
MetroEye: Towards Fine-grained
Passenger Tracking Underground

Weixi Gu
Tsinghua-Berkeley Shenzhen
Institute
Tsinghua University
guweixigavin@gmail.com

Costas J. Spanos
Department of EECS
University of California, Berkeley
spanos@berkeley.edu

Ming Jin
Department of EECS
University of California, Berkeley
jinming@berkeley.edu

Lin Zhang
Tsinghua-Berkeley Shenzhen
Institute
Tsinghua University
linzhang@tsinghua.edu.cn

Zimu Zhou
Computer Engineering and
Networks Laboratory
ETH Zurich
zimu.zhou@tik.ee.ethz.ch

Permission to make digital or hard copies of part or all of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. Copyrights for third-party components of this work
must be honored. For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
UbiComp/ISWC '16 Adjunct, September 12-16, 2016, Heidelberg,
Germany
ACM 978-1-4503-4462-3/16/09.
http://dx.doi.org/10.1145/2968219.2971437

Abstract
Subway has become the first choice of traveling for people
in metropolis due to its efficiency and convenience. Yet pas-
sengers have to rely on subway broadcasts to know their
locations because popular localization services (e.g. GPS
and wireless localization technologies) are often unavailable
underground. To this end, we propose MetroEye, a fine-
grained passenger tracking service underground. MetroEye
leverages smartphone sensors to record ambient contex-
tual features, and infers the state of passengers (including
stop, running, and interchange) during a metro trip using a
Conditional Random Field (CRF) model. MetroEye further
provides arrival alarm services based on individual pas-
senger state, and aggregates crowdsourced interchange
durations to guide passengers for intelligent metro trip plan-
ning. Experimental results within 6 months across over 14
subway trains in 3 major cities demonstrate that MetroEye
outperforms the state-of-the-art.

Author Keywords
Context sensing, smartphone, crowdsourcing, trip guide

Introduction
Motivation. Increasing numbers of people choose to com-
mute by metro for its efficiency and convenience. Yet the
semi-closed environment of subway tunnel often block-
s GPS and wireless signals, making popular localization

77

UBICOMP/ISWC ’16 ADJUNCT, SEPTEMBER 12-16, 2016, HEIDELBERG, GERMANY

Magnetism Sensor

GSM Sensor

Acceleration

Magnetism

Accelerometer

Timer

 RSSI

 Time D
at

a
Co

lle
ct

io
n

Fe
at

ur
e

Ex
tr

ac
tio

n

Stop

Running

St

 Inter
change

p

InterSt
at

e
In

fe
re

nc
e

Intelligent
Arrival Alarm

User tracking module

Offline service Online service

Interchange time
cost analysis

User
tracking
 module

Crowd sourcing

a a

Trip guide
t

Station Stop
Count

tellig

Figure 1: MetroEye system architecture

services unavailable. To track underground passengers,
previous work either relies on a static subway timetable [2]
to improve the detection accuracy, or only provides partial
tracking services (i.e., stop and running of metros) [1, 3].
However, the actual metro arrival time can vary dramati-
cally from the timetable across zones and periods. Also,
transferring time at interchange stations is missing, which is
important for passengers to plan trips.

Proposed Approach. The above drawbacks motivate us to
propose MetroEye, a mobile service for fine-grained metro
trip tracking. MetroEye extracts ambient contextual features
using smartphone sensors, and infers three important s-

78

tates during an entire metro trip: (1) Running, the state that
a passenger is on a running train. (2) Stop, the state that a
passenger is on a train halting at a station. (3) Interchange,
the state that a passenger at an interchange.

MetroEye fusions magnetic field, acceleration, GSM sig-
nal and time into robust features, which are fed into a time
sequence CRF model to characterize the temporal relation-
ships between environmental features and metro trip states.
It jointly analyzes both the metro’s states and the passen-

ger’s exchanges, thus enabling continuous passenger track-
ing along the whole metro trip and avoiding passengers
re-typing their trips for every subway.

Contributions and Results. By carefully selecting effec-
tive features for metro trip states, MetroEye can handle
uncertainties such as temporary stops between stations.
By cooperating with temporal sequence models, MetroEye
only requires a user to input the number of stops and inter-
changes to the destination, and adaptively tracks the metro
route and reminds the user of arrivals. By crowdsourcing
interchange durations from multiple passengers, MetroEye
provides guidance for other passengers to plan future trips
and also information for metro scheduling. Evaluations on
a dataset covering 14 metro lines in 3 major cities within 6
months show that MetroEye achieves an overall tracking
accuracy of 80.5%, outperforming the state-of-the-art [1, 2,
3].

MetroEye System
Figure 1 shows the system architecture of MetroEye, which
consists of two modules, user tracker and service provider.

User Tracker. This module records data from smartphone
sensors including magnetism sensor, accelerometer, GSM
and timer. It then extracts distinctive features from each
type of sensor data during a metro trip as follows. (1) Mag-
netism: MetroEye calculates the ratio of magnetic intensity
variance at different scenarios to infer passenger’s states.
(2) Acceleration: MetroEye first utilizes the Energy and Pe-
riod of an acceleration trace to identify the Interchange s-
tate. If not identified as Interchange, MetroEye further uses
Dynamic Time Warpping to differ Running and Stop states.
(3) GSM RSSI: MetroEye adopts a Decision Tree to classify
the GSM RSSI profiles by Energy, Standard derivation and
RFL (ratio of RSSI in the first half of time to the last half of

UBICOMP/ISWC ’16 ADJUNCT, SEPTEMBER 12-16, 2016, HEIDELBERG, GERMANY

 Running Stop Interchange

Xt-2 Xt-1 Xt

X

Y

Figure 2: Diagram of MetroEye’s linear CRF model

time). (4) Time: Three features are considered: the metro
running time between two consecutive stations, the metro
halt time at site, and the exchange time of passengers.

These retrieved features are integrated by a CRF model
shown in Figure 2. We choose CRF because it interprets
the temporal connections between the extracted features
and the travelling states, as well as the sequential relation-
ship within the three states. MetroEye infers a state by CRF
every 20s. The inference interval roughly corresponds to
the shortest possible state in the metro trip.

Service Provider. MetroEye provides two services for pas-
sengers. (1) Offline service. MetroEye delivers intelligent
arrival alarms based on the user’s preset schedule. Once

79

MetroEye detects the next stop is the destination, it vibrates
and rings to remind the user. (2) Online service. MetroEye
crowdsources interchange durations of multiple passengers
for interchange time analysis. It helps users to plan routes
and guides metro officials for traffic management.

Evaluation
Dataset. We recruited 32 volunteers to launch MetroEye
at the beginning of metro trips and manually label travel-
ling states every inference interval as ground truth. In total

State
System

Running Stop
Precision Recall Precision Recall

MetroEye(2 states) 91.0% 84.5% 83.7% 87.2%
MetroEye(3 states) 89.6% 76.2% 77.2% 78.3%

Baseline1 74.2% 71.3% 68.1% 74.6%
Baseline2 75.3% 74.1% 65.6% 70.2%

Figure 3: Overall performance of MetroEye

Figure 4: The comparison of model performance

3840 metro trips were collected within 6 months, covering
14 metro lines of Beijing, Shanghai and Shenzhen. Each
trip lasts 30 minutes on average. We randomly retrieved
80% of the data for training, and the rest 20% for testing.

Overall Performance. We select three state-of-the-art sys-
tems as baseline, including [1] (Baseline 1) and [3] (Base-
line 2). Figure 3 shows the performance comparison of
MetroEye and the baselines. MetroEye outperforms the
baselines in both two-state (stop/go) detection and three-
state (stop/go/interchange) detection.

Effectiveness of CRF Model. Figure 4 plots the tracking
inference performance of the CRF model in MetroEye and
another two models including (1) HMM, prevalent in tem-
poral pattern recognition, and (2) SVM, commonly used for
non-linear classification. As is shown, our CRF model out-
performs HMM and SVM in average precision and recall,
validating its effectiveness in metro state inference.

System Overhead. Evaluations with 32 users show that
MetroEye consumes negligible power (less than 3%) every

SESSION: POSTERS

 After Optimization
 Before Optimization

Figure 5: Performance of arrival alarm.

10 minutes with an average CPU usage of around 35%,
demonstrating that MetroEye is feasible for daily use.

Case Studies
Arrival Alarm. MetroEye automatically alarms if a metro
has reached a station by the stop states. Figure 5 (blue
line) indicates the accuracy of arrival alarm initiated at one
station ahead. The accuracy of arrival alarm increases to
90% in the first 4 to 5 stations, and descends gradually with
a longer trip. We further optimized the arrival alarm service
based on the interchange state inference. The red curve
in Figure 5 shows the accuracy after optimization, which
improves the arrival alarm accuracy for long trips.

Interchange Time Analysis. By aggregating the inter-
change time from crowdsourced passengers, MetroEye
calculates the average interchange time for each station.
Figure 6 (left) illustrates the average interchange dura-
tions for different stations reported by 32 volunteers. As
is shown, 7% of interchange times are over 600s. Figure 6
(right) marks the 11 stations with long transfer time in the
3 cities, providing valuable information for passenger trip
planning and metro traffic scheduling.

Conclusion
Designing metro trip tracking systems for passengers is crit-
ical yet challenging. Existing solutions focus on the train’s
mobility rather than the passenger’s travelling status. We

Figure 6: Interchange time analysis.

propose MetroEye, a smartphone-based passenger metro
trip tracking system. It integrates underground context sig-
nals with a CRF model to infer three states (running, stop,
interchange) in a metro trip. MetroEye continuously moni-
tors passenger states even during interchanges, and pro-
vides two services for an efficient metro trip. Evaluations
covering 14 metro lines in 3 major cities within 6 month-
s show an overall accuracy of 80.5%, outperforming the
state-of-the-art.

REFERENCES
1. Takamasa Higuchi, Hirozumi Yamaguchi, and Teruo

Higashino. 2015. Tracking motion context of railway
passengers by fusion of low-power sensors in mobile
devices. In Proceedings of the 2015 ACM International
Symposium on Wearable Computers. ACM, 163–170.

2. Arvind Thiagarajan, James Biagioni, Tomas Gerlich,
and Jakob Eriksson. 2010. Cooperative transit tracking
using smart-phones. In Proceedings of the 8th ACM
Conference on Embedded Networked Sensor Systems.
ACM, 85–98.

3. Kuifei Yu, Hengshu Zhu, Huanhuan Cao, Baoxian
Zhang, Enhong Chen, Jilei Tian, and Jinghai Rao.
2014. Learning to detect subway arrivals for
passengers on a train. Frontiers of Computer Science
8, 2 (2014), 316–329.

80

UBICOMP/ISWC ’16 ADJUNCT, SEPTEMBER 12-16, 2016, HEIDELBERG, GERMANY

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

