
Leveraging Correlations in Utility Learning

Ioannis C. Konstantakopoulos*, Lillian J. Ratliff*, Ming Jin, and Costas J. Spanos

Abstract— We present two approaches for leveraging cor-
relations in learning the utilities of non-cooperative agents’
competing in a game: correlation and coalition utility learning.
In the former, we estimate the correlations between agents
using constrained Feasible Generalized Least Squares with
noise estimation and then use the estimated correlations to
generate a correlation utility function for each agent which
is a weighted sum of its own estimated utility function and all
the agents’ estimated utilities that are highly correlated with
them. We then optimize the weights to boost the performance
of the estimators. In the latter, we use a small amount of
training data to estimate the correlations between players and
form coalitions between agents that are positively correlated.
We then estimate the parameters of the utility functions for
each coalition where agents in a coalition jointly optimize their
utilities. The correlation utility learning method outperforms
existing schemes while the coalition utility learning method is
simple enough to be adapted to an online framework after
an initial training phase, yet it matches the performance of
much more complex schemes. To demonstrate the efficacy of
the estimation schemes, we apply them to data collected from a
social game framework for incentivizing more efficient shared
resource consumption in smart buildings.

I. INTRODUCTION

Due to the increased use of Internet of Things technologies
that enable integration of human decision-makers into the
management and operations of everything from large scale
infrastructure such as the smart grid or intelligent transporta-
tion systems to smaller components of smart cities such as
smart buildings (see, e.g., [1]), we are in need of better
learning and control algorithms that account for humans in
the loop [2].

In this paper, we propose a new method of estimat-
ing utility functions for human decision-makers. Estimating
decision-making models for human agents is typically aimed
at either description or prediction. It is our aim to derive
a predictive model that has the potential to be integrated
with an incentive design scheme. Building on existing game
theoretic concepts such as coalition games [3], we are able
to extend our existing robust utility learning framework [4],
[5] to a utility learning framework that has the potential to
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learn the interconnections between players’ decision-making
processes and leverage them to in improving forecasting
algorithms. The coalition mechanism is simply used to
support better prediction. In particular, we leverage classical
estimation techniques to learn correlations between players
and propose two utility learning methods that utilize the
correlations to improve forecasting performance. The first
method is the correlation utility learning framework in which
we use estimated correlations to define a correlation game
in which each player’s utility function is converted into a
correlation utility. This method is described in two steps:
in the first step, we apply constrained Feasible Generalized
Least Squares (cFGLS) with noise estimation (which is the
core of our robust utility learning method [4], [5]) to estimate
the correlations between players. In the second step, we
construct correlation utilities by taking a weighted sum of
each player’s constrained Ordinary Least Squares (cOLS)
estimated utility function and all other players’ estimated
utilities that are highly correlated with it. We optimize over
the weights to improve the forecast of players’ decisions.

The second method is the coalition utility learning frame-
work in which subsets of players are modeled at colluding to
improve their outcome. This method can also be described in
two steps: in the first step, a small subset of data is used to
estimate correlations between players—again using cFGLS
with noise estimation—that are then used to define coalitions
amongst the most positively correlated players. In the second
step, we employ a simple cOLS estimation procedure to
estimate the parameters of the coalition utilities. The second
step of the proposed method, being based on cOLS, can be
executed online and thus, can be integrated into an adaptive
incentive design framework [6].

We apply both estimation schemes to data collected from
a social game experiment to induce energy efficient shared
resource consumption in smart buildings which are a funda-
mental component of smart cities. Their efficient design and
operation enables flexibility—e.g., by automatically shifting
or curtailing demand during peak hours—for sustainability.
We show that the correlation–based utility learning methods
outperform existing utility estimation schemes including
ones based on cOLS and cFGLS. The correlation utility
learning method, however, is no less computationally expen-
sive than the cFGLS scheme with noise estimation. On the
other hand, the coalition utility learning method outperforms
cOLS and matches the performance of the more expensive
cFGLS. The major benefit of the coalition framework is
that we get approximately the same performance with a less
computationally intensive framework and one that can be
integrated with an adaptive incentive design algorithm due



to the fact that the second step in the method is simply cOLS.
The rest of the paper is organized as follows. In Sec-

tion II, we describe the agent decision–making model in
a game theoretic framework. We describe the cFGLS with
noise estimation scheme along with both the correlation and
coalition utility learning methods in Section III. We briefly
describe the social game for smart building energy efficiency
and discuss the results of applying the proposed estimation
schemes in Section IV-B. We conclude with some discussion
and remarks on future work in Section V.

II. GAME–THEORETIC FRAMEWORK

A p-player game is described in terms of the strategy
spaces and utility functions for each player. We denote by
I = {1, . . . , p} the index set for players. Let Emi

i denote
the Euclidean strategy space of dimension mi for player i
and xi ∈ Emi

i denote its strategy vector. Define m =
∑
imi

and denote by Em = Em1
1 × · · · × Emp

p the joint strategy
space and x = (x1, . . . , xp) the joint strategy. Each player’s
strategy vector xi is constrained to a convex set Si ⊂ Ei.
Let `i be the number of constraints on player i’s problem
and let ` =

∑p
i=1 `i. Denote by S = S1 × · · · × Sp the

constraint set which we can explicitly characterize in terms
of mappings hi : Emi → E`i where each component hij(x),
j = 1, . . . , `i is a concave function of xi: Si = {xi|hi(xi) ≥
0}. It is assumed that Si is non-empty and bounded.

We model agents as utility maximizers—that is, the i–th
player faces the optimization problem given by

max
xi∈Si

fi(xi, x−i) (1)

where x−i = (x1, . . . , xi−1, xi+1, . . . , xp) is the marginal
strategy vector for all players excluding player i.

In this framework, the agents are non-cooperative players
in a continuous game with convex constraints.

When incentivized to do so—e.g., because they stand
to increase their payoff—players form coalitions in which
members of the coalition jointly optimize their utilities. That
is, the set of players I is partitioned into subsets such that
players in each subset collude.

Suppose the set of players I is partitioned into pc coali-
tions. We will use the notation Ci as the index set for
coalition i for each i ∈ {1, . . . , pc}. Then, players in
coalition Ci seek to solve the optimization problem given
by

max
xCi∈SCi

∈
fCi(xCi , x−Ci) (2)

where fCi
(xCi

, x−Ci
) =

∑
j∈Ci

fj(xCi
, x−Ci

), SCi
=

×j∈Ci
Sj , xCi

= (xj)j∈Ci
and x−Ci

= (xj)j∈I/Ci
.

In our framework, we will assume that utilities are
transferrable—that is players can losslessly transfer part of its
utility to another player. As an example, players in a coalition
may agree to divide the payoff equally or may agree to some
alternative distribution of the payoff in a side contract which
we leave unmodeled. In general, players are incentivized
to participate in a coalition if the utility of participating is
greater than if they played the game as a selfish individual.

We model their interaction using the Nash equilibrium
concept:

Definition 1 (Nash Equilibrium): A point x ∈ S is a Nash
equilibrium for the coalition game (f1, . . . , fn) on S if for
each i ∈ {1, . . . , pc} fCi(xCi , x−Ci) ≥ fCi(x

′
Ci
, x−Ci),

∀ x′Ci
∈ SCi

.
If pc = p and each player is in its own coalition by
itself, then the above definition reduces to the definition of
a Nash equilibrium for the p–player non-cooperative game
(f1, . . . , fn). It is well known that Nash equilibria exist for
concave games [7, Theorem 1].

The definition can be relaxed as follows:
Definition 2 (ε–Approximate Nash Equilibrium): Given

ε > 0, a point x ∈ S is a ε–approximate Nash equilibrium
for the coalition game (f1, . . . , fn) on S if for each
i ∈ {1, . . . , pc} fCi

(xCi
, x−Ci

) ≥ fCi
(x′Ci

, x−Ci
) − ε,

∀ x′Ci
∈ SCi

.

III. UTILITY LEARNING FRAMEWORK

In this section, we describe the robust, correlation, and
coalition utility learning frameworks. The robust utility learn-
ing framework describes the first step of both the correlation
and coalition utility learning methods where correlations
between players are approximated.

Let i–th player’s utility function be parameterized as
follows:

fi(xi, x−i; θi) = ϕi,0(xi, x−i)+
∑Ni

j=1 ϕi,j(xi, x−i)θij (3)

where {ϕi,j}Ni
j=1 is a set of non-constant, concave basis

functions, θi = [θi1 · · · θiNi
]>, and we use the notation

fi(xi, x−i; θi) to indicate the parameterization by θi. The
parameters θi are assumed unknown and these are the
parameters we seek to learn.

A. Utility Estimation Under Non-Spherical Noise
Let ni denote the number of data points for player i

and define nd =
∑p
i=1 ni be the total number of data

points. We assume that each observation x(k) corresponds
to an ε–approximate Nash equilibrium where the superscript
notation (·)(k) indicates the k–th observation. We define
residual functions capturing the amount of suboptimality of
the observations x

(k)
i [8], [9]. Indeed, let the residual of

the stationarity and complementary conditions for player i’s
optimization problem be given by

r
(k)
s,i (θi, µi) = Difi(x

(k)) +
∑`i
j=1 µijDihi,j(x

(k)
i ) (4)

and r
j,(k)
c,i (µ) = µi,jhi,j(x

(k)
i ), j ∈ {1, . . . , `i}, re-

spectively where µi = (µij)
`i
j=1 are Lagrange multipli-

ers. Define r
(k)
s (θ) = [r

(k)
s,1 (θ1, µ1) · · · r

(k)
s,p (θp, µp)]

>

and r
(k)
c = [r

(k)
c,1 (µ1) · · · r(k)c,p (µp)]

> where r
(k)
c,i (µi) =

[r
1,(k)
c,i (µi) . . . r

`i,(k)
c,i (µi)].

Given the observations of the agents’ decisions, we solve
the following convex optimization problem:

min
µ,θ

∑nd

k=1 χ(r
(k)
s (θ, µ), r

(k)
c (µ))

s.t. θi ∈ Θi, µi ≥ 0 ∀ i ∈ I
(P–1)



where χ : Rp×Rp·` → R+ is a nonnegative, convex penalty
function satisfying χ(z1, z2) = 0 if and only if z1 = 0
and z2 = 0 (i.e. any norm on Rp × Rp·`), the inequality
µi ≥ 0 is element-wise and the Θi’s are constraint sets for the
parameters θi that collect prior information about the utility
functions fi. As an example, if {ϕi,j}Nj=1 are all concave,
then Θi = RN+ ensures that fi is concave. For learning
utilities in a game theoretic context, we would like to ensure
that the observations are ε–approximate Nash equilibria for
the estimated game and to do that we select Θi such that
each player’s parameterized utility function is concave. As
indicated in [8], it is important to select each Θi such that
it encodes enough prior information about each fi so as
to prevent trivial solutions; we ensure this by selecting the
set of basis functions {ϕi,j}Nj=1 for each player to be non-
constant, concave functions and assuming ϕi,0 6≡ 0 in our
parameterization. We describe how we construct the Θi’s for
the social game for smart buildings in detail in Section IV.

Now, we convert (P–1) to a standard estimation frame-
work. Let first us define the regressor design matrix X =

diag(X1 · · ·Xn) by letting Xi = [(X
(1)
i )> · · · (X

(ni)
i )>]>,

X
(k)
i =

[
Dhi(x

(k)
i ) Dϕi(x

(k))

diag(hi(x
(k)
i )) 0`i×Ni

]
(5)

where Dhi(x
(k)
i ) = [Dihi,1(x

(k)
i ) · · · Dihi,`i(x

(k)
i )] ∈

R1×`i , Dϕi(x(k)) = [Diϕi,1(x(k)) · · · Diϕi,Ni
(x(k))] ∈

R1×N , and diag(hi(x
(k)
i )) ∈ R`i×`i is a diagonal matrix

with entries hi,j(x
(k)
i ) for j ∈ {1, . . . , `i} along the di-

agonal. We also define the observation-dependent vector
Y = [Y1 · · ·Yp]> where

Yi = [−Diϕi,0(x(1)) 01×`i · · · −Diϕi,0(x(ni)) 01×`i ]
>

and the regression coefficient β = [µ1 θ1 · · · µp θp]>.
Using the `2–norm on Rp × Rp·` for χ in (P–1) leads to

a cOLS problem:

min
β

{
‖Y −Xβ‖2

∣∣ β ∈ B
}

(P–2)

where B is a set that aggregates the constraints on the θi’s
and µi,j’s—that is,

B = {β| µi,j ≥ 0, j ∈ {1, . . . , `i}, θi ∈ Θi, i ∈ I}.

Suppose that the prior information encoded in the Θi’s can
be expressed by inequality constraints on the entries of θi
(which will be the case for our social game example), then
we can express the constraint set as B = {β|β > β̄} for some
β̄. Our data generation process, as described by problem
(P–2), is a classical multiple linear regression as follows

Y = Xβ + ε, β ∈ B (6)

where ε = (ε1, . . . , εp) is a spherical error term following:
E(ε|X) = 0no×1 and cov(ε|X) = σ2Ino×no where no =∑p
i=1(`i + 1)ni is the total number of observations such

that Y ∈ Rno .
The data generation process (6) lacks robustness in the

presence of non-spherical noise, results in biased parameter

estimates—ones that do not satisfy the Gauss–Markov theo-
rem for Best Linear Unbiased Estimator (BLUE) [10]—and
performs poorly in forecasting. Robustness can be ensured
by assuming heteroskedasticity [10, Chapter 5] which also
allows for inference of correlated errors in the resulting
regression model. These correlated errors can then be used
to determine the relationship between players’ decision-
making processes. Thus, in our data generation model, we
adopt a non-spherical standard error ε which is modeled by
cov(ε|X) = G � 0, G ∈ Rno×no . The model’s standard
error ε is drawn from multivariable normal probability dis-
tribution with zero mean and different variances and ε models
autocorrelated events.

Moreover, by multiplying (6) on the left with G−
1
2 ,

we can derive an unbiased estimator which satisfies the
BLUE property. The resulting constrained Generalized Least
Squares (cGLS) statistical model is given by

(G−
1
2Y ) = (G−

1
2X)β + (G−

1
2 ε), β ∈ B. (7)

In many applications, the explicit form of cov(ε|X) = G
is unknown. However, we can infer the noise by imposing
structural constraints on G. We consider a block diagonal
noise structure [10, Chapter 5]. In previous works [4], [5],
we have explored other noise structures. For the present
work, we choose the block diagonal noise structure just to
streamline and simplify the presentation.

We impose that G = blkdiag(K1, · · · ,Kp) ∈ Rno×no

where Ki = blkdiag(Bi,1, . . . , Bi,ni
) ∈ R(`i+1)ni×(`i+1)ni

with each Bi,k ∈ R(`i+1)×(`i+1). The estimates B̂i,k are
constructed from the residuals of the estimator for β. This
is a standard procedure which is outlined in [10, Chapter 5];
hence, we leave the details to the Appendix A.

We substitute the inferred noise, Ĝ, into the cGLS statisti-
cal model (7) to get the one–step constrained Feasible GLS
(cFGLS) estimators. We iterate between the estimation of Ĝ
and βcFGLS either until convergence or for a fixed number
of iterations to prevent overfitting. To resolve this trade-off
and find the optimal iteration size we adopt a simple cross-
validation method.

B. Player Correlation Estimation

For both the methods we propose for utility learning, we
need an estimate of the correlation between players. We use
a Wild Bootstrapping [10], [11] process which is consistent
with the selected heteroskedastic noise structure—it is also
commonly used to artificially increase the size of the data set
when the number of unknown parameters is large compared
to the number of observations—which is the case for the
social game application we present in Section IV as well as
many other applications where human decision–makers are
involved.

The bootstrapping process can be described in two steps:
First, fit a cFGLS model, β̂cFGLS. Then, generate Nboot
replicates of pseudo–data using the data generation process
Ỹ = Xβ̂cFGLS + Φ(e)ε, where Ỹ ∈ Rno×1 is the new
observation vector (pseudo-observations), β̂cFGLS ∈ Rno×1

is the cFGLS estimator, ε ∼ N(0, Ino×no), e ∈ Rno×1 is the



residual vector given by e = Ỹ −Xβ̂cFGLS and Φ : Rno×1 →
Rno×1 is a nonlinear transformation such that Φ(e) = Ĝ

1
2 ∈

Rno×no . Since E(Φ(e)ε|X) = Φ(e)E(ε|X) = Φ(e)E(ε) =
0no×no

, using the data generation process in (8), we re-
sample from i.i.d variables. Using Wild Bootstrapping, the
empirical covariance matrix of β̂cFGLS

j is an asymptotic
approximation of the covariance matrix and is given by

Ĉβ = 1
Nboot

∑Nboot
j=1

(
β̂cFGLS
j − β̂ave

)(
β̂cFGLS
j − β̂ave

)>
(8)

where β̂cFGLS
s is the estimator using the j-th pseudo-data

sample and β̂ave = 1
Nboot

∑Nboot
s=1 β̂

cFGLS
j . Asymptotic esti-

mation of the empirical covariance matrix reveals hidden
structures between players and is what we leverage both in
the correlation and coalition utility learning procedures.

Now that we have described cFGLS with noise estimation,
in the following two sub-sections we will descibe how we use
the approximations of correlations to boost the performance
of the forecast based on the estimated utilities.

C. Correlated Utility Learning

The empirically learned correlations are used to reduce
the forecasting error by crafting a new correlated game in
which we construct a correlation utility for each player by
composing a weighted sum of the player’s estimated utility
and the estimated utilities of all the players that are highly
correlated with it. We then optimize over the weights in order
to further reduce the forecasting error.

When the correlations between players are positive, we
create what we refer to as psuedo-coalitions since players
are not explicitly agreeing to collude in the game but rather
are doing so implicitly. The degree of psuedo-coalition is
discovered by the robust utility learning process through
estimating the empirical covariance of β̂cFGLS. On the other
hand, when the correlations between players are negative,
we find that these negative correlations can be used to take
advantage of active players’ richer data sets in predicting the
behavior of players that less active or ones that have little
variation in their data.

We refer to the learned utility—f̂i for player i—from the
robust utility learning framework as the nominal utility whose
estimate is given by

f̂i(xi, x−i) = ϕi,0(xi, x−i) +
∑Ni

j=1 θ̂
cOLS
i,j ϕi,j(xi, x−i) (9)

where θ̂cOLS
i is extracted from the cOLS estimated β̂cOLS

i =
(µ̂cOLS
i , θ̂cOLS

i ).
Using the correlations we learn when we estimate β̂cFGLS

as described above, we construct a new utility ĝi by combin-
ing scaled versions of a subset (potentially all) of the other
players’ utilities that are correlated with player i. Let Qi ⊂ I

denote the subset of players correlated with player i and let
Ki ⊂ Qi be the set of players used in constructing ĝi. The
correlated utility ĝi for player i is given by

ĝi(x) =
∑
l∈Qi

(
αi,lci,lϕi,0(x) +

∑Nj

j=1 αi,lθ̂
cOLS
i,j ϕi,j(x)

)
(10)

where as usual x = (xi, x−i), αi,i is the estimated variance
of player i determined by the empirical covariance matrix,
αi,l is the covariance between the parameter estimates for
player i and l also determined by the empirical covariance
matrix, and cil are scaling constants over which we opti-
mize. We refer to the resulting game as an approximated
correlation game1.

Given the form of ĝi, our goal is to optimize the scaling
constants cil in order to reduce the forecasting error. We
formulate a convex optimization problem using the first–
and second–order conditions on each player’s individual
optimization problem where we assume that player i is now
solving the problem given by

max
xi∈Si

ĝi(xi, x−i). (11)

The convex optimization problem we solve is formulated
in a similar fashion to the base utility learning problem of
Section III-A. Let ci ∈ R|Ki| be defined as ci = (ci,j)j∈Ki

and let c = (ci)i∈I. Let the residual of the stationarity
condition of (11) be given by

r
(k)
s,i (zi, µi; θ̂

cOLS
i ) = Diĝi(x

(k)) + µ>i Dihi(x
(k)
i ) (12)

and the residual of the complementary slackness conditions
be given by

r
j,(k)
c,i (µi) = µi,jhi,j(x

(k)
i ), j ∈ {1, . . . , `i}. (13)

As before, let r(k)c,i (µi) = [r
1,(k)
c,i (µi) · · · r`i,(k)c,i (µi)].

Define Qi ∈ Rni×|Ki| by

Qi =
[
αi,jD

2
i,iϕi,0(x(k))

]ni

k=1,j∈Ki

. (14)

and qi ∈ Rni by

qi =
[∑

j∈Kj
αi,j

(∑Ni

l=1 θ̂
cOLS
il D2

i,iϕi,l(x
(k))
)]ni

k=1
. (15)

Then, we have the following convex optimization problem:

min
c,µ

∑p
i=1

∑ni

k=1 χ(r
(k)
s,i (zi, µi; θ̂

cOLS), r
(k)
c,i (µi))

s.t. Qizi + qi ≤ 0, µi ≥ 0 ∀ i ∈ I
(P–2)

Solving (P–2) gives us estimated correlated utilities ĝi for
each i ∈ I that we then use to forecast the players’ decisions.

D. Coalition Utility Learning

As an alternative approach, when players are highly cor-
related we can re-estimate their parameters by returning to
the utility learning procedure but now with players who
are highly correlated treated as if they are participating in
a coalition. Using the empirically learned correlations, we
partition the set of players I into pc coalitions. Analogous to
the correlation utility learning method, our aim is to define
a coalition utility g̃Ci and estimate the parameters of the

1We remark that there exists an equilibrium concept called correlated
equilibrium [12] which generalizes a Nash equilibrium by characterizing
correlations between randomized strategies; we mention this only to alle-
viate any potential confusion. The equilibrium concept we utilize for the
approximated correlation game is still a pure Nash equilibrium.



coalition utilities assuming coalitions play a game against
each other, where those in a coalition jointly optimize their
utilities.

Let −Ci = I/Ci be the set of players not in coalition Ci.
The coalition utility g̃Ci

for player i is given by

g̃Ci
(xCi

, x−Ci
) =

∑
j∈Ci

fj(xCi
, x−Ci

) (16)

where the nominal utility function used for the coalition
game for player i is given by

fi(x) =
∑
j∈Ci

ϕj,0(x) +
∑Nj

l=1 ϕj,l(x)θj,l (17)

with x = (xCi , x−Ci). Then players in Ci are jointly solving

max
xCi
∈SCi

g̃Ci(xCi , x−Ci). (18)

Given g̃Ci , we develop a convex optimization problem to
estimate parameters θi in order to reduce the forecasting
error. Again, the problem is formulated in a similar fashion
to the base utility learning problem of Section III-A.

Define the vector θCi ∈ RMi where Mi =
∑
j∈Ci

Nj by
θCi =

(
θ1, θ2, . . . , θ|Ci|

)
. For optimization problem (18), let

the residual of the stationarity condition be given by

r
(k)
s,Ci

(θCi
, µi) = Dig̃i(x

(k)
Ci
, x

(k)
−Ci

) +
∑|Ci|
j=1 µ

>
j Djhj(x

(k)
j )

(19)

and the residual of the complementary slackness conditions
be given by

r
j,(k)
c,l (µl) = µl,jhl,j(x

(k)
l ), j ∈ {1, · · · , `l}, l ∈ Ci. (20)

with r
(k)
c,l (µl) = [r

1,(k)
c,l (µl) · · · r`l,(k)c,l (µl)]

>, r(k)c,Ci
(µCi

) =

[r
(k)
c,l (µl)]

>
l∈Ci

and µCi
= (µl)l∈Ci

. Let nCi
=
∑
j∈Ci

nj .
To estimate the coalition utilities, we solve

min
θ,µ

∑Nc

i=1

∑nCi

k=1 χ(r
(k)
s,Ci

(θCi
, µCi

), r
(k)
c,Ci

(µCi
))

s.t. θj ∈ Θj , µj ≥ 0 ∀ j ∈ I
(P–3)

Solving (P–3) using the `2–norm for the convex penalty
function χ gives us an ordinary least squares framework for
estimating coalition utilities g̃Ci for each i ∈ {1, . . . , pc}.

IV. RESULTS FOR SMART BUILDING SOCIAL GAME

In this section, we briefly describe a social game experi-
ment to encourage energy efficient shared resource consump-
tion in smart buildings2. We also present the results of the
two correlation–based utility learning methods to the data
collected from this experiment.

A. Description of the Social Game Experiment and Model

Let us briefly describe the experimental setup, the par-
ticipant decision–making model using the notation of the
previous sections, and our previous work using the data from
this experiment.

2We have several additional papers which flesh out the details of
the experiment [4], [9], [13], and we refer the interested reader to those
manuscripts.

1) Experimental Setup: We designed and implemented
a social game for encouraging energy efficiency in a col-
laboratory which resides in the Center for Research in
Energy Systems Transformation (CREST) on the Berkeley
campus. We have deployed an automated lighting control
system (Lutron system3), which enables its users to adjust
the lighting through a web portal. Using this web portal, the
social game consists of participants (or users) who select
a lighting setting by balancing their preferences on comfort,
productivity, and desire to win a prize. The portal also allows
users to visualize the social game—in particular, the dim
level of the lights—as well as view the point levels and
historical votes of all users.

The game is designed to leverage interactions amongst
users, who win points based on how energy efficient their
vote is compared to others. The users select their desired
lighting dim level in the continuous interval [0, 100] (0 being
off, and 100 being the maximum level of lighting). There is
a default lighting setting and when the users log in, they
can choose a different setting or leave it at this default
lighting level. Experiments with four default lighting levels,
i.e. {10, 20, 60, 90} where the numbers are the percentage
of maximum lighting, were conducted, covering a spectrum
of lighting conditions. The users can vote as frequently as
they like and the average of all the users’ current votes sets
the implemented lighting dim level in the collaboratory. To
enforce the rule that those who are not present cannot par-
ticipate, we executed a simple presence detection algorithm
based on their power usage [14].

2) Participant Decision–Making Model: The participants
in the social game are the players whose utility functions
we seek to estimate. There are 20 participants in the social
game.

We model the participants as having utility functions
composed of two terms that capture the tradeoff between
lighting satisfaction and desire to win. An participant’s
lighting satisfaction level is modeled using a Taguchi loss
function [15] which is interpreted as modeling satisfaction
in such a way that it is decreasing as variation decreases
around their selected lighting setting:

ϕi,1(xi, x−i) = − (x̄− xi)2 (21)

where x = (x1, . . . , xn) is the collection of lighting votes
and x̄ = 1

n

∑n
i=1 xi is its average and is the implemented

lighting setting in the space. On the other hand, we model
the participant’s desire to win as

ϕi,0(xi, x−i) = −ρz (xi)
2 (22)

where ρ is the total number of points distributed by the
building manager and z is a scaling factor that is used
primarily to scale the two terms of the utility function given
that we inflate the points offered to make the points appeal

3http://www.lutron.com



to players and thus induce greater participation4,5.
The points are distributed by the building manager using

the relationship
ρ xb−xi

nxb−
∑n

j=1 xj
(23)

where xb = 90 is the baseline setting for the lights, i.e. the
lighting setting that occurred before the implementation of
the social game in the office.

Using the notation of the previous sections, each player’s
utility function is given by

fi(xi, x−i) = ϕi,0(xi, x−i) + θiϕi,1(xi, x−i) (24)

where θi is an unknown parameter that captures the tradeoff
between winning and lighting satisfaction.

Each player’s decision xi is constrained to lie in the
interval Si = [0, 100] where 0 represents the lights in the
off setting and 100 represents the lights in the maximum
on setting. Let hi,j(xi, x−i) for j ∈ {1, 2} denote the
constraints on player i’s optimization problem. For player
i, the constraints are described by hi,1(xi) = 100 − xi and
hi,2(xi) = xi. Let Si = {xi ∈ R| hi,j(xi) ≥ 0, j ∈ {1, 2}}
and S = S1×· · ·×Sn. Let Θi = {θi ∈ R| θi ≥ θLB} where
θLB is determined by finding the least value of θi for which
the game is concave (and thus, a Nash equilibrium exists [7,
Theorem 1]) and the Nash equilibrium is isolated6.

3) Previous Work: We have a number of previous works
on the development of utility learning algorithms using this
data set. In [9], we modeled the interaction between the
building manager and the participants as a leader–follower(s)
game where the building manager is the leader and the
participants are the followers. We designed incentives by
estimating the parameters using a cOLS framework and
optimized the points and default lighting value using the
estimated utilities.

In a follow-up work [4], focusing on the estimation aspect
of the above, we developed a robust utility learning scheme
using cFGLS and ensemble methods such as bagging. In
other work [13], we developed techniques for learning a
mixture of utilities model for players which allows us to
capture the fact that over time players may make decisions
that are consistent with different utility maximization models
due to endogenous (time-varying preferences, mood, etc.)
and exogenous (weather, schedule, etc.) factors.

In our observations of players, we noticed very significant
correlations between players decisions which perhaps indi-
cates that they are potentially colluding or that at least by
treating them as colluding through psuedo-coalitions in the

4Inflating the points is a process of framing [16]—that is, dependent
on how the reward system is presented to players greatly impacts their
participation. Framing is routinely used in rewards programs for credit
cards among many other point-based programs. The scaling factor z in
the winning function is an attempt to remove the framing effect from the
estimation procedure.

5We also remark that on other work, we have explored different basis
functions [9]; however, the above simple quadratic functions tend to have
the best performance and can be easily interpreted.

6In our previous works [5], [13], we describe in detail how we find this
lower bound and for the sake of space we refer the reader to that work.

estimation procedure, our predictive model will potentially
be more accurate.

B. Results

The social game data set is composed of lighting votes
participants made throughout the duration of the experiment.
The time from one vote to the next may be several minutes
to hours depending on the activity level of the participants.

For both methods, we select combinations of players
in support of improving the estimators’ performance by
utilizing information learned from players with the most
variation in their votes in order to improve the estimates
of players who consistently vote the same value or have
a limited participation record. In this way, we boost the
performance of our utility learning scheme by transferring
information providing by the voting record of the more active
players to other players.

For the correlation utility learning method, we apply a
10–fold cross validation [11] proceedure with an 80%–20%
training/testing data split in order to limit overfitting. Using
the each of the training data sets, we estimate the correlations
between players using the robust utility learning method
described in Section III-A which gives us Ĉβ . In Table I, we
show a subset of the estimated covariance matrix Ĉβ . Using
these values, we construct a correlated game as described in
Section III-C for which we estimate the parameters using the
correlated utility learning method.

We construct a correlation game with the following
pseudo-coalitions:

(i) K2 = {2, 6, 20}: player 2’s utility function is modified
by player 6’s and player 20’s where each of these
players are what we call passive players (i.e. their
votes tend to be strongly related to their satisfaction
as opposed to increasing their chances of winning—
see the red cells in Table I);

(ii) K8 = {8, 14}: player 8’s utility function is modified
by player 14’s where player 8 and 14 are what we
call aggressive players (i.e. their votes tend to be much
lower indicating a greater desire to win points—see the
green cells in Table I);

(iii) K14 = {2, 8, 14}.: player 14’s utility function is mod-
ified by player 8’s and player 2’s where player 14
is positively correlated with player 8 and negatively
correlated with player 2—see the blue cells in Table I.

All other players’ utilities in the correlated game remain
unchanged; that is, they are taken to be ĝi ≡ f̂i, i ∈
I/{2, 8, 14}. We use the cOLS estimated parameters θ̂cOLS

i

to create the correlation game. Then we apply the correlation
utility learning method to optimize the ci,j’s.

On the other hand, for the coalition utility learning method,
we again divide the data into training and testing data sets
with an 80%–20% split (and use cross validation). However,
we use a small subset of the training data (approximately 3–
5% of the data which is roughly 2 days of the experiment)
to approximate the correlations between players. With these
correlations we select coalitions. Then we use cOLS to
estimate the parameters of the utilities for the coalition game.



TABLE I
ESTIMATED COVARIANCE MATRIX FOR THE MOST ACTIVE PLAYERS.
THE COLORED COLUMN-ROW PAIRS INDICATE THE AGENTS USED TO

CREATE THE CORRELATION GAME—I.E. THE COLUMN INDICATES THE

AGENT WHOSE ESTIMATED PARAMETER IS USED TO MODIFY THE ROW

AGENT’S UTILITY.

Id
2

6
8
14
20

2 6 8 14 20
0.04 0.06 -2.80 -5.19 0.03
0.06 7.84 -16.8 0.84 -0.02
-2.80 -16.8 6.4×104 4.28×104 -7.60
-5.19 0.84 4.28×104 8.84×104 -12.6
0.03 -0.02 -7.60 -12.6 0.07

The reason we use only a small subset of the data is
that the cFGLS and noise estimation scheme described in
Section III-A is computationally expensive, especially with
a larger bootstrapped data set. Our ultimate goal is to have
a utility estimation method with low forecasting error that
is simple enough to be converted to an online estimation
scheme so that it can be integrated into an adaptive incentive
design algorithm [6]. By employing cOLS in the estimation
step, we are able to partially meet this goal.

Using the social game data, we select the most cor-
related players which happen to be players 8 and 14—
the estimated correlation between these players is several
orders of magnitude greater than the correlation between any
of the other players. Hence, we create the coalition game
Gcoal = {g̃C1

, g̃C2
} where C1 = {8, 14} and Ci = {i} for

i ∈ I/C1. As we noted, players 8 and 14 are both aggressive
players. However, player 8 has little variation in its voting
record—the voting record contains mostly zero votes. One
interpretation is that the correlation method is in some sense
serving to reduce dimensionality since players are clustered
together and shared information between them is leveraged
to improve the forecast performance.

In Table II, we present the root mean square error
(RMSE), mean average error (MAE), and mean absolute
scaled error (MASE) for the cOLS and cFGLS estimators
and the estimated correlated utilities {ĝi(·; {θ̂cOLS

j }j∈Ki
)}i∈I

and coalition utilities {g̃Ci(·; {θ̃coal
j }j∈Ci)}i∈I (where the

θ̃coal
j ’s are re-estimated using cOLS as in (P–3)). In the

lower plot of Figure 1, we show the forecast produced by
the cOLS, cFGLS, correlated, and coalition utility learning
methods. We see that the correlated and coalition estimation
schemes reduce the estimation error when comparing to
cOLS. Their performance is on par with cFGLS and the
correlated estimation scheme even outperforms cFGLS.

In general, cOLS performs poorly when players are treated
as selfish individuals (see the lower plot in Figure 1 and
Table II)—this is in part due to the size and lack of variation
of the votes. Yet, using the correlation estimation scheme the
cOLS estimators performance is improved by optimizing the
weights of the correlation utilities. The coalition estimation
scheme also reduces the estimation as compared to cOLS.
This is, again, due to the fact that the method allows for
information sharing since data from one player is used in

Fig. 1. Forecasting results for default lighting setting 20 (lower plot)
and happiness metric comparing estimated utilities using the coalition f̂ coal

i

and cOLS f̂i utility learning methods (upper). The x–axis values indicate
the index of when a choice was made by one or more of the occupants
(i.e. when the implemented lighting setting is changed); the time from one
index to the next may be several minutes to hours depending on the activity
of the participants. The dark gray dashed lines indicate when no coalition
was used in the coalition estimate (instead all players played selfishly—this
occurs when player’s 8 and 14 are not both present in the office and thus,
cannot collude).

estimating the utility of another player via learned correla-
tions.

Moreover, in the upper plot of Figure 1, we show the
difference between the coalition estimated utility and the
cOLS estimated utility for players 8 and 14. In particular,
using each observed approximate Nash x(k), we compute
the cOLS estimated utility value

f̂i(x
(k); θ̂cOLS

i ) (25)

and the coalition estimated utility value which we take to be
an equitable distribution of the payoff amongst the players
in a coalition, i.e.

f̂ coal
i (x(k); θ̂coal

i ) = 1
|C1| g̃C1

(x(k); θ̂coal
C1

) (26)

where θ̂coal
C1

= (θ̂coal
i )i∈C1 and each θ̂coal

i are the cOLS esti-
mated parameters for the coalition game. We then compute
the happiness metric which we define to be the difference
between these two estimated utilities:

f̂ coal
i (x(k); θ̂coal

i )− f̂i(x(k); θ̂cOLS
i ). (27)

We remark that it is difficult to estimate the true structure
of coalition side payments/utility transfers were they actually
taking place. What is interesting, however, is that not only
do we see improved estimator performance but also the
happiness metric—which assumes a uniform distribution of
wealth amongst coalitions—indicates that in fact the players
have greater utility when treated as colluding. Specifically,
looking at Figure 1, when there is no coalition (dashed
grey lines), the utilities are equal which should be the case;



TABLE II
ROOT MEAN SQUARE ERROR (RMSE), MEAN ABSOLUTE ERROR (MAE) AND

MEAN ABSOLUTE SCALED ERROR (MASE) FOR THE FORECAST USING THE

COLS, CFGLS, AND CORRELATION, AND COALITION UTILITY LEARNING

METHODS IN THE DEFAULT LIGHTING SETTING 20.

Error cOLS cFGLS correlated coalition
RMSE 22.53 11.36 11.3 12.79
MAE 18.35 6.81 6.49 7.45
MASE 7.34 2.72 2.63 3.02

however, when we use a coalition for players 8 and 14, they
are better off under the coalition utility with the exception
of player 8 on two voting instances (votes indexed by 14
and 15). The fact that the players are generally happier under
the coalition estimated utility than the cOLS estimated utility
may indicate that there is some (explicit or implicit) collusion
happening in practice. We are developing algorithms to
approximate the Shapley value [17] which is a measure
of a how important each player is to the coalition. Our
approach will approximate the distribution of total surplus
among players generated by collusion.

V. DISCUSSION

We presented two novel utility learning schemes that
leverage estimated correlations between players in order to
boost the performance of the estimated utilities in forecasting
player decisions. Both methods outperform existing tech-
niques based on classical estimation methods. Moreover,
the coalition utility learning method is significantly less
computationally intensive than cFGLS. After an initial batch
training phase to compute correlations, it is amenable to
online implementation and thus, has the potential to be
integrated into an online algorithm for utility learning and
incentive design [6].

We remark that the incentive mechanisms will ultimately
modify players’ utilities and thus, whether or not they are
incentivized to collude, a central planner (such as a building
manager or, more broadly, a service provider). This exposes
an interesting avenue for future research in investigating the
persistence of equilibria or coalitions after introduction of
incentives. We are currently conducting experiments with an
online version of the coalition utility learning method inte-
grated with an adaptive incentive design scheme to collect
data to support this work.

Moreover, as we mention at the end of the previous
section, in order to aid in better incentive design, we seek
algorithms for estimating the power a player has in a game
via approximation of their Shapley value. Learning the
players with the most bargaining power will help shape and
target incentive mechanisms.

APPENDIX

A. Formation of the Noise Structure

Let β̂cOLS be the cOLS estimate of β with residual vector
e = Y − Xβ̂cOLS ∈ Rno . The residual vector e can
be decomposed into residuals for each player by writing
e = [e>1 · · · e>p ]>. We use ei to compute an estimate K̂i

of Ki which is, in turn, used to compute Ĝ. The residuals
come in `i pairs since at each observation k, Y (k)

i ∈ R`i+1.
There are ni instances at which we have `i+1 observations.
Let (ei)k,j = (ei)(`i+1)(k−1)+j where k ∈ {1, . . . , ni} and
j ∈ {1, . . . , `i + 1}. Then, with the residuals, we form
estimates B̂i,k ∈ R(`i+1)×(`i+1) of Bi,k using (B̂i,k)jj =
n−1i

∑ni

t=1 e
2
t,j and (B̂i,k)lj = n−1i

∑ni

t=1 et,jet,` for j 6= `
in

B̂i,k =

 (B̂i,k)11 · · · (B̂i,k)1(`i+1)

...
. . .

...
(B̂i,k)(`i+1)1 · · · (B̂i,k)(`i+1)(`i+1)

 (28)
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