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Abstract— Power system state estimation is an important
instance of data-driven decision making in power systems. Yet
due to the nonconvexity of the problem, existing approaches
based on local search methods are susceptible to spurious
local minima. In this study, we propose a linear basis of
representation that succinctly captures the topology of the
network and enables an efficient two-stage estimation method
when the amount of measured data is not too low. Furthermore,
we develop a robustness metric called “mutual incoherence,”
which provides robustness guarantees in the presence of bad
data. The proposed method demonstrates superior performance
over existing methods in terms of both estimation accuracy
and bad data detection for an array of benchmark systems.
This technique is shown to be scalable to large systems with
more than 13,000 nodes and can achieve an accurate estimation
within a minute.

I. INTRODUCTION

Power system state estimation (PSSE) is conducted on a
regular basis to monitor the state of the grid by collecting
and filtering a wealth of sensor data from transmission and
distribution infrastructures [1], [2]. Due to the nonlinearity of
the alternating-current (AC) grid physics, solving the set of
power flow equations that arise from sensor measurements is
known to be NP-hard for both transmission and distribution
networks [3], [4]. As a result, there is a long tradition of
studying this problem [2], [5]–[11].

The current practice in the power industry relies on a set
of linearization and/or Newton’s methods that are originally
developed in 1960s [2], [5]. However, the estimator is prone
to outliers and sparse noise/errors, which can arise from sen-
sor faults, topological errors [12]–[14], or adversarial attack
[15], [16]. To deal with large and sparse noise, one common
approach is to perform bad data detection (BDD) on residual
errors [17]. This method relies on statistical assumptions
on the errors (e.g., mean-zero and independent Gaussian
distributions) and is only effective when the estimation from
the Newton algorithm is close enough to the ground truth
[2]. Alternatively, by redesigning the cost functions, robust
estimators such as the least-absolute value (LAV) (a.k.a.,
`1 loss), the least median of squares, or Huber’s estimator
have been employed [2], [6], [18]–[21]. A major drawback
of the above local search methods is the vulnerability to
spurious local minima, which are those points that satisfy
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first- and second-order optimality conditions but are not a
global minimum [21], [22]. Even though some recent works
have shed light on the possibility of the non-existence of
local minima in certain scenarios [23], the conditions are
difficult to verify for PSSE [21].

Recently, the semidefinite programming (SDP) relaxation
technique has been applied to PSSE following its success
for the optimal power flow problem [24], which has shown
a satisfactory numerical performance even in the presence
of topological errors and bad data [8], [9], [11], [13]. The-
oretical analysis of the estimator has been conducted in [9],
[11]. Furthermore, [16] analyzes the vulnerabilities of AC
PSSE against potential cyber attacks. While SDP relaxation
is a promising approach with both numerical success and
theoretical guarantees, this method requires that the solution
be rank-1 to recover the true state. Since most interior point
methods for solving SDPs produce the highest-rank solution
by default, one may need to add an extra rank penalty to
the objective function (e.g., nuclear norm [8] or custom-
designed norm [9], [11]), which forces the solution to be
near-global optimal. Furthermore, the addition of the positive
semidefinite constraint limits the solvability of large-scale
problems, since most conic numerical algorithms scale on
the order of O(n6), where n is the number of variables.

In this study, we propose a method to solve large-scale
AC PSSE with quadratic programming that finds the correct
state and is robust to sparse bad data, provided that the
amount of measured data is relatively high. A new basis
of representation is proposed to fully capture the properties
of the power grid topology. Furthermore, we also provide a
theoretical analysis on the recovery condition of the true state
in the presence of sparse bad data with statistical bounds on
the estimation error.

The paper is organized as follows. The linear basis of rep-
resentation is introduced in Sec. II-B, together with the mea-
surement models and some key definitions to facilitate the
theoretical analysis. The two-stage estimator is introduced in
Sec. III, whose performance is analyzed in Sec. IV. Sec. V
includes numerical evaluations of the proposed methods on
benchmark systems. Conclusion is drawn in Sec. VI. All
proofs have been delegated to the appendix for the interested
readers without interrupting the flow of presentation.

II. POWER SYSTEM AC-MODEL

A. Notations

Let xi denote the i-th element of vector x. We use R and
C to show the sets of real and complex numbers. The set of
indices {1, 2, ...,m} is denoted by [m]. The cardinality |J |
of a set J is the number of elements in the set. The support



supp(x) of a vector x is the set of indices of the nonzero
entries of x. For a set J ⊂ [m], we use J c = [m] \ J to
denote its complement. We use AJ to denote the submatrix
formed by the rows of A indexed by J . We use <(·), =(·)
and Tr (·) to denote the real part, imaginary part and trace
of a scalar/matrix. The imaginary unit is denoted as i. The
notations ∠x and |x| indicate the angle and magnitude of
a complex scalar. We use P to denote probability, and E
to denote expectation. The notations ‖x‖1, ‖x‖2 and ‖x‖∞
represent the 1-norm, 2-form and ∞-norm of x.

B. Power system modeling

We model the electric grid as a graph G := {N ,L}, where
N := [nb] and L := [nl] represent its sets of buses and
branches. Each branch ` ∈ L that connects bus k and bus
j is characterized by the branch admittance y` = g` + ib`
and the shunt admittance ysh

` = gsh
` + ibsh

` , where g` (resp.,
gsh
` ) and b` (resp., bsh

` ) denote the (shunt) conductance and
susceptance, respectively. Since gsh

` � bsh
` in practice, we

set gsh
` to zero in the subsequent description. In addition, to

avoid duplicate definitions, each line ` := (k, j) is assigned
with a unique direction from bus k (i.e., from end, given by
f(`) := k) to bus j (i.e., to end, given by t(`) := j). We
also use ` : {k, j} to denote a line ` with the direction of
either (k, j) or (j, k). The power system state is described by
the complex voltage vector v =

[
v1, ..., vnb

]> ∈ Cnb , where
vk ∈ C is the complex voltage at bus k ∈ N with magnitude
|vk| and phase θk := ∠vk. Given the complex voltages, by
Ohm’s law, the complex current injected into line ` : {k, j}
at bus k is given by:

ikj = y`(vk − vj) +
i

2
bsh
` vk.

Defining θkj := θk − θj , one can write the power flow from
bus k to bus j as

p
(`)
kj = |vk|2g` − |vk||vj |(g` cos θkj − b` sin θkj),

q
(`)
kj = −|vk|2(b` + 1

2b
sh
` ) + |vk||vj |(b` cos θkj − g` sin θkj),

and active (reactive) power injections at bust k,

pk =
∑
`:{k,j}

p
(`)
kj , qk =

∑
`:{k,j}

q
(`)
kj . (1)

C. Linear basis of representation

In this paper, we introduce a new basis of representation,
where measurements can be expressed as linear combina-
tions of the quantities derived from bus voltages. Specifically,
for a given system G, we introduce two groups of variables:

1) voltage magnitude square, xmg
k := |vk|2, for each bus

k ∈ N , and
2) real and imaginary parts of complex products, denoted

as xre
` := <(viv

∗
j ) and xim

` := =(viv
∗
j ), respectively, for

each line ` = (i, j). Note that there is only one set of
variables xre

` and xim
` for each line.

Using this representation, we can re-derive various types
of power and voltage measurements (without noise) as fol-
lows:

• Voltage magnitude square: The voltage square magni-
tude square at bus k ∈ N is simply xmg

k by definition.
• Branch power flows: For each line ` = (i, j), the real

and reactive power flows from bus i to bus j and in the
reverse direction are given by:

p
(`)
ij = g`x

mg
i − g`x

re
` − b`xim

`

q
(`)
ij = −(b` + 1

2b
sh
` )xmg

i + b`x
re
` − g`xim

`

p
(`)
ji = g`x

mg
j − g`x

re
` + b`x

im
`

q
(`)
ji = −(b` + 1

2b
sh
` )xmg

j + b`x
re
` + g`x

im
`

• Nodal power injection: The power injection at bus node
k consists of real and reactive powers, where:

pk =
∑
k∈`

g`x
mg
k −

∑
k∈`

g`x
re
` −

( ∑
f(`)=k

b` −
∑
t(`)=k

b`

)
xim
`

qk = −

(∑
k∈`

b` + 1
2b

sh
`

)
xmg
k +

∑
k∈`

b`x
re
` −( ∑

f(`)=k

g` −
∑
t(`)=k

g`

)
xim
` ,

where
∑
k∈` is the sum over all lines ` ∈ L that are

connected to k,
∑
f(`)=k is the sum over all lines `

where f(`) = k, and similarly,
∑
t(`)=k is the sum over

all lines ` where t(`) = k. Equivalently, we can use (1)
to combine the branch power flows defined above.

Thus, each customary measurement in power systems that
belongs to one of the above measurement types can be
represented by a linear function1:

mi(x) = a>i x\, (2)

where ai ∈ Rnx is the vector for the i-th noiseless measure-
ment and x\ = ({xmg

k }k∈N , {xim
` , x

im
` }`∈L) ∈ Rnx is the

regression vector. By collecting all the sensor measurements
in a vector m ∈ Rnm , we have

m = Ax\, (3)

where A ∈ Rnm×nx is the sensing matrix with rows
a>i for i ∈ [nm]. It is worth mentioning that the linear
basis introduced above is different from DC modeling of
measurements, because the expression is exact for the AC
model. This parametrization is inspired by the semidefinite
relaxation approach for power system optimization [8], [9],
[11], [13], and it efficiently exploits the sparsity of the
network.

D. Measurement model

We consider the measurement model as follows:

y = Ax\ + w\ + b\, (4)

1It is straightforward to include linear PMU measurements in our analysis
as well using the relation tan θij = xim

` /x
re
` for each line ` = (i, j),

assuming we have a pair of PMUs on each end of a branch.



where A ∈ Rnm×nx and x\ ∈ Rnx are the sensing matrix
and the true regression vector in (3), w\ ∈ Rnm denotes
random noise, and b\ ∈ Rm is the bad data error that
accounts for sensor failures or adversarial attacks [25]. Let
J := supp(b) ⊂ [nm] denote the support of the bad data
b. We introduce the following properties to characterize the
sensing matrix A.

Definition 1 (Lower eigenvalue). Let QJ :=
[
A I>J

]
,

where IJ consists of the J rows of the identity matrix
I ∈ Rnm×nm , and let AJ c be the submatrix of A with
rows indexed by J c. Then, the lower eigenvalue Cmin(J )
for a given corruption support J is defined as the lower
bound:

min
{
λmin

(
Q>JQJ

)
, λmin

(
A>J cAJ c

)}
, (5)

where λmin(X) denotes the smallest eigenvalue of X .

The value Cmin(J ) characterizes the influence of bad data
on the identifiability of x\. If Cmin(J ) is strictly positive,
and one can accurately detect the support of bad data (a.k.a.,
support recovery), then it would be possible to obtain a good
estimation of x\ with only the clean data in J c.

The next property turns out to be critical for BDD.

Definition 2 (Mutual incoherence). Given a set J ⊂ [m]
and its complement J c := [m] \ J , let the pseudoinverse of
AJ c be denoted as A+

J c = (A>J cAJ c)−1A>J c . Then, the
mutual incoherence parameter ρ(J ) is defined to be:

ρ(J ) = ‖A>+
J c A

>
J ‖∞,

where ‖ · ‖∞ denotes the matrix infinity norm (i.e., the
maximum absolute column sum of the matrix).

The name “mutual incoherence” originates from the com-
pressed sensing literature [26], [27]. In our case, it measures
the alignment of the sensing directions of the corrupted
measurements (i.e., AJ ) with those of the clean data (i.e.,
AJ c ). If these directions are misaligned (a.k.a., incoherent),
then the value ρ(J ) is low, and it is likely to uncover the
support of bad data. In general, the smaller the number of
bad data measurement is, the more likely that ρ(J ) is small.

Because the sensor data are of different types and scales,
we make a normalization assumption.

Definition 3 (Measurement normalization). Each row of A
is normalized as

‖ai‖22 = 1, ∀i ∈ [nm] (6)

where ai is the i-th row of A.

This condition is straightforward to implement in practice,
since one can arbitrarily rescale the given coefficients of each
measurement equation.

III. TWO-STAGE STATE ESTIMATION

This section describes the proposed two-stage state esti-
mation method.

A. Stage 1: Estimation of x\

In the first stage, the goal is to estimate x\ from a set of
noisy and corrupted measurements y. We consider two cases
separately.

Case 1: Sparse corruption but no dense noise (i.e., w = 0)

In this case, the dense noise is negligible, i.e., w\ = 0, and
the measurements are given by y = Ax\ + b\. To estimate
x\, we solve the following program:

min
x∈Rnx ,b∈Rnm

‖b‖1, subject to Ax+ b = y. (S1-L1)

Briefly, if the lower eigenvalue is bounded away from 0 (i.e.,
Cmin(J ) > 0) and the mutual incoherence is less than 1 (i.e.,
ρ(J ) < 1), then we can faithfully recover x\ and b\ from
the above program.

Case 2: Sparse corruption and dense noise

In this case, the dense noise cannot be ignored, and the
measurements are given by (4). We perform the estimation
by solving the following LASSO-style optimization:

min
b∈Rnm ,x∈Rnx

1
2nm
‖y −Ax− b‖22 + λ‖b‖1, (S1-LASSO)

where λ > 0 is the regularization coefficient. Due to the
existence of dense noise, it is no longer possible to exactly
recover the true x\; however, if the magnitudes of the dense
noise are small, then we can still have good statistical bounds
on the estimation error.

B. Stage 2: Recovery of v

The goal of the second stage is to recover the underlying
system voltage v from the estimation x̂ from stage 1. First,
we transform x̂ into estimations of voltage magnitudes and
phase differences:

• The voltage magnitude at each bus k ∈ N is estimated
as |v̂k| =

√
x̂mg
k ;

• The phase difference along each line ` = (i, j) is
estimated as θ̂ij = arctan x̂im

` /x̂
re
` .

To obtain the phase estimation at each bus, we solve the
least-squares problem

θ̂ = arg min
θ∈Rnb

∑
`=(i,j)

(θi − θj − θ̂ij)2, (S2-θ)

which has a closed-form solution. To delve into this, let θ∆

be a collection of θ̂ij , and L ∈ Rn`×nb be a sparse matrix
with L(`, i) := 1 and L(`, j) := −1 for each line ` = (i, j)
and zero elsewhere. Then, the solution for (S2-θ) is given
by:

θ̂ = (L>L)−1L>θ∆. (7)

Finally, we can reconstruct v̂ by definition:

v̂k = |v̂k|eiθ̂k , k ∈ N . (8)

If the regression vector from stage 1 is exact, i.e., x̂ = x\,
then we can accurately recover the system state v̂ = v.



IV. THEORETICAL ANALYSIS

This section presents several theoretical analyses for the
proposed framework, where we examine under what condi-
tions the true state can be recovered (either exactly when the
dense noise is negligible, or accurately enough for the case
with dense noise).

Theorem 1. Consider the measurement equation y = Ax\+
b\, where supp(b\) = J . Assume that the measurement
matrix A satisfies the following conditions: (a) the lower
eigenvalue is positive, i.e., Cmin(J ) > 0; (b) the mutual
incoherence condition ρ(J ) < 1 is satisfied. Then, the
unique solution to (S1-L1), denoted as (x̂, b̂), is exact and
recovers the true state (i.e., x̂ = x\ and b̂ = b\).

Theorem 2. Consider the measurement equation y = Ax\+
w\ + b\, where supp(b\) = J and w\ is a random vector
with zero mean and subgaussian parameter σ. Suppose that
the rows of A are normalized, and that the measurement
matrix A satisfies the following conditions: (a) the lower
eigenvalue is positive, (b) there exists a constant γ > 0 such
that the mutual incoherence condition ρ(J ) = 1−γ. Let the
regularization parameter λ be chosen such that

λ >
2

nmγ

√
2σ2 log nm. (9)

Then, the following properties hold for the solution to
(S1-LASSO), denoted as (x̂, b̂):

1) (No false inclusion) The solution (x̂, b̂) has no false
bad data inclusion (i.e., supp(b̂) ⊂ supp(b\)) with
probability greater than 1 − c0

nm
, for some constant

c0 > 0.
2) (Large bad data detection) Let

g(λ) = nmλ

(
1

2
√
Cmin(J )

+ ‖Ib(Q>JQJ )−1I>b ‖∞

)
be a threshold value. Then, all bad data measurements
with magnitude greater than g(λ) will be detected (i.e.,
if |bi\| > g(λm), then |b̂i| > 0) with probability greater
than 1− c1

m for some constant c1 > 0.
3) (Bounded error) The estimator error is bounded by

‖x\ − x̂‖2 ≤

ω

√
nm + |J |
Cmin

+ nmλ‖Ix(Q>JQJ )−1I>b ‖∞,2

with probability greater than 1− exp
(
− c1ω

2

σ4

)
, where

‖ · ‖∞,2 denotes `∞–`2 induced norm.

Despite the difference in measurement assumptions (i.e.,
existence of dense noise w) and estimation algorithms (i.e.,
(S1-L1) or (S1-LASSO)), it is remarkable that the global
recovery conditions in Theorems 1 and 2 are coincident. In
the case of negligible dense noise, a strong global recovery
is achieved, meaning that both the true state and the bad data
are detected. With the presence of dense noise, it is no longer
possible to achieve exact recovery; however, Theorem 2 in-
dicates that with a proper selection of the penalty coefficient

λ, one can avoid false detection of bad data (part 1), detect
bad data with magnitudes greater than a threshold (part 2),
and achieve state estimation within bounded error margin.
Furthermore, both the bad data threshold and the error bound
decrease with stronger mutual incoherence condition and
lower-eigenvalue condition.

In what follows, we will discuss the influence of the
possible error in stage–1 estimation on the outcome of the
second stage. Let the estimations of xre

` and xim
` over a line

` ∈ L be given by:

x̂re
` = xre

` + ∆xre
` and x̂im

` = xim
` + ∆xim

` ,

where xre
` and xim

` are the true values, and ∆xre
` and ∆xim

`

are the estimation errors from stage 1. We provide a bound
on the phase estimation error for each bus k ∈ N .

Proposition 1. The estimation error of the phase θk is
bounded by the k-th component of the vector∣∣∣(L>L)−1L>e

∣∣∣ ,
where e ∈ Rnl has elements e` =

xre
` ∆xim

` −x
im
` ∆xre

`

xre
` x̂

re
`

, and L is
the matrix described in Sec. III-B.

V. EXPERIMENTS

Numerical evaluations are performed on benchmark sys-
tems from MATPOWER [28]. With the exception of the
last experiment, we assume the available measurements to
include full nodal measurements (i.e., voltage magnitudes
and real/reactive injections) and bi-directional real/reactive
branch flows over all lines. Due to space restrictions, al-
though we cannot offer more simulations on cases with a
high amount of data but not all possible measurements, we
have observed similar behaviors to what to be presented next.
All the experiments are performed on a personal laptop with
3.3GHz Intel Core i7 and 16GB memory.

In each case, we randomly generate 50 sets of dense noise
w and sparse bad data b. The dense noise for each measure-
ment is zero-mean Gaussian variable, with standard deviation
of 0.1 × cn (per unit) for voltage magnitude measurements
and cn (per unit) for all the other measurements, where cn is
the dense noise level. For the sparse bad data, its support J
is randomly selected among the line measurements, with the
only assumption that at most 1 bad data measurement exists
for each line. The values for the sparse noise can be arbitrar-
ily large, and we assume that these parameters are uniformly
chosen from the set [−4.25,−3.75] ∪ [3.75, 4.25] (per unit).
We adopt the root-mean-square error (RMSE) as the per-
formance metric, which is defined as

√
1
nb

∑
i∈N |vi − v̂i|2,

where vi and v̂i are the true and estimated complex voltage
at bus i ∈ N . To evaluate the bad data detection accuracy,
we use the F1 score, which is defined as 2∗precision×recall

precision+recall ,

where precision is given by #True positives |J∩Ĵ |
#Conditional positives |Ĵ | , and recall

is given by #True positives |J∩Ĵ |
#Conditional positives |J | , and J and Ĵ denote the

true and estimated support of bad data (# shows the number



TABLE I: Comparison of the (S1-L1)–cleaning–direct recovery (L1-Direct), (S1-LASSO)–cleaning–direct recovery (LASSO-
Direct), and local search with `1 loss and Newton’s method with bad data detection. We fix the percentage of bad data at
5% (out of all line measurements) and dense noise level at cn =0.5%.

Newton method Local search `1 LASSO-Direct L1-Direct
RMSE F1 Time (s) RMSE F1 Time (s) RMSE F1 Time (s) RMSE F1 Time (s)

14 Bus .002 .852 0.6 .001 1 0.3 .001 1 2.3 .001 1 2.2
30 Bus .042 .808 2.4 .001 .996 0.4 .002 1 2.3 .002 1 2.2
57 Bus .043 .827 3.2 .001 .998 1.2 .004 .999 2.3 .004 .999 2.1

118 Bus .003 .848 7.4 .002 .980 4.1 .002 1 1.5 .002 1 1.3
300 Bus .699 .379 58.1 .093 .858 21.6 .004 .999 2.6 .004 .999 1.2
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(a) RMSE for LASSO-Direct with (right) and without (left) cleaning step
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Fig. 1: Evaluation of the (S1-LASSO)–direct recovery method on the PEGASE 2848-bus system. The dense noise level
cn varies from 0 to 2%, and the number of bad data measurements ranges up to 2000 (roughly 9% of the total line
measurements). The bad data detection accuracy is shown as the F1 score. After the detection of bad data, they are removed
and the remaining clean data are used again in the estimation (LASSO Clean).

of elements). The F1 score reaches its best value at 1 (perfect
precision and recall) and worst at 0.

We compare the proposed method (stage-1 estimators
(S1-L1) or (S1-LASSO) combined with stage-2 direct recov-
ery method) with the current practice local search method us-
ing the squared loss Newton method, and another local search
method that replaces the squared loss with `1 loss [21].
Throughout the experiment, we choose λ in (S1-LASSO)
to be 3×10−4/nm, which we found to be consistently well-
behaving. In addition, we choose a threshold of 0.1 for stage-
1 estimators and 0.3 for local search methods, which seem
to work best for all methods to detect bad data. After the
removal of bad data (i.e., cleaning step), we can optionally
perform the estimation with the remaining data for both the
proposed stage-1 estimators and the Newton method.

First, we evaluate the robustness of the methods to bad
data, as is shown in Table I, with bad data fixed at 5%
level and dense noise fixed at cn =0.5%. It can be observed
that local search methods (with a cleaning step for Newton’s
method) perform relatively well when the scale is small (up
to 118 buses), but the performance (e.g., RMSE and bad
data detection F1 score) deteriorates significantly for larger
systems due to the existence of spurious local minima. In
addition, the proposed methods remain superior, due to the
efficient detection of bad data (with F1 score close to 1).

Next, we examine the performance of the proposed esti-
mators when both the dense noise and the bad data intensity
vary. We test on the French very high voltage and high

voltage transmission network with 2848 buses. As is shown
in Fig. 1, the algorithm achieves a low RMSE with up to
1000 bad data measurements and 1% level of dense noise.
The detection score for bad data remains above 99% for all
the scenarios. We also show that due to the high detection
accuracy of the bad data, it is beneficial to redo the estimation
after the cleaning stage (LASSO Clean), which can improve
the RMSE of estmation espeically when the number of bad
data measurements is significant.

Last but not least, we demonstrate the scalability of
the method to large systems with 13659 buses, which is
the largest system provided by MATPOWER. We fix the
dense noise level to 0.5% and the percentage of bad data
to 2%, which amounts to 2457 number of arbitrarily bad
measurements. In addition, we experiment with two sets of
measurements: case A includes full branch flow measure-
ments and PVQ nodal measurements on PQ buses as well
as PV measurements on PV buses; case B has full branch
flow measurements and full nodal measurements. In case A
and B, the estimator can achieve RMSE of .008 and .006,
respectively, and F1 score of .996 and .998, respectively.
Moreover, the average time of computation is less than a
minute.

VI. CONCLUSION

In this study, we proposed a linear basis of representation
for power system measurements that succinctly captures
the topology of the network. This leads to a two-stage



estimation approach that breaks down the NP-hardness of
the PSSE under mild conditions that are usually satisfied
with a sufficient instrumentation of sensors. The proposed
algorithm is provably robust to bad data. We developed a
robustness metric based on a deterministic quantity called
mutual incoherence. A theoretical analysis of the global
recovery condition and statistical error bounds was con-
ducted, which relied on this key metric. The algorithm
demonstrated robustness to bad data in various empirical
evaluations, and achieved superior performance compared
to the Newton method with bad data detection scheme and
the least mean absolute value regression using `1 norm.
Above all, the proposed method exhibited a satisfactory
scalability for large systems with more than 13,000 buses. In
contrast to semidefinite programming relaxation approaches,
the PSSE can be solved with high accuracy within a minute
for such large systems. This can significantly improve real-
time situational awareness of grid operation.
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APPENDIX

A. Proof of Theorem 1

The dual of (S1-L1) is given by:

max
h∈Rnm

h>y, subject to h>A = 0, ‖h‖∞ ≤ 1.

(L1-Dual)
To show that (x\, b\) is the optimal solution of (S1-L1), we
simply need to find a dual certificate h? that satisfies the
Karush-Kuhn-Tucker (KKT) conditions:

(dual feasibility) h>? A = 0, (10)
(stationarity) h? ∈ ∂‖b\‖1, (11)

where ∂‖b\‖1 denotes the subgradiet of ‖b\‖1. By the
definition of J := supp(b\), we need to find a vector h?
such that h?J = sign(b\J ) and ‖h?J c‖∞ ≤ 1. In fact, we
can meet a slightly stronger condition for strict feasibility
by choosing h?J c = −A>+

J c A
>
J sign(b\J ), which satisfies

strict dual feasibility (i.e., ‖h?J c‖∞ < 1) due to the mutual
incoherence condition. Thus, this certifies the optimality of
(x\, b\) for (S1-L1).

To show that (x\, b\) is the unique optimal solution, let
(x̃, b̃) be an arbitrary feasible point of (S1-L1) different from
(x\, b\). Due to the lower eigenvalue condition, the matrix
QJ :=

[
A I>J

]
has full column rank. Let J̃ = supp(b̃);

https://lavaei.ieor.berkeley.edu/SE_norm-1-2018.pdf


then J̃ must not be equal to or be a subset of J , because

otherwise, from QJ

[
x\
b\

]
= QJ

[
x̃

b̃

]
= y, we must have[

x\
b\

]
=

[
x̃

b̃

]
, which is contradictory to the assumption. Let

J̃c = J̃ \ J ; then,

‖b\‖1 = h>? y (12)

= h>? (Ax̃+ I>J̃c
b̃J̃c

+ I>J b̃J ) (13)

= h>
?J̃c
b̃J̃c

+ h>?J b̃J (14)

≤ ‖h?J̃c
‖∞‖b̃J̃c

‖1 + ‖h?J ‖∞‖b̃J ‖1 (15)

< ‖b̃J̃c
‖1 + ‖b̃J ‖1 (16)

= ‖b̃‖1, (17)

where (12) is due to the strong duality between (S1-L1) and
(L1-Dual), (13) is due to the primal feasibility of (x̃, b̃), (14)
is due to the dual feasibility condition (10), (15) is due to
the Hölder inequality, and (16) is due to the strict feasibility
of h?. Thus, we have shown the uniqueness of the optimal
solution (x\, b\).

B. Proof of Theorem 2

We design the primal-dual witness (PDW) process as
follows (note that this is not an actual algorithm, because
we do not know the true support J ; rather, it is only part of
a proof technique popularized by [27]):

1) Set b̂J c = 0.
2) Determine (x̂, b̂J ) by solving the following program:

min
b∈Rnm ,x∈Rnx

1

2nm

∥∥∥y −Ax− I>J bJ ∥∥∥2

2
+ λ‖bJ ‖1,

(18)
and ẑJ ∈ ∂‖b̂J ‖1 satisfying

− 1

nm
IJ (y −Ax̂− I>J b̂J ) + λẑJ = 0, (19)

A>(y −Ax̂− I>J b̂J ) = 0. (20)

3) Solve ẑJ c via the zero-subgradient equation:

− 1

nm
(y −Ax̂− b̂) + λẑ = 0 (21)

and check whether the strict feasibility condition
‖ẑJ c‖∞ < 1 holds.

Lemma 1. If the PDW procedure succeeds, then (x̂, b̂) is the
unique optimal solution of (S1-LASSO), where b̂ = (b̂J ,0).

Proof: If PDW succeeds, then the optimality conditions
(20) and (21) are satisfied, which certify the optimality
of (x̂, b̂). The subgradient ẑ satisfies ‖ẑJ c‖∞ < 1 and〈
ẑ, b̂
〉

= ‖b̂‖1. Now, let (x̃, b̃) be any other optimal, and
let F (x, b) = 1

2nm
‖y −Ax− b‖22. One can write:

F (x̂, b̂) + λ
〈
ẑ, b̂
〉

= F (x̃, b̃) + λ‖b̃‖1,

and hence,

F (x̂, b̂) + λ
〈
ẑ, b̂− b̃

〉
= F (x̃, b̃) + λ

(
‖b̃‖1 −

〈
ẑ, b̃
〉)

.

By the optimality conditions (20) and (21), we have λẑ =
−∇bF (x̂, b̂) = 1

nm
(y − Ax̂ − b̂) and ∇xF (x̂, b̂) = 0 ,

which imply that

F (x̂, b̂)−
〈
∇bF (x̂, b̂), b̂− b̃

〉
− F (x̃, b̃)

= λ
(
‖b̃‖1 −

〈
ẑ, b̃
〉)
≤ 0

due to convexity. We thus have ‖b̃‖1 ≤
〈
ẑ, b̃
〉

. In light of

the Holder’s inequality, we also have
〈
ẑ, b̃
〉
≤ ‖ẑ‖∞‖b̃‖1

and ‖ẑ‖∞ ≤ 1, and therefore ‖b̃‖1 =
〈
ẑ, b̃
〉

and b̃j = 0

for all j ∈ J c. This means that supp(b̃) ⊆ supp(b̂) ⊆
J . By restricting the optimization of b in (S1-LASSO) to
the support J and by the lower eigenvalue condition, the
problem becomes strictly convex and the uniqueness of the
solution follows.

Proof of Theorem 2: We prove each part sequentially:

Part 1): By the construction of PDW, we have b̂J c =
b\J c = 0. The zero-subgradient condition (21) can be
written as:

− 1

nm

([
IJA
IJ cA

]
(x\ − x̂) +

[
IJ
0

]
(b\ − b̂)

)
− 1

nm

[
IJ
IJ c

]
w\ + λ

[
ẑJ
ẑJ c

]
=

[
0
0

]
,

where the equations indexed by J can be reorganized as:

− 1

nm

[
IJA IJ I

>
J
] [ x\ − x̂
bJ \ − b̂J

]
(22)

− 1

nm
IJw\ + λẑJ = 0.

Solving for ẑJ c yields that

ẑJ c =
1

nmλ
IJ c (A(x\ − x̂) +w\) . (23)

Similarly, combining (20) and (22) leads to

− 1

nm

[
A>A A>I>J
IJA IJ I

>
J

] [
x\ − x̂
bJ \ − b̂J

]
− 1

nm

[
A>

IJ

]
w\ +

[
0

λẑJ

]
= 0.

Thus, by the lower eigenvalue condition (see Def. 1), one can

solve for the estimation error ∆ =

[
x\ − x̂
bJ \ − b̂J

]
as follows

∆ = −(Q>JQJ )−1Q>Jw\+nmλ(Q>JQJ )−1

[
0
ẑJ

]
. (24)

Recall that Ix and Ib denote the matrices consisting of the
first nx rows and last |J | rows of the identity matrix of size



nx + |J |, respectively. Therefore,

ẑJ c = IJ cAIx(Q>JQJ )−1I>b ẑJ︸ ︷︷ ︸
µ

+ IJ c

(
I −AIx(Q>JQJ )−1Q>J

) w\

nmλ︸ ︷︷ ︸
ξJc

.

By the mutual incoherence condition (i.e., ρ(J ) = 1 − γ
for γ > 0), we have ‖µ‖∞ ≤ 1 − γ. Let ΠQ⊥

J
= J −

QJ (Q>JQJ )−1Q>J be the orthogonal projection matrix. It
can be verified that

ξJ c =
(
IJ cΠQ⊥

J
+ IJ cI>J Ib(Q

>
JQJ )−1Q>J

)( w\

nmλ

)
= IJ cΠQ⊥

J

(
w\

nmλ

)
,

due to IJ cI>J = 0. Since the elements of w are zero-
mean sub-Gaussian with the parameter σ2 and the projection
operator has spectral norm one, it can be concluded that

P
(
‖ξJ c‖∞ ≥ t

)
≤ 2|J c| exp

(
−n

2
mλ

2t2

2σ2

)
.

Setting t = γ
2 yields that

P
(
‖ξJ c‖∞ ≥

γ

2

)
≤ 2 exp

(
−n

2
mλ

2γ2

8σ2
+ log(nm − |J |)

)
.

By the design of λ, we conclude that

P
(
‖ẑJ c‖∞ ≥ 1− γ

2

)
≤ 2 exp

(
−c1n2

mλ
2
)
.

Part 2): Now, we will bound the estimation error ∆ in
(24). First, we bound the infinity norm of bJ \− b̂J = Ib∆.
It follows from the triangle inequality that

‖Ib∆‖∞ ≤ ‖Ib(Q>JQJ )−1Q>Jw\‖∞
+ nmλ‖Ib(Q>JQJ )−1I>b ‖∞.

Since the second term is deterministic, one can bound
the first term. By the normalized measurement condition
(6) and the lower eigenvalue condition (5), each entry of
(Q>JQJ )−1Q>Jw\ is zero-mean sub-Gaussian with param-
eter at most

σ2‖(Q>JQJ )−1‖2 ≤
σ2

Cmin
.

Thus, by the union bound, we have

P
(
‖Ib(Q>JQJ )−1Q>Jw\‖∞ > t

)
≤ 2 exp

(
−Cmint

2

2σ2
+ log |J |

)
.

Then, set t = nmλ
2
√
Cmin

, and note that by the choice of λ, one

can obtain Cmint
2

2σ2 > log |J |. Thus,

‖bJ \ − b̂J ‖∞ ≤ nmλ
(

1

2
√
Cmin

+ ‖Ib(Q>JQJ )−1I>b ‖∞
)

with probability greater than 1 − 2 exp(−c2n2
mλ

2). This

indicates that bad data entries greater than

g(λ) = nmλ

(
1

2
√
Cmin

+ ‖Ib(Q>JQJ )−1I>b ‖∞
)

will be detected by b̂.
Part 3): Now, we bound the `2 norm of the signal error

x\ − x̂ = Ix∆ as

‖Ix∆‖2 ≤ ‖Ix(Q>JQJ )−1Q>Jw\‖2
+ nmλ‖Ix(Q>JQJ )−1I>b ‖∞,2.

For the first term, by the application of standard sub-
Gaussian concentration, one can write

P

(
‖Ix(Q>JQJ )−1Q>Jw\‖2 > ‖Ix(Q>JQJ )−1Q>J ‖F

+ t‖Ix(Q>JQJ )−1Q>J ‖2

)
≤ exp

(
−c1t

2

σ4

)
.

It can be verified that

‖Ix(Q>JQJ )−1Q>J ‖F ≤ ‖Ix‖2‖(Q
>
JQJ )−1‖2‖Q>J ‖F

≤
√
nm + |J |
Cmin

due to the lower eigenvalue condition (5) and the normalized
measurement assumption (6). Similarly,

‖Ix(Q>JQJ )−1Q>J ‖2 ≤ ‖Ix‖2‖(Q
>
JQJ )−1‖2‖Q>J ‖F

≤
√
nm + |J |
Cmin

,

and

P

(
‖Ix(Q>JQJ )−1Q>Jw\‖2 > t

√
nm + |J |
Cmin

)

≤ exp

(
−c1t

2

σ4

)
.

Together, it can be concluded that

‖x\ − x̂‖2 ≤ t
√
nm + |J |
Cmin

+ nmλ‖Ix(Q>JQJ )−1I>b ‖∞,2

with probability greater than 1− exp
(
− c1t

2

σ4

)
.

C. Proof of Proposition 1

The `-th component of the vector θ̂∆ can be written as

[θ̂∆]` = arctan

(
xim
`

xre
`

+
x̂im
` x

re
` − xim

` x̂
re
`

x̂re
` x

re
`

)
Since the arctangent is a Lipschitz function with constant 1,
we can establish the bound:

|[θ̂∆]` − [θ∆]`| ≤ | x̂
im
` x

re
`−x

im
` x̂

re
`

x̂re
` x

re
`
| = |e`|

After using the closed-form expression (7) for θ̂, the result
will easily follow.
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