| ≥ 1 (otherwise, there exists a vector ν ∈ Cnb

such that ν∗w = 0, but ν∗v̂ 6= 0 and ν∗ (ww∗ − v̂v̂∗)ν =
−|ν∗v̂|2 < 0, which violates the PSD condition).

Now, we show by contradiction that the equation Ŵ =
v̂v̂∗ holds at optimality. Assume that (v̂,Ŵ = â2v̂v̂∗, x̂a) is
an optimal solution of (P1) and that â > 1 (the case â < −1
is similar). It is obvious that (âv̂,Ŵ = â2v̂v̂∗, x̂a) is also
feasible. This gives rise to the relation:

h̄(v̂, â2v̂v̂∗) = trace
(
â2v̂v̂∗

)
− (ṽ∗vtg + v∗tgṽ)

> trace
(
â2v̂v̂∗

)
− â(ṽ∗vtg + v∗tgṽ)

= h̄(âv̂, â2v̂v̂∗),

where the inequality follows from Assumption 2. This con-
tradicts the optimality of (v̂,Ŵ = â2v̂v̂∗, x̂a). Therefore,
we must have â = 1, implying that Ŵ = v̂v̂∗.

Recall that (P1) provides a lower bound for (P0’), which is
a reformulation of (P0). Therefore, since (v̂,Ŵ = v̂v̂∗, x̂a)
is feasible for (P0’), it is optimal for (P0).

B. Poof of Lemma 2

For any two attacks xa1 and xa2, let the optimal states be
denoted as (v̂(1),Ŵ(1)) and (v̂(2),Ŵ(2)). Then, for every



λ ∈ [0, 1], the point (λv̂ + (1−λ)v̂(2), λŴ + (1−λ)Ŵ(2))
is a feasible solution for the attack λxa1 + (1− λ)xa2:

g(λxa1 + (1− λ)xa2) ≤ λg(xa1) + (1− λ)g(xa2),

which proves the convexity. The subdifferentiability follows
from [28].

C. Proof of Theorem 2

First, we show that rank(Ŵ) = 1, Ŵ = v̂v̂∗, and x̂a

is unobservable. The rank-1 condition is derived by solving
(FDIA-SE) with the injection x̂a fixed at its optimal value.

Let ξ ∈ Rnm and Q =

[
q0 q∗

q Q0

]
∈ Hnb+1 be the dual

variables. By the KKT conditions for optimality, we have:
a) the stationarity conditions: q = −vtg and Q0 = I+M0+∑
i ξiMi, b) the dual feasibility condition: Q � 0, and c) the

complementary slackness condition: Q

[
1 v∗

v W

]
= 0. Let

H(ξ) = − 1
q0

vtgv
∗
tg + Q0 and q0 = v∗tgv. Based on a) and

c), we have H(ξ)W = 0. Due to b) and Schur complement,
it is required that H(ξ) � 0.

By Slater’s condition, strong duality holds if one can
construct a strictly feasible dual solution ξ̂, which is optimal
if KKT conditions are satisfied. The rank-1 condition for W
follows if we can further show that rank(H(ξ̂)) = nb − 1
(since together with H(ξ̂)W = 0, it implies that W lies in
the null space of H(ξ̂), which is at most rank 1).

For the three types of measurements considered in this
paper, the measurement matrices are: 1) Mi = Ei for every
i ∈ N (associated with voltage magnitudes), 2) Mi+nb

=

Y
(l)
pf for every i ∈ L (associated with real power flow

from the bus), and 3) Mi+nb+nl
= Y

(l)
pt for every i ∈ L

(associated with real power flow to the bus). By denoting
ξ̂ =

∑
l∈L ξ̂

(l)

pf +
∑
l∈L ξ̂

(l)

pt , we can write

H(ξ̂) =
∑
l∈L

H
(l)
pf (ξ̂

(l)

pf ) +
∑
l∈L

H
(l)
pt (ξ̂

(l)

pt ),

where

H
(l)
pf (ξ̂

(l)

pf ) = M̃
(l)
pf + ξ̂

(l)
pf,sEs + ξ̂

(l)
pf,tEt + ξ̂

(l)
pf,l+nb

Y
(l)
pf

H
(l)
pt (ξ̂

(l)

pt ) = M̃
(l)
pt + ξ̂

(l)
pt,sEs + ξ̂

(l)
pt,tEt + ξ̂

(l)
pt,l+nl+nb

Y
(l)
pt

and
∑
l∈L M̃

(l)
pf +

∑
l∈L M̃

(l)
pt = I + M0− 1

q0
vtgv

∗
tg . Define

ξ̂
(l)

pf in such a way that

ξ̂
(l)
pf,l+nb

=−
2=
(
v̂sv̂
∗
t M̃

(l)∗
pf,st

)
= (v̂sv̂∗t y

∗
st)

, ξ̂
(l)
pf,t=

|v̂s|2=
(
M̃

(l)∗
pf,styst

)
= (v̂sv̂∗t y

∗
st)

ξ̂
(l)
pf,s=

|v̂t|2

|v̂s|2
ξ̂
(l)
pf,t + <(yst)ξ̂

(l)
pf,l+nb

(10)

and ξ̂
(l)

pt such that

ξ̂
(l)
pt,l+nb+nl

=−
2=
(
v̂sv̂
∗
t M̃

(l)∗
pt,st

)
= (v̂sv̂∗t yst)

, ξ̂
(l)
pt,t=−

|vs|2=
(
M̃

(l)
pt,styst

)
= (v̂sv̂∗t yst)

ξ̂
(l)
pt,s=

|v̂t|2

|v̂s|2
ξ̂
(l)
pt,t + <(yst)ξ̂

(l)
pt,l+nb+nl

(11)

where v̂ is the optimal solution of the primal (FDIA-SE)
after fixing x̂a at its optimal value. It can be verified that
H

(l)
pf v̂ = 0, H

(l)
pt v̂ = 0, H

(l)
pf � 0 and H

(l)
pt � 0 as long as:

−π ≤ ∠v̂s − ∠v̂t − ∠yst ≤ 0 (12)
0 ≤ ∠v̂s − ∠v̂t + ∠yst ≤ π (13)

−π ≤ ∠yst − ∠M̃ (l)
pf,st ≤ 0 (14)

π ≤ ∠yst + ∠M̃ (l)
pt,st ≤ 2π. (15)

The inequalities (12) and (13) are satisfied by Assumption
3, which is often valid for real-world power systems. The
inequalities (14) and (15) require that M̃ (l)

pf,st and M̃ (l)
pt,st to

lie in the second or third quadrants of the complex plane.
Our next goal is to show that rank(H(ξ̂)) = nb − 1,

or equivalently, dim(null(H(ξ̂))) = 1. For every ν ∈
null(H(ξ̂)), since H

(l)
pf � 0 and H

(l)
pt � 0, we have H

(l)
pfν =

H
(l)
pt ν = 0. By the construction of (10) and (11), for every

line l : (s, t), it holds that νs
v̂s

= νt
v̂t

. This reasoning can be
applied to another line l′ : (t, a) to obtain νt

v̂t
= νa

v̂a
. By

repeating the argument over a connected spanning graph of
the network, one can obtain:

νs
v̂s

=
νt
v̂t

=
νa
v̂a

= · · · = c (16)

which indicates that ν = γv̂. As a result, dim(null(H(ξ̂))) =
1 and rank(H(ξ̂)) = nb−1. By the complementary slackness
condition, it can be concluded that rank(Ŵ) = 1. Based
on a proof similar to Theorem 1, we have Ŵ = v̂v̂∗.
The unobservability of x̂a follows immediately from the
constraint trace (v̂∗Miv̂) = mi + x̂ai , ∀i ∈ [nm].

In what follows, we will derive the performance bounds
for x̂a compared to xa,?. By the definition of g(xa) in
(FDIA-SE), we can rewrite (FDIA-SDP) only in terms of
xa as

max
xa

g(xa) + α‖xa‖1 (P4)

Define r(∆) = g(xa,? + ∆)− g(xa,?) + α(‖xa,? + ∆‖1 −
‖xa,?‖1) and ∆̂ = x̂a−xa,?. The separability of the l1-norm
yields that

‖xa,? + ∆̂‖1 ≥ ‖xa,?B + ∆̂Bc‖1 − ‖xa,?Bc + ∆̂B‖1
= ‖xa,?B ‖1 + ‖∆̂Bc‖1 − ‖∆̂B‖1
= ‖xa,?‖1 + ‖∆̂Bc‖1 − ‖∆̂B‖1.

Together with r(∆̂) ≤ 0 that results from the optimality of
x̂a, we have proved the upper bound. For the lower bound,
one can write:

g(x̂a)−g(xa,?) ≥ 〈∂g(xa,?), ∆̂〉 ≥ −|〈∂g(xa,∗), ∆̂〉| (17)

≥ −‖∂g(xa,∗)‖∞‖∆̂‖1 (18)

≥ −α
2

(
‖∆̂B‖1 + ‖∆̂Bc‖1

)
(19)

≥ −2α‖∆̂B‖1 (20)

where (17) is due to the convexity of g(xa) (Lemma 2), (18)
is by Hölder’s inequality, (19) is due to the assumption of
α, and (20) is due to Lemma 3 (see [29], Lemma 1).


