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Abstract—While distributed energy resource (DER) integration
plays a key role in energy system transformation, it also raises
issues of efficiency and reliability. The study exploits flexibility
in integrated energy provision and end-user elastic demand
to develop an optimal dispatch and energy retail strategy. By
modeling DERs such as photovoltaics, combined heat and power,
and energy storage, an optimization problem is built to maximize
retailer profit while reducing environmental impact. An optimal
strategy of dispatch and energy retail is obtained, which satisfies
DER physical constraints and electrical and thermal energy
balance. The method is evaluated in two case studies: the
first investigates the influence of energy retail rates on system
efficiency and reliability, and the second examines a mitigation
strategy to address oversupply risk due to high renewable
penetration. The study provides a framework for incorporating
DERs and enable end-user demand response in the future energy
retail market.

Index Terms—Distributed energy resource, optimal dispatch,
energy retail, smart grid, optimization

I. INTRODUCTION

Distributed energy resources (DER) are small-scale power
sources, such as storage and renewable generation, that can
be aggregated to meet local demand. DER integration plays a
vital role in facilitating ongoing energy system transformation.
For instance, in California, key initiatives include [1]:

• Promote renewable power to provide 50% of retail elec-
tricity by 2030

• Institute policies to increase distributed generation
• Reduce greenhouse gas emissions to 1990 levels

In the paradigm shift of DER-grid integration, several chal-
lenges emerge, such as security and reliability issues caused
by voltage rise and renewable power oversupply [1], [2].

To address these challenges, local productive sub-systems
like microgrids (MGs) are adopted to improve manageability,
energy efficiency, and resilience [3], [4]. The emergence of
energy retail service enables time-differentiated rates and
demand response by end users. Furthermore, as buildings
become intelligent agents capable of detecting occupant ac-
tivities and automatically controlling major loads like heating,
ventilation, and air conditioning (HVAC) and lighting [5], de-
mand flexibility has become an increasingly important energy
resource [4].

Existing works on DER dispatch often treat the system
operator as a non-profit entity who does not sell energy, thus
confining microgrid applications to campuses or community-
owned generation facilities [3], [4], [7], [8], [9], [10], [11],

[12], [13], [14]. Demand response (DR) has been investigated
on the transmission side, but is often limited to contracts [14]
or direct load controls [4], [15], [16], relying on advanced two-
way communication and raises privacy concerns [17], [18].

Differentiated from prior studies, this work promotes DER
integration by exploiting synergies in integrated energy pro-
vision and unlocking demand flexibility potential in energy
retail (see components “optimal dispatch” and “optimal energy
retail” in Fig. 1). We focus on future smart grid with time-
differentiated pricing on the retail side and DERs for local
energy production. Key contributions include:

• Modeling of DERs, such as solar panels and combined
heating and power, for integrated energy provision

• Development of DER dispatch and energy retail optimiza-
tion to enhance system efficiency and retailer profit

• Demonstration of time-differentiated rates to improve
system efficiency, and dispatch/retail optimization to mit-
igate renewable power oversupply risk

The rest of the paper is organized as follows. DER dispatch
and retail optimization is discussed in Section II. Section III
investigates the influence of retail rate structures on system
efficiency and a system-wide solution to oversupply mitigation
in case studies. Conclusions are drawn in Section IV.

II. DER DISPATCH AND RETAIL OPTIMIZATION

This section focuses on the optimization approach based
on DER and demand flexibility modeling, where a practical
implementation strategy is also discussed.

A. Problem overview

To support local energy consumption, DER integration
should ensure system reliability and efficiency while respect-
ing physical dynamics. The main challenges include:

• Stochasticity and variability of renewable resources
• Coupling of electrical and thermal energy provision
• System-wide balancing due to weather and user activity
Opportunities arise from power facility digitization and

building modernization, allowing online generation monitoring
and control, and consumer automated response to price signals.
Key aspects of our proposal include:

• Storage planning to smooth demand/supply valley/peaks
and exploit grid tariff arbitrage opportunities

• DER dispatch to promote synergy between electrical and
thermal energy provision
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Fig. 1. Power system overview (adapted from [6]), illustrating the key components of optimal dispatch and energy retail for DER integration.
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Fig. 2. Interaction of DERs in an integrated energy system to provide electrical and thermal energy through retail service.

• Retail rates optimization to enable demand flexibility as
an energy resource

The central problem is therefore:
How to dispatch DERs and design retail rates to
achieve efficient and reliable local energy provision?

B. Optimization framework

Consider a day-ahead (DA) planning scenario. The prob-
lem can be formulated in an optimization framework, whose
inputs are either given (e.g., DER technology specification) or
predicted (e.g., solar irradiation, wholesale tariff), and outputs
include a dispatch plan and retail rates (see Table I for details).

The objective function to minimize includes:
• Fuel cost that arises from natural gas and electricity

purchases from the wholesale market
• Revenue collected from building owners from energy

retail (subtracted in the objective function)
• Carbon dioxide (CO2) emissions weighted by a carbon

tax or its equivalent to promote emission reduction

TABLE I
INPUT AND OUTPUT VARIABLES IN THE OPTIMIZATION ALGORITHM.

Variable Description

In
pu

t

DER parameters specification of DER operation characteris-
tics, e.g., efficiency, rated capacity

building energy
demands

predicted electrical/thermal hourly demands
on dispatch day

solar irradiation predicted solar irradiation in the region
electricity tariff predicted grid tariff for actual dispatch day

O
ut

pu
t DER outputs dispatch plan for DERs operation status and

generation outputs for actual dispatch day
grid exchange import/export electricity from/to grid
fuel imports hourly natural gas imports

retail prices hourly end-user retail prices for electricity,
heating, and cooling energy

The objectives are influenced by control variables, such as
DER dispatch and retail prices, which are also optimization
problem outputs (see Table I).



Constraints considered are as follows:

• DER operational models specifying input output rela-
tions, as determined by physical characteristics

• Electrical and thermal energy balance between supply
and demand, including energy transfer among generators
(e.g., electricity generated from PV is transferred to
electric chiller to produce cold water, see Fig. 2)

• Elastic building demands that depend on retail prices
• Pricing constraints that specify the upper/lower limits of

retail rates for competitiveness and legitimacy

The aforementioned constraints capture the complex dynam-
ics of energy provision and retail, as shown in Fig. 2. Key
components, such as DER modeling and elastic demand, are
detailed below.

C. DER modeling

Combined heating and power (CHP). The coupling of
power and heat production effectuated by CHP makes it eco-
nomically viable; for instance, more than 99.7% of electricity
in Danish energy system originates from CHP and renew-
ables [10]. Thermal energy from burning natural gas in micro-
turbines is converted to electricity. The remaining power,
according to the heat-to-electricity ratio (HER), is recovered in
part in heat recovery steam generators (Fig. 3). The partial load
constraint is imposed in addition to the maximum capacity to
comply with desirable operating conditions [10], [19], [20].
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Fig. 3. Modeling of a CHP facility.

Electric, natural gas, and absorption chillers / boilers. Heat
from a liquid is removed in a chiller via a vapor-compression
or absorption refrigeration cycle, where the input energy can
be electricity, natural gas, or heat from steam or hot water (Fig.
4). The coefficient-of-performance (COP) is the ratio between
output cooling to input power, typically used to depict the
conversion efficiency.
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Fig. 4. Modeling of electric and natural gas chillers.

Electric and natural gas boilers are modeled similarly as
chiller, that thermal energy is generated from sources of natural
gas combustion or electric resistance heating (Fig. 5).
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Fig. 5. Modeling of electric and natural gas boilers.

Heat pumps (HP) transport thermal energy from the source
to the destination, which decouple the production constraints
of the coproduced products while maintaining high energy
efficiency [21]. The device can be engaged in either heating
or cooling mode (Fig. 6). Additionally, the rated capacity
and partial loads requirements are enforced. The effect of
temperature difference between the source and destination, or
“lift”, on COP also needs to be assessed in practice.
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Fig. 6. Modeling of heat pumps.

Solar thermal and photovoltaics (PV) reduce carbon foot-
prints, bringing about wide adoption. The output is modeled
to be linearly proportional to the solar irradiation and limited
by the production capacity (Fig. 7 and 8).
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D. Demand-side flexibility

Consider a community of residential, commercial, and
public-service buildings. Energy demands can be broadly
categorized as critical and curtailable loads.

Critical loads must be wholly served at all times. Most
electric loads in hospital ICUs, data centers, and critical
infrastructures cannot be reduced regardless of the retail price.

On the other hand, curtailable loads can be responsive
to price signals. For instance, demand due to HVAC and
lighting is curtailable. To characterize the flexibility, a demand
elasticity is used, which measures the percentage of load
reduction due to one percent of price increase. Several factors
influence this parameter:

• Elasticity during on-peak hours is usually higher than that
during off-peak hours [22]

• Loads under real time pricing (RTP) rates are more elastic
than those under time-of-use (TOU) rates [23]

• Elasticity is usually greater in the long-run when cus-
tomers can react to a price increase by purchasing more
energy efficient appliances [23], [24]. For instance, the
elasticity of electricity demands for residential buildings
in the US ranges from -0.20 to -0.35 in the short-run, and
-0.30 to -0.80 in the long-run [25].

As energy demands are responsive to retail price, it can be
an effective control signal to incentivize peak load reduction.

E. Practical implementation

The optimal dispatch and retail can be implemented as
follows (see Fig. 9 for illustration):

1) Acquisition of data related to DER status (e.g., availabil-
ity and operation conditions), predicted weather, energy
demand, and DR contract (Day 1)

2) Decision about dispatch plan and retail rates, announced
to generation facilities and consumers (Day 1)

3) Execution of dispatch with real-time recourse adjustment
to account for fluctuations in demand and renewable
generation (Day 2)

As for the prediction task, an array of data-driven or
model-based approaches can be employed. Based on our
evaluation, the most accurate and reliable method is “forecast
combination”, which combines a pool of forecasters to form
a “committee”, whose suggestions are weighted according to
past accuracy. It has been shown to be superior among other
candidates for prediction tasks in power scheduling [4].

III. CASE STUDIES

A. Influence of retail rates on system efficiency

For a retailer with DERs such as PV, battery, and CHP (see
case A in Table II), considering the following rate structures:

• Daily rate: flat rate across the day
• TOU: three levels in off-, mid-, and on-peak hours
• RTP: hourly differentiated rates
The goal is to study how optimized rates under specific

structures influence system efficiency, as measured by:
• Economic factor: daily profit due to energy retail
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Fig. 9. Implementation strategy of dispatch and retail plans.
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Fig. 10. Electricity (top) and cooling (bottom) load profiles for three buildings.

• Environmental factors: community total energy usage and
CO2 emission in energy production

• System indicators: peak electricity usage, peak-valley
distance (difference between peak and valley usage), and
load factors (ratio between average and peak loads)

The optimized retail rates for electricity and thermal energy
over a month of evaluation are shown in Fig. 11 (shaded
region indicates 90% confidence interval). Based on the results
(Fig. 12), main findings are as follows:

• RTP and TOU can capture dynamic energy generation
cost, with RTP exhibiting more flexibility in accommo-
dating hourly fluctuations

• RTP and TOU lead to increased retailer profit and reduced
total energy and CO2 emission



TABLE II
CASE SPECIFICATION OF DER TECHNOLOGIES. THE STORAGE

CAPACITIES CORRESPOND TO HEATING/COOLING/ELECTRIC STORAGE.
THE PARAMETER SPECIFICATIONS CAN BE FOUND IN [4].

NG
boiler

Electric
chiller Storage PV Solar

thermal
Absorp.
chiller CHP

A 5MW 10MW 1/1/4MW 1.5MW .75MW 10MW 1.5/2/3/4MW

B 5MW 10MW 1/1/4MW 15MW .75MW 10MW 1.5/2/3/4MW
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Fig. 11. Optimized electricity (top) and thermal (bottom) retail rates under
different pricing structures in case A.

• According to system indicators like peak-valley distance,
load factors, and peak usage, time-differentiated pricing
improves resource management and system reliability

In summary, time-differentiated rates exploit demand flexi-
bility as an energy resource, a capability that can be enhanced
in the future with the adoption of internet-of-things (IoT)
devices to enable automated price response mechanism.

B. System-wide solution to mitigate oversupply risk

Oversupply arises as more renewable energy is added to the
grid but demand for electricity does not increase. As indicated
by the “duck curve” (Fig. 13) identified by California Inde-
pendent System Operator (CAISO) [1], the risk is heightened
as net load drops (the difference between forecasted load
and expected electricity production from variable generation
resources).

The scenario is illustrated in Fig. 14 for a local energy
system with substantial renewable generation capacity (see
case B in Table II), when total energy demand is lower than
electricity generated from PVs.

To mitigate oversupply risk, a system-wide solution from
both DER and consumer sides is proposed to optimize dispatch
and retail (Fig. 14). Key findings are as follows:
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Fig. 13. Illustration of California “duck curve”, adapted from [1].

• Retail rates are lowered during noon time to encourage
consumption, e.g., electric vehicle charging

• Electricity generation is switched predominantly to PV
panels, as CHP is turned off

• Electric battery is charged during noon to “shift” the
excessive generation to night time

In summary, an effective mitigation strategy can be devel-
oped by utilizing flexibility enabled by elastic demand, energy
storage, and fuel switching.

IV. CONCLUSION

This study investigates integration of DERs to meet local
community energy consumption while optimizing dispatch
and energy retail. DER modeling provides abstractions of
physical constraints to be incorporated into an optimization,
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Fig. 14. Electricity and cooling dispatch to mitigate PV overgeneration during the noon. The graph also shows the energy retail rates, which exhibits a “dip”
during noon to encourage consumption. Since the experiment is conducted during the summer, the heat balance is not shown due to insignificant loads.

where the objective is to increase retailer profit and reduce
environmental impact. The method is evaluated in two case
studies: the first study shows that time-differentiated pricing
can effectively improve system efficiency and reliability, and
the second study illustrates a solution that coordinates both
supply and demand sides to mitigate renewable overgeneration
risk. The study facilitates DER integration and enables end-
user demand response to support a more efficient and reliable
power grid. In the future work, we are investigating the privacy
and security aspects of the deregulated market scheme, such
as against potential cyber attacks [26].
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