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� Retail rate modeling to enable distributed energy adoption in a microgrid.
� Comprehensive energy (electricity, heating, cooling) dispatch to connect end user demand response (DR) with wholesale market.
� Dynamic pricing to provide equal access to energy for customers with different levels of affordability at a community scale.
� Mechanism design to promote DR engagement while delivering mutual benefits for stakeholders.
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a b s t r a c t

In the face of unprecedented challenges in environmental sustainability and grid resilience, there is an
increasingly held consensus regarding the adoption of distributed and renewable energy resources such
as microgrids (MGs), and the utilization of flexible electric loads by demand response (DR) to potentially
drive a necessary paradigm shift in energy production and consumption patterns. However, the potential
value of distributed generation and demand flexibility has not yet been fully realized in the operation of
MGs. This study investigates the pricing and operation strategy with DR for a MG retailer in an integrated
energy system (IES). Based on co-optimizing retail rates and MG dispatch formulated as a mixed integer
quadratic programming (MIQP) problem, our model devises a dynamic pricing scheme that reflects the
cost of generation and promotes DR, in tandem with an optimal dispatch plan that exploits spark spread
and facilitates the integration of renewables, resulting in improved retailer profits and system stability.
Main issues like integrated energy coupling and customer bill reduction are addressed during pricing to
ensure rates competitiveness and customer protection. By evaluating on real datasets, the system is
demonstrated to optimally coordinate storage, renewables, and combined heat and power (CHP), reduce
carbon dioxide emission while maintaining profits, and effectively alleviate the PV curtailment problem.
The model can be used by retailers and MG operators to optimize their operations, as well as regulators to
design new utility rates in support of the ongoing transformation of energy systems.

Published by Elsevier Ltd.
1. Introduction

The transition from an economy that relies heavily on fossil
fuels to one that is powered primarily by renewable energy has
been accelerating in recent years, bolstered by mounting concerns
over climate change and falling prices of solar and wind energy [1].
However, the grid is being destabilized by penetration of volatile,
distributed renewable resources [2]. Furthermore, grid resilience
and rapid self-recovery in the face of natural disasters and mali-
cious attacks are extremely necessary features [1,3].

Driven by the evolution of technologies and markets, there is a
fundamental push across the industry to update utility rate struc-
tures as the existing tariff becomes less and less efficient [2].
Meanwhile, the emergence of electricity retail services enables
customers to choose providers [4]. Increased competition exposes
retailers to greater risks, while not necessarily reducing customers’
bills [4]. Clearly, a systematic strategy for rate design and resource
management is central to the ongoing transformation of the
system.
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Fig. 1. Schematic of the proposed method, showing communication links (dashed
lines) and energy links (solid lines), where planning is conducted day ahead.
ISO/TSO: independent/transmission system operator.

Nomenclature

at
min, a

t
max min/max DR loads (8)

dt building demands at time t
bDRt fixed DR incentive at time t
pt retail rates (electric/heat/cooling) at time t
xt forecast features at time t
xt generator dispatch plan at time t
nt set of uncertain variables at time t
zt storage SOC at time t
�curt, �critic curtailable, critical loads
�ref reference loads/prices
�b building index b 2 f1; . . . ;Bg
�t time index t 2 ½0; T�
�t;b elasticity coefficient for building b at time t
kenv environmental-tradeoff parameter
B number of buildings in the microgrid

E electric power/energy
f Rev, �Ope, �Env revenue, operational, and environmental costs (P0)
H heating power/energy
Q cooling power/energy
T time horizon
CHP combined heat and power
COP coefficient-of-performance
MG microgrid
MIQP mixed integer quadratic programming
NG natural gas
RMSE root mean squared error
SOC state of charge
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This paradigm shift can be further driven by demand response
(DR) by the institution of time-differentiated retail pricing, e.g.,
time-of-use (TOU) and real-time pricing (RTP), which reflect fluc-
tuating wholesale prices and explore end-user demand flexibility
[4–8]. Currently, RTP is most popular in the wholesale market,
while being experimented on a few sites like the Illinois Power
Company on the retail side. However, with the increasing penetra-
tion of internet-of-things (IoT) devices [9,10] and occupancy-aware
building controls [8,11], buildings’ responsiveness can be signifi-
cantly enhanced through automated services [12,13]. Thus, study
on DR at the retail level that finds its optimal pricing scheme and
relationship with local distributed energy resources adoption and
operation becomes increasingly important [12].

On the supply side, the division of the grid into productive sub-
systems, microgrids (MGs), that integrate distributed generation
(DG) and storage to serve local demand, has been proposed to
increase manageability, energy efficiency, and resilience [14–16].
The rapid development of integrated energy systems (IESs), which
exploit the synergistic potential of thermal and electrical provision,
is crucial for flexibility enhancement, carbon dioxide (CO2) reduc-
tion, and renewable integration [3]. Nevertheless, in places like
Jilin province, in northeastern China, about 89% of the total wind
power curtailment is caused by operating conventional CHP at full
load to satisfy high heat demands and lack of curtailable supply [3].

The central task for a retailer with generation capacity is thus to
design energy rates and operate the facility to gain profits and pre-
serve system stability. Previous works on MG operation often treat
it as a non-profit entity that does not price its energy output, which
confines its application to campuses and other situations where
the total bill is paid by the MG owner [6,14,17–24]. As a result,
DR in a MG is limited to contracts [24] or a mutual agreement
where the MG operator has central control over DR-enabled loads
[12,18,25]. This often requires the integration of advanced commu-
nication infrastructure and might raise security and privacy issues
[26,27]. Furthermore, the scope is predominantly within electricity
provision [24,25,28,29], rather than exploiting synergies of IESs.
We focus on future smart MG with time-differentiated pricing on
the retail side and propose a Microgrid Retailer Pricing and Oper-
ation strategy with Demand response, or MR-POD (Fig. 1). Our key
contributions are as follows:

� Modeling of the MG with integrated energy provision and
renewable resources, plus the formulation of optimal rate
design and MG dispatch under uncertainty
Please cite this article in press as: Jin M et al. Microgrid to enable optimal dist
http://dx.doi.org/10.1016/j.apenergy.2017.05.103
� Design of pricing and DR incentive mechanisms that promote
customer benefits, retailer competitiveness, and DR
effectiveness

� Evaluation of the model on real datasets, demonstrating about
6% profit gain with reduced customer bills and improved sys-
tem reliability for optimally designed RTP compared to daily
rates

The rest of the paper is organized as follows. Previous works are
surveyed in Section 2, with an emphasis on MG modeling and dis-
patch, DR, and optimal rate design. Section 3 discusses the retailer
model, including problem formulation, the MG pricing mechanism,
and energy demand and supply. Section 4 deals with operation
under uncertainty, which includes the forecasting methodology,
and the DR incentive mechanism. A schematic overview of the pro-
posed MR-POD method is shown in Fig. 1, where the dispatch plan
and retail rates are optimized for the generators and buildings day
ahead (Section 3), while considering the forecasted operating con-
ditions as well as DR objectives (Section 4). The dataset and imple-
mentation are discussed in Section 5, followed by scenario analysis
(Section 6) and a case study for environmentally conscious opera-
tions with DR for PV over-generation (Section 7). Conclusions are
drawn in Section 8.
2. Related work

Microgrids with demand response capabilities have emerged as
a key feature of the ongoing transformation of the energy system
ributed energy retail and end-user demand response. Appl Energy (2017),
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towards high renewable penetration. This section focuses on three
aspects of the proposal: MG modeling and dispatch, demand
response, and optimal rate design.

2.1. MG modeling and dispatch

Previous work has been undertaken on modeling high-level sys-
tem design for MGs to study their profitability and optimal tech-
nology selection [16,20,22,23,30].

The dispatch of MG has been attempted through a variety of
approaches, including mixed integer linear programming (MILP)
[31], dynamic programming [30], simulated annealing [6], particle
swarm optimization [23], evolutionary algorithms [22], game the-
oretic agent-based formulations [14], and power routing among
clusters of MGs [32]. Ommen et al. [19] conducted an empirical
comparison of LP, MILP, and non-linear programming (NLP), and
concluded that MILP is the most appropriate model from the view-
points of accuracy and runtime. In comparison, our formulation of
the dispatch problem as MIQP also addresses the uncertainty in
renewable generation and the flexibility in demand that facilitates DR.

2.2. Demand response

Demand response (DR) is becoming a cost-effective balancing
resource in power systems [33]. According to the US Department
of Energy, DR is ‘‘a tariff or program established to motivate
changes in electric usage by end-use customers, in response to
changes in the price of electricity over time, or to give incentive
payments designed to induce lower electricity usage at times of
high market prices or when grid reliability is jeopardized” [2].
There are mainly two groupings of DR programs: price-based DR
and incentive-based DR, with the key difference that the former
offers customers time-varying or localized prices, while the latter
grants fixed or time-varying payments under specific contracts
[34]. This study focuses on the design of rate signals for price-
based DR, whose efficacies have been empirically examined in sev-
eral studies [34].

As for the operation of MG with DR, De Jonghe et al. [28] devel-
oped an elasticity-based operational and investment model to
determine the optimal generation mix. Ghatikar et al. presented
a model for customer distributed energy resource (DER) optimiza-
tion and participation in grid transactions, which was deployed at a
real test site [12]. Amini et al. [35] introduced multi-agent model-
ing in load management to enable self decision-making capabili-
ties. Patteeuw et al. [36] proposed an integrated modeling of DR
with electric heating systems coupled to thermal energy storage
systems. Kim and Giannakis [25] considered a DR problem entail-
ing a set of devices/subscribers whose operating conditions are
modeled using mixed-integer constraints. However, these studies
only focus on the electricity system, and assume central coordina-
tion of loads. The MOD-DR model proposed by Jin et al. [18]
explores the efficiency of coupling electricity and thermal energy
provision. On the other hand, the MG operator is assumed to be
a non-profit entity that performs DR through utility maximization,
while the current approach focuses onretailers who own distributed
generation system and can price the energy for profits and DR.

2.3. Optimal rate design

Smart pricing plays a vital role in DR to increase system reliabil-
ity, reduce generation costs, and lower consumers’ bills [37]. To
determine the consumer response, price-elastic load models were
proposed [38,39], where the elasticity is often estimated using
panel data [40,41]. Kamyab et al. [7] formulated the pricing prob-
lem as two noncooperative games for suppliers and customers, and
Please cite this article in press as: Jin M et al. Microgrid to enable optimal dist
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demonstrated increased profits and payoffs. Kim and Norford [8]
proposed a price-based DR framework to assist commercial build-
ings in devising a beneficial strategy for exploiting the thermal
energy storage resources inherent in building structures via the
optimal operation of variable speed heat pumps. Doostizadeh
and Ghasemi [42] examined a day-ahead (DA) RTP scheme to max-
imize retailer profits while considering demand elasticity and ben-
efits to consumers. Methods based on mixed-integer stochastic
programming to determine the optimal sale price of electricity
and the electricity procurement policy of a retailer have been pro-
posed in [24,29]. However, these works only focus on electricity
supply and profit maximization for the retailer without providing
DR incentivization to enroll customers in the programs, which
are often voluntary in practice.

Differentiated from the previous studies, our key proposal, MR-
POD is aimed at providing guidance on optimal MG operation and
pricing on a district level with integrated energy provision. By lever-
aging the efficiency of energy coupling and demand flexibility,
the model provides a cost-effective and grid-cooperative strategy
in a competitive and uncertain market.
3. MG retailer model

The MG dispatch and retailer pricing with DR problem is formu-
lated within an optimization framework. Key components, includ-
ing the MG generator and building loads, are shown in Fig. 2, where
flows of cash, energy, and information within the MG are
illustrated.
3.1. Problem formulation

The key problem MR-POD solves is: ‘‘How should energy prices
be set and the microgrid operated to maximize retailer profit while
satisfying building demand and grid requirements?”. Two promi-
nent factors are involved:

� Price elasticity of loads for individual buildings under the DR
scheme

� Uncertainty and fluctuation of energy demand, electricity and
thermal tariffs, and weather conditions

Price elasticity refers to the change in energy demand in
response to a change in product price [34,43], which can be used
by the retailer to estimate peak demand reduction potential, and
provision of ancillary services to the grid. The uncertainty aspect,
inherent for all planning problems, is addressed by forecasting,
as discussed in Section 4.1.

The basic MR-POD problem is formulated by (Fig. 3):

max
fxt ;ptgTt¼1

XT
t¼1

f Revt ðdt;ptÞ � f Opet ðxt ; zt ; ntÞ � kenv f
Env
t ðxt; ztÞ

s:t: xt 2 X tðzt ;dt ; ntÞ;dt 2 DtðptÞ;pt 2 Pt;8t ¼ 1; . . . ; T ðP0Þ

where xt is the dispatch proposal at time t, which includes variables
in three categories: generation from on-site power plants, storage
charging/discharging, and grid import/export. The energy demand of
buildings, dt , is a function of retail prices and DR incentives, pt ,
determined by MR-POD. The state variable, zt , captures the state-
of-charge (SOC) of the storage as governed by the previous state
and any actions. The uncertain quantities, e.g., solar irradiation

Irrt and electricity price cgridt , are summarized in nt .
Objective function. Driven by both economic gains and environ-

mental consciousness, the retailer tries to maximize its profit,
ributed energy retail and end-user demand response. Appl Energy (2017),
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Fig. 3. Illustration of the optimization framework of MR-POD.
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Fig. 2. Overview of the retailer model, incorporating generator dispatch and energy retailing.

1 Based on the statistics from the U.S. Energy Information Administration,
electricity generated from coal (0.98 kgCO2/kW h) emits more carbon dioxide than
that generated from natural gas (0.55 kgCO2/kW h). Since coal combustion accounts
for 71% of CO2 emissions of the grid electricity while natural gas only accounts for
28%, it is cleaner to generate electricity from natural gas than import from the grid in
the U.S.

2 For example, a carbon tax of $0.026/kgCO2 is levied in Denmark, while the tax is
$0.131/kgCO2 in Sweden [44].
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f Revt ðdt ;ptÞ � f Opet ðxt ; zt ; ntÞ, and at the same time, minimize its envi-

ronmental impact, f Envt ðxt ; ztÞ. The revenue collected by selling

energy to buildings, f Revt ðdt ;ptÞ, depends on retail prices pt and
building loads dt . This is a quadratic function of the retail prices
pt , since the building demand dt depends linearly on the price as

in (6). The operational cost, f Opet ðxt ; zt ; ntÞ, is the expenditure on fuel
imports net of any revenue from energy sold back, in addition to
maintenance expenses for facilities with on-site personnel.

On top of the former commonly adopted economic incentives

[18,24,25,28,29], the environmental impact, f Envt ðxt ; ztÞ, measured
by the amount of carbon dioxide (CO2) emissions, is incorporated
to encourage the use of renewable energy and natural gas in favor
Please cite this article in press as: Jin M et al. Microgrid to enable optimal dist
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of grid electricity.1 Through the parameter kenv controlling trade-offs
such as a carbon tax,2 MR-POD is able to offer guidance to balance
the economic and environmental benefits for the retailer.

Constraints. There are two main groupings of constraints in MR-
POD related to pricing and operation. The pricing constraints
pt 2 Pt , which will be discussed in Section 3.2, ensure regulatory
ributed energy retail and end-user demand response. Appl Energy (2017),
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compliance, market competitiveness, and customer satisfaction.
The operation constraints, as detailed in Section 3.3, include (1)
power balance between load and generation, xt 2 X tðzt ;dt ; ntÞ, for
heating, cooling, and electricity, (2) feasibility for dispatch variables
xt and storage states zt delineated by the generation and storage
technologies, e.g., CHP partial loads, PV output, and storage
charge/discharge rate limits, (3) the building load identity
dt 2 DtðptÞ, based on the price elasticity model, (4) system resili-
ence requirements, as prescribed in either the cap on the total
imported power from the grid [22,25,45], or the spinning reserve
limits on the storage resources [22,45], as well as (5) DR targets
like peak load reduction, which can be achieved through energy
price setting.

Due to the involvement of integer variables like discrete on/off
decisions for CHP and charging/discharging for storage, in addition
to quadratic coupling between prices and building loads, the
resulting problem requires mixed integer quadratic programming
(MIQP) (see Fig. 3).

3.2. MG energy pricing

The key to a sustainable pricing policy should align the incen-
tives of the retailer, its customers, and its regulators, and ensure
reliability, customer equity, and social welfare maximization
[4,46,47]. In the following, we introduce the guiding principles of
day-ahead rate setting for electricity (pE

t ), heating (pH
t ), and cooling

(pC
t ) services (Fig. 4).
Time-differentiated rate structure. While the DA prices of RTP can

vary from hour to hour, TOU typically has three levels correspond-
ing to off-, mid-, and on-peak hours, i.e., pE

t1
¼ pE

t2
if t1; t2 are in the

same time group. To avoid ‘‘response fatigue” due to price variation
[48], it is enforced that the hourly price change and the difference
between average rates of off-, mid-, and on-peak are limited,

pE
t � pE

tþ1

�� ��; 1
nmid

X
t2mid

pE
t �

1
noff

X
t2off

pE
t

�����
�����;

1
non

X
t2on

pE
t �

1
nmid

X
t2mid

pE
t

�����
����� 6 ddiff ;

ð1Þ
Daily TOU

Midnight

Noon

Midnig

Noon

Midnight Midnight

NoonNoon

Daily TOU

Electricity ret

Cooling retail prices

Customer 
retention c

Rate 
effectiveness

Fig. 4. Overview of the pricing strategy, including the time-d
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where noff ;nmid;non are the sizes of each group, and ddiff is capped at
0.1$/kW h for electricity.

Rate competitiveness. Both hourly and daily average limits are
imposed on thermal and electricity rates:

rmin
t 6 pE

t 6 rmax
t ; rmin

avg 6 1
24

sum24
t¼1p

E
t 6 rmax

avg ð2Þ

where typical values of rmax
t and rmin

avg are 0.3$/kW h and 0.05$/kW h,

respectively, while rmin
t and rmax

avg can be chosen as the forecasted
wholesale market tariff/the flat rate in the area to protect the
retailer/customers. Further, to hedge consumers against high prices,
the K-factor is introduced, K, as the upper bound on the ratio
between the bills under the new rate (pE;pH;pQ ) and the flat rate
(pE

flat;p
H
flat;p

Q
flat):

X24
t¼1

pE
t Et;b þ pH

t Ht;b þ pQ
t Qt;b

� �
6 K

X24
t¼1

pE
flatEt;b þ pH

flatHt;b þ pQ
flatQt;b

� �
;

8b 2 f1; . . . ;Bg ð3Þ

where Et;b;Ht;b;Qt;b are the electricity/heating/cooling loads of
building b. Setting the K-factor less than one implies that the new
rates will reduce customers’ bills relative to the incumbent utility.
But, this would often result in a loss of profits for the retailer. A
K-factor slightly larger than one allows more flexibility, and can,
interestingly, lead to a win-win situation in tandem with the DR
mechanism (Section 4.2).

Integrated energy coupling. The co-existence of multiple energy
vectors in the system indicates the potential coupling between
electricity and thermal loads. For a hypothetical consumer with a
heat pump, competitive thermal rates could make it more cost-
effective to purchase thermal energy from the retailer than self-
generate(Fig. 4):

pH
t 6 pE

t

COPH ; pQ
t 6 pE

t

COPQ ð4Þ
RTP

ht

Noon

Midnight

Midnight

Noon

Daily

Midnight

Noon

TOU

ail prices

Heating retail prices

Daily/hourly 
ompetitiveness

DR  
incentivization

Rates value

Low High

ifferentiated rates structure and energy price coupling.

ributed energy retail and end-user demand response. Appl Energy (2017),
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where COPH;COPQ are the coefficients of performance (COP) for
heat pumps, which can be as high as 4 for some commercial brands.

DR effectiveness. It is desirable to shape the loads during DR
events, such as for peak load reduction, which can be incorporated
in rate optimization, as detailed in Section 4.2. The key is to differ-
entiate the price elasticity of demands, as discussed in the follow-
ing section.

It is worth mentioning that electricity rates often include the
commodity costs, transmission/distribution infrastructure charges,
and public purpose programs, such as energy efficiency and low-
income subsidies, which can be either fixed or variable [4].
Demand charges are also sometimes applied on maximum demand
over a certain time. This study focuses on variable operational costs
that arise from generation and fuel imports, though it could be
combined with other fixed charges in practice.

3.3. Energy demand and supply

The effectiveness of price setting depends on the price sensitiv-
ity of energy demands. The load profiles of buildings in a MG, such
as in residential and commercial buildings, hospitals, and public
services, can be characterized as critical or curtailable loads [49].

Critical load. For electricity usage in data centers and ICUs of
hospitals, for example, it is of utmost importance that critical loads
are satisfied, i.e.,

Ecritic
t;b ¼ Ecritic

t;b ð5Þ
where b 2 f1; . . . ;Bg for a building within the community, and t
denotes an hourly time step.

Curtailable load. Apart from critical loads, demands like heating,
cooling, ventilation, and lighting usually fall as the energy price
increases. A consumer’s sensitivity to price changes is measured
by the coefficient of elasticity, �, which indicates a �% change in
energy demands due to a 1% change in price. The curtailable load,
therefore, is modeled as:

Ecurt
t;b ¼ Ecurt;ref

t;b 1þ �t;b
pE
t � pE;ref

t þ bDR
t

pE;ref
t|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

% change in price

0
BBBB@

1
CCCCA ð6Þ

where �t;b is the elasticity coefficient for building b at time t; Ecurt;ref
t;b

is the curtailable load under the price pE;ref
t , which usually corre-

sponds to historical data [39,40,43].
The elasticity coefficient �t;b is typically negative, indicating the

reciprocal relationship between demand and price; its value
depends on (1) time of the day: the load is usually more price
responsive during on-peak than off-peak hours [2], (2) rate struc-
tures: it is found that loads under TOU rates are less elastic than
those under RTP rates [40], and (3) planning horizon: the elasticity
is usually greater in the long-run when customers can react to a
price increase by purchasing more energy efficient appliances
[40,50]. For instance, the elasticity of electricity demands for resi-
dential buildings in the US ranges from �0.20 to �0.35 in the
short-run, and �0.30 to �0.80 in the long-run [41]. Differentiated
from more complex non-linear models based on logarithm or
potential [38], the linear model simplifies the optimization and is
also more accurate and reliable [38]. We focus our attention
onown-price elasticity, which limits the influence of price on
demands in the same time period, since it is sufficient for capturing
how customers adjust their consumption to price changes [34].

As for the supply side, we consider an integrated energy system
to satisfy the buildings’ electric and thermal loads. By exploiting
synergies and complementarities of various energy vectors, this
approach can improve energy efficiency, reduce CO2 emissions,
Please cite this article in press as: Jin M et al. Microgrid to enable optimal dist
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and facilitate renewable integration [3]. Apart from CHP and con-
ventional thermal generators like electric/natural gas/absorption
chillers/boilers and heat pumps, renewable resources like solar
thermal and photovoltaics (PV) are included in the retailer’s facility
to harness solar energy and reduce carbon footprints. Electric and
thermal storage with dynamic charging/discharging behaviors are
available to enable smooth operation and exploit time-shifting
opportunities. Maintaining a minimum amount of stored energy,
typically 5% of the total capacity, i.e., state-of-charge (SOC), is
referred to here as the spinning reserve requirement [22,45]. Model-
ing details can be found in [18].
4. MG operation strategy

This section introduces MG planning under uncertain market
and weather conditions, as well as the DR incentivization scheme.
4.1. Planning under uncertainty

Using MR-POD for strategizing, the operator can optimize the
energy dispatch and retailing in five critical steps (Fig. 5): Before
the actual day of dispatch (day 0), data related to weather, energy
demands, and MG status are acquired from installed sensors and
meters (step 1); this is used to predict and estimate key quantities
such as DR potentials, renewable energy, and electricity wholesale
tariffs (step 2). Based on the prediction, MR-POD produces the opti-
mal dispatch plan and retail rates (step 3), which are announced to
generation facilities and consumers (step 4). The plan is executed
on the actual day of dispatch (day 1), and repaired to adjust to
unaccounted for fluctuations in demand and renewable generation
(step 5).

Prediction of uncertain variables. Methods for solar and load fore-
casting can be grouped into data-driven or model-based methods
[51]. Weron [52] recently conducted a comprehensive review of
price prediction approaches. Specifically, we employ the ‘‘forecast
combination” method based on ordinary least squares (OLS[c]),
which combines M forecasts from a committee of predictors, ŷm;t ,
according to

yOLSt ¼ cOLS þ
XM
m¼1

wmŷm;t ð7Þ

where constant cOLS and weights fwmgMm¼1 are learned from past
performance of the forecasts [52,53]. Its performance is shown to
be superior among an array of candidates for solar and tariff predic-
tion [18].

Generator dispatch and energy retailing. As with electricity mar-
ket bidding, upon receiving predictions on day 0, the retailer per-
forms MR-POD optimization to prepare a day-ahead (DA)
dispatch plan and its energy retail rates and announces them to
the generation facility and building owners. The original dispatch
proposal is amended for actual execution on day 1 by exploiting
the cheapest sources/destinations of energy immediately available,
e.g., storage (if any) or grid, to maintain the power balance.

Setting the DA retail rates is common practice, such as the DA
RTP tariff used by the Illinois Power Company, pilots in California,
Idaho, and New Jersey, and the three-level TOU pricing in Ontario,
Canada. And it reaps several benefits [48]. First, the DA prices like
RTP can best reflect the costs of energy procurement incurred by
the retailer. Also, it can handle exceptional days, for instance, by
declaring DA CPP when the forecasted loads are high. Importantly,
it allows consumers sufficient time to schedule their consumption,
while not being ‘‘fatigued” by hourly rate changes [54].
ributed energy retail and end-user demand response. Appl Energy (2017),
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Fig. 6. The mechanism of DR incentivization with performance-based dividends, which uses a portion of the retailer’s profits as rewards to buildings based on their peak load
reduction performance.

Fig. 5. System overview of MR-POD, illustrating key components: data acquisition, estimation and prediction, planning and optimization, and control and actuation.

3 For instance, if the bill for a customer enrolled in RTP is $92 but would be $90
under the flat rate, then he would be compensated by $2 to bring down the bill. If, in
addition, the building contributes 50 kW out of 1000 kW of total peak load reduction
of the community, and the cost savings of the retailer is $200, then, with a sharing
rates of 0.5, an additional $5 rebate will apply, leading to a reduced bill of $85.
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4.2. DR incentivization

Time-differentiated rates bring about changes in customers’
energy consumption by differentiating prices during peak and
off-peak hours. The targeted change patterns, or load shaping, are
described by:

atminE
curt;ref
t;b 6 Ecurt

t;b 6 atmaxE
curt;ref
t;b ð8Þ

where at
min and at

max are design parameters indicating the ranges of
actual loads when the retail rates are in effect; for instance, normal
load conditions typically correspond to at

min ¼ 0:85 and at
max ¼ 1:1

[42], while load reduction requires at
min < atmax < 1. Occasionally,

in response to unusual events, the retailer can employ additional
incentive/penalty terms, bDR

t , in tandem with the regular retail rates
to induce further changes in loads, as predicted by the curtailable
load model (6).

While the success of DR relies on customer engagement, in
practice, interest in switching to RTP rates wane due to a lack of
financial incentives and increased exposure to market volatility
[55]. One viable strategy is to motivate DR participation by offering
guarantees of energy bill reduction. As discussed in Section 3.2, this
can be achieved by dictating the ‘‘K factor” to be less than one
when setting the rates (P0); however, experiments show that this
strategy often yields inefficient pricing, and even leads to a signif-
icant loss of profits for the retailer.

Our proposal (Fig. 6) allows an initial increase in customer
energy payments, but later compensates the customers with
Please cite this article in press as: Jin M et al. Microgrid to enable optimal dist
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performance-based dividends, which serve several purposes: (1)
alignment of the financial interests of stakeholders; (2) incen-
tivization of DR; (3) protection of customers, e.g., low-income fam-
ilies, by reducing their bills.

The performance-based dividends are calculated relative to a
baseline, which is usually the flat rate pricing. First, assuming base-
line loads, any increase in energy bills due to RTP is compensated.
This ensures non-increasing bills for customers who opt for RTP
over flat rates. Second, a share of retailer’s total fuel cost savings
is distributed among DR participants. The amount that each build-
ing receives is proportional to its contribution to total peak load
reduction of the community, though it is possible to factor cus-
tomer type and income levels into the distribution weights.3 As
ancillary services are usually scheduled by the ISO a day ahead
and called upon as needed on short notice, the scheme is able to
introduce added flexibility to MG load responses, thus improving
services to the grid [55].
5. Experimental setup

This section presents the data for solar irradiation, building
loads, and energy prices. We also specify six (6) campus scale
ributed energy retail and end-user demand response. Appl Energy (2017),
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Fig. 7. Electricity load profiles (left), which display the critical loads (red) and curtailable loads (green), for three buildings (different shadings). Cooling demands (right) for
the buildings in a stacked plot. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Electricity and natural gas tariffs, where the spark spread is mainly driven by
the daily fluctuation of electricity prices. Data sources: see Footnotes 7 and 8.

Table 1
Building elasticity parameters for off-peak hours (12 am–7 am, 7 pm–12 am), mid-peak hours (7 am–11 am, 5 pm–7 pm), and on-peak hours (11 am–5 pm) in the summer
period, where cooling loads are dominant.

Off-peak Mid-peak On-peak

Elec. Heat Cool Elec. Heat Cool Elec. Heat Cool

B1 �.1 �.2 �.2 �.3 �.3 �.3 �.46 �.4 �.4
B2 �.12 �.22 �.2 �.32 �.35 �.3 �.48 �.45 �.4
B3 �.15 �.24 �.2 �.34 �.4 �.3 �.5 �.5 �.4
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MGs with different generators to serve three buildings with elec-
tricity, cooling and heating.

5.1. Dataset

Solar irradiation. The TMY3 dataset [56] is queried for the Global
Horizontal Irradiance (GHI) index.4 in Oakland, California (Fig. 9) to
determine PV outputs.

5.1.1. Building loads
The load data is retrieved from the Open Energy Information

(OpenEI) for a research facility (Bld:1),5 a large hotel (Bld:2), and
a commercial building (Bld:3).6 During the period of study, i.e.,
May, the thermal loads are predominantly for cooling (Fig. 7). The
elasticity parameters (Table 1), prudently derived from [2,41,42], dif-
ferentiated responses in off-/mid-/on-peak hours and building types.

Electricity and gas prices. The electricity spot price is accessed
from the National Grid Online Database7 and adapted to be similar
to the California wholesale market and to reflect the time of use rates
(Fig. 8). The natural gas price, which according to the U.S. Energy
Information Administration8 experiences less fluctuations through-
out the month, is assumed to be at a constant level of 0.03$/kW h.

5.2. MG specification

We have prototyped six (6) MGs with different generation
capacities (Table 2). MG1 is considered as the baseline, which
imports electricity from the grid and provides heating and cooling
energy by a NG boiler and an electric chiller. The aim of the rest of
Fig. 9. Solar irradiation measured by the GHI index (kW h/m2) on several days of
the study period, which clearly exhibits diurnal patterns.

4 GHI, measured in 1 kW h/m2, is the total amount of direct and diffuse solar
radiation received on a horizontal surface during the 60-min period.

5 NREL RSF Measured Data 2011, accessed: 10/2016.
6 OpenEI Load Profiles, accessed: 10/2016.
7 National Grid Online Database, accessed: 10/2016.
8 U.S. Energy Information Administration, accessed: 10/2016.
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the prototypes is to study the effects of energy storage (MG2 vs.
MG1), renewables (MG3 vs. MG1), CHP and absorption chiller
(MG5 vs. MG4), and grid imports (MG6 vs. MG5) on operations.
ributed energy retail and end-user demand response. Appl Energy (2017),
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Table 2
MG specifications. The storage capacities follow the format of heating storage/cooling storage/electric battery. Four discrete CHP plants are considered. The modeling and
specifications of generator technologies can be found in [18]. For those MGs with grid imports, they can also function as islands.

NG boiler Electric chiller Storage PV Solar thermal Absorption chiller CHP Grid import

MG1 5 MW 10MW Yes
MG2 5 MW 10MW 1/1/4 MW Yes
MG3 5 MW 10MW 1.5 MW .75 MW Yes
MG4 5 MW 10MW 1/1/4 MW 1.5 MW .75 MW Yes
MG5 5 MW 10MW 1/1/4 MW 1.5 MW .75 MW 10MW 1.5/2/3/4 MW Yes
MG6 5 MW 10MW 1/1/4 MW 1.5 MW .75 MW 10MW 1.5/2/3/4 MW No

Fig. 10. Electricity and cooling balances with daily flat rates. The graph also shows the forecasted and true wholesale price, as well as the natural gas rates. Since the
experiment is conducted during the summer, the heat balance is not shown due to insignificant loads.
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The core MIQP programs (P0) are built in Python and solved by
Gurobi. The following experiments are performed on a MacBook
with a 2.8 GHz Intel Core i7 CPU and 16 GB RAM memory.
6. Scenario analysis

This section studies the impact of optimal dispatch and pricing
on system economy and reliability. First, the scenario without DR is
examined with fixed retail rates (Section 6.1). The DR option is
enabled in Section 6.2 by jointly optimizing rates and dispatch.

6.1. Energy dispatch and uncertainty effect

This section demonstrates the optimal energy dispatch plan-
ning of MR-POD while keeping retail prices fixed. Several observa-
tions can be made about the energy dispatch plan (Fig. 10) for
MG4, which includes CHP, storage, and PVs: (1) the predicted spot
price follows the trend of the true spot price9; as a result, (2) the
battery takes advantage of its variation by charging during the night
(off-peak) and discharging during the afternoon (on-peak); also, (3)
CHP and the absorption chiller are dispatched for electricity and
cooling generation to exploit the spark spread.

By comparison (Table 4, ‘‘Daily” columns), given the same rev-
enue from customer bills, MG1–or the baseline–earns the least
profit, whereas MG5 brings in the most profit, which exceeds
MG6 that operates in ‘‘island-mode”. This illustrates the energy
cost reduction offered by storage, renewables, and CHP, which is
in alignment with our previous findings [18].
9 To reduce uncertainty in the spot market and solar irradiation, an OLS forecast
combination scheme based on an array of forecasters (Gaussian process, support
vector regression, multi-layer perceptron, etc.) is employed, which use a month of
data for training and to make day-ahead predictions.

Please cite this article in press as: Jin M et al. Microgrid to enable optimal dist
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The uncertainty effect of solar and electricity prices is studied
by collating the daily profit loss with the forecasting error10

(Fig. 11). We can see that there is a positive correlation between
profit loss and forecasting error. Since the dispatch of CHP relies
on accurate prediction of the spark spread, the effect of wholesale
spot price forecasting error is more pronounced for MG5 than both
MG2 and MG4. This result is in alignment with the findings from
[31]; however, their studies incorporated the situation with only
electricity loads and no distributed generation capacity, and the
forecasting errors were simulated from a noise model rather than
derived for state-of-the-art predictors.

6.2. Optimal retail pricing strategies

The central question in this section is: ‘‘How can the retailer
strategize its operation and retailing to promote mutual benefits
for its customers and the grid”.

Firstly, we investigate the benefits of time-differentiated rate
structures with elastic building loads (Table 1) and practical-
oriented pricing constraints (Table 3). The DA electricity and
thermal rates are evaluated over a month during the summer, as
illustrated in Fig. 12 for MG4 and Fig. 13 for MG5 (which differ
by the installation of CHP plants), where the monthly average
and 90% confidence interval of the retail prices and true/predicted
spot prices are shown. While the optimal RTP and TOU rates share
similar trends, RTP exhibits more flexibility for accommodating
hourly fluctuations in loads and spot prices. Prices are relatively
stable over the month, which reduces customers’ risks of exposure
to the wholesale market volatility. One crucial difference between
the rate profiles of MG1 to MG4 and that of MG5 and MG6 is
focused on the peak hours (see Figs. 12 and 13). For MGs that rely
10 The forecasting error is measured by the root mean squared error (RMSE), given

by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1ðyi � ŷiÞ2

q
, with yi and ŷi denoting the true and predicted values at time

i 2 f1; . . . ; ng.
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Fig. 11. Top panel: scatter plots of the profit loss against electricity tariff (left) and solar (right) forecast error. The baseline is an oracle that uses true electricity tariff and solar
irradiation for dispatch and pricing. Bottom panel: Pearson correlation between profit loss and forecast error. A positive number closer to 1 occurs when the two random
variables follow similar trend.

Table 3
Parameters of optimal rate design. Each parameter category is followed by the equation reference. For hourly rates limits, ŷEt is the predicted wholesale tariff at hour t. The unit for
rates-related quantities is $/kW h.

Electricity Thermal

Hourly change cap (1) ddiffE ¼ 0:2 ddiffH;Q ¼ 0:1
Hourly rates limits (2) rmax

t ¼ 0:3; rmin
t ¼ minð0:05; ŷEt Þ rmax

t ¼ 0:05; rmin
t ¼ 0:01

Daily rates limits (2) rmax
avg ¼ 0:15; rmin

avg ¼ 0:05 rmax
t ¼ 0:15=COP; rmin

t ¼ 0:01
K factor (3) K ¼ 1:2 (unless otherwise specified)
Energy coupling (4) COP ¼ 3:0 for both heating and cooling
Reference rates (6) pE;reft ¼ 0:15 pH;reft ¼ 0:036; pQ ;ref

t ¼ 0:028
DR requirements (8) atmin ¼ 0:85; atmax ¼ 1:1
TOU groupings off-peak: 7 pm–7 am, mid-peak: 7 am–11 am, 5 pm–7 pm, on-peak: 11 am–5 pm
DR dividends customer share 50% of retailer profits (Section 4.2)

Fig. 12. Optimized electricity (left) and thermal (right) retail rates under different pricing structures (Daily, TOU, RTP) for MG4. The shading indicates 90% confidence interval.
Both the predicted and true wholesale electricity tariffs are shown.

Fig. 13. Optimized electricity (left) and thermal (right) retail rates under different pricing structures for MG5.
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Fig. 14. Comparison of different dynamic rate structures (Daily, TOU, RTP) for MGs, based on the economic (daily profits), environmental (CO2 emission, total energy), and
reliability (peak electricity, peak-valley distance, load factors) indicators.

Table 4
Scenario analysis result summary. The reported daily values for the cost of generation, profits, and CO2 emissions are averaged over 30 days period. Compared to the baseline
model that uses flat daily retail rates (Section 6.1), the percentage differences are shown in the parenthesis. Graphical illustrations for other indicators, such as peak electricity and
load factors, are shown in Fig. 14.

Cost of generation (k$) Profits (k$) CO2 emissions (ton)

Daily TOU RTP Daily TOU RTP Daily TOU RTP

MG1 11.9 11.0(�7.6%) 10.9(�8.4%) 8.4 9.3(+10.3%) 9.4(+11.9%) 134 133(�0.7%) 129(�3.7%)
MG2 11.7 10.8(�7.7%) 10.7(�8.5%) 8.6 9.5(+10.5%) 9.6(+11.6%) 135 134(�0.7%) 130(�3.7%)
MG3 11.0 10.1(�8.2%) 10.0(�9.1%) 9.3 10.2(+9.7%) 10.3(+10.8%) 125 124(�0.8%) 120(�4.0%)
MG4 10.8 9.9(�8.3%) 9.8(�9.3%) 9.6 10.4(+8.3%) 10.6(+10.4%) 127 124(�2.4%) 121(�4.7%)
MG5 6.8 6.6(�2.9%) 6.5(�4.4%) 13.5 13.7(+1.5%) 13.9(+3.0%) 128 127(�0.8%) 123(�3.9%)
MG6 7.3 7.3(0%) 7.1(�2.7%) 13.0 13.1(+0.8%) 13.2(+1.5%) 133 133(0%) 128(�3.8%)
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Fig. 15. Economic indicators of building bill savings, cost savings, and profits
increase (percentage) for different K factors (0.95, 1.0, 1.2). Scheme A and B
represent the indicators before and after the performance-based dividends are
rewarded to each building (Fig. 6). With K factor of 0.95, while buildings can enjoy
substantial bill savings, the retailer incurs a profit loss of �8%. By introducing more
flexibility in rate setting, e.g., K factors of 1.2, both consumer bill savings and
retailer profits will improve after the performance-based dividends.
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on grid imports for electricity provision, the retail price peaks along
with the spot price to reflect the increased cost of generation, while
this increase in rates is absent for MGs that can use natural gas as
an alternative source. Indeed, as is shown in the previous section,
CHP is dispatched when the grid electricity is expensive (Fig. 10).

The economic and environmental impacts are assessed (Fig. 14
and Table 4), illustrating increased daily profits and reduced total
energy and CO2 emission.11 To gain insights into the impact on
MG-level efficiency, we study the measures of peak electricity usage,
peak-to-valley distance and load factors, which indicate the average
peak loads (11 am–5 pm), the difference between peak loads and
valley loads (7 pm–7 am), and the ratio between the average loads
and peak loads, respectively. The RTP scheme is shown to signifi-
cantly bring down peak loads and peak-to-valley distance while rais-
ing the load factors, which lessens the burden of the MG to invest in
peak capacity and improves resource management and system reli-
ability. Above all, RTP is shown to improve the economics more sig-
nificantly over the daily rates when CHP is not present, due to the
substantial reduction in peak hour loads that lowers the cost of gen-
eration (see Table 4 for MG1–MG4).
11 The profit is calculated as the revenue minus the fuel cost, e.g., electricity from
the grid or natural gas, which also include the dividends for the buildings due to DR.
The total energy consumption includes daily electricity and thermal energy demands.
The CO2 emission is estimated from the use of grid electricity (0.98kgCO2/kW h) and
natural gas (0.55kgCO2/kW h).
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Next, we evaluate the performance-based dividend strategy
outlined in Section 4.2 to promote customers’ participation in
RTP and demand response. Three rate settings (K factors 0.95,
1.0, 1.2) are considered. Fig. 15 illustrates the percentages of cus-
tomer bill savings, energy production cost saving, and retailer
profit increase for MG4 before (denoted as A) and after (B) the div-
idend. Customers achieve the most significant bill saving under the
ributed energy retail and end-user demand response. Appl Energy (2017),
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Fig. 16. Overall electricity reduction with RTP rates. During peak hours, the original thermal and electricity loads are reduced (shaded bars) due to the high rates, while some
of the loads are shifted to off-peak hours.
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Fig. 17. The economic and system indicators for four different customer profiles
(elastic, baseline: elasticity in Table 1, very elastic: elasticity is 2 times the baseline,
very rigid: elasticity is 0, rigid: elasticity is 50% of baseline). The performance of the
system with elastic demands under daily rates is identical to that with very rigid
consumers under RTP. Both indicators are improved with the customers being more
elastic.

Fig. 18. The trade-off between daily profits and CO2 emission in MG operations and
pricing. The square, diamond, and circle markers indicate kenv being 0, 40, and 1000
$/tCO2e. Clearly, MG5 is at the Pareto frontier, which can achieve more profits with
less emissions due to the capability of fuel switching.

12 For instance, the electricity elasticity for B1 during off-peak hours would be
�0:1 � ð1� 0:5Þ ¼ �0:05 for a ‘‘rigid” profile, and �0:1 � ð1þ 1Þ ¼ �0:2 for a ‘‘elastic”
profile.
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price setting with K-factor of 0.95; however, the conservative pric-
ing does not induce peak load shedding in order to reduce the
retailer generation cost, causing a considerable loss of profits. On
the contrary, by allowing more flexibility in pricing (K factor of
1.2), the time-differentiated rates become more effective to reduce
peak loads (Fig. 16), whose benefits can be shared among buildings
(1 to 5% bill saving) and the retailer (3 to 6% profit increase)
through the dividend mechanism. Since most RTP programs in
the U.S. are voluntary [48], this offers economic incentives for
enrollment.

From the above results, customers with more elastic demands
(B2 and B3) are more likely to save, since they tend to reduce more
Please cite this article in press as: Jin M et al. Microgrid to enable optimal dist
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usage when the price is high. To assess the effects of energy load
elasticity, four types of profiles are examined, namely, ‘‘very rigid”,
‘‘rigid”, ‘‘elastic”, and ‘‘very elastic”, which correspond to �100,
�50, 0, 100% changes of elasticity parameters in Table 1 for all
buildings.12 There seems to be a positive correlation between the
elasticity of customers and energy bill savings, retailer profit
increase, and peak load reductions (Fig. 17), indicating the potential
benefits of programs like openADR [57] that aim at improving
responsiveness to price through building automation [12].
7. MG case study

Due to the increasing penetration of renewables and heightened
environmental awareness, it is crucial to ensure economic and
environmental viability and system stability. This section demon-
strates the capability of MR-POD in addressing the following
issues:

� Case 1: Environmentally aware pricing and operation
� Case 2: Demand response for PV over-generation

The operation of a clean MG that aims to reduce the environ-
mental impact, such as that of greenhouse gas emissions, is often
pursued as a positive externality for society. According to a recent
report by the World Bank, about 40 national jurisdictions world-
wide put a price on carbon, a.k.a. carbon tax, which spans from less
than 1$/tCO2e to 131$/tCO2e [58]. Case 1 focuses on the design of
environmentally aware pricing and operation strategies. More
specifically, the cost of CO2 emission can be considered by setting
the kEnv parameter in the optimization (P0), which acts as a ‘‘virtual
carbon tax”. The tradeoff between profits and carbon dioxide emis-
sion is demonstrated for different MG infrastructures (Fig. 18),
which illustrates the Pareto frontier in a multi-objective
optimization.

The results indicate that there is a limited range of trade-off for
MGs with a single fuel source (MG1, 2, 3, 4, 6) that can only control
through the price signal, as compared to MG5 that can also per-
form fuel switching. At a reasonable level of carbon taxes, or 40
$/tCO2e, MG5 can substantially reduce CO2 emissions while main-
taining a high profit. As can be seen in Fig. 19, the use of an electric
chiller and grid electricity is replaced by the absorption chiller and
CHP at hours 11 pm-2 am, except during hours when the grid elec-
tricity price is relatively low to save generation cost. Indeed, the
proportion of natural gas consumption significantly rises for
ributed energy retail and end-user demand response. Appl Energy (2017),
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Fig. 19. Electricity and cooling balances with a reasonable level of carbon taxes at 40$/tCO2e. For comparison, the plot is presented for the same day as in Fig. 10, which
adopts a flat rate but does not include carbon tax equivalence in its operation.
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Fig. 20. Fuel mixing during off-, mid-, on-peak hours for a schemes with kenv being 0 and 40$/tCO2e. The latter results in more natural gas usage during mid- and on-peak
hours for clean operations. However the usage of natural gas does not change significantly due to off-peak hours, due to the lower price of grid electricity.

Fig. 21. Electricity and cooling balances under RTP. When there is a PV surplus during the noon, the rates are set lower to encourage flexible consumption while the storage is
charged, which reduces the amount of PV curtailment.
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environmentally aware operations during mid- and on-peak hours
as the spark spread widens (Fig. 20).

By leveraging the natural gas fired, electricity powered devices,
and renewable sources within a MG, it is possible to perform fuel
switching as circumstances dictate. In particular, Case 2 focuses
on the problem of curtailed electric energy [59], when some of
the renewable energy generation must be wasted to keep real-
time power balance.

To simulate the case of PV over-generation, MG5 is assumed to
have a high level of renewable generation (solar panels with
15 MW rated capacity). Consequently, the problem often arises
during a sunny day, when the supply of electricity far exceeds
the demand. However, due to the prediction of the event, the retai-
ler can promptly respond by lowering the electricity rates to
encourage consumption, in addition to coordinating the charging
of battery to shift the excessive generation to the night, which
avoids the destabilization of the system and reduces customer bills
(Fig. 21). In light of the upward tendency of renewable adoptions,
this illustrates the added flexibility of MG enabled by optimal coor-
dination and retail rates setting.

8. Conclusion

In this study, an optimal strategy for energy dispatch and pricing
is investigated, which is shown in experiments to promote energy
efficiency and MG retailer profitability, bill savings for the customers,
and demand response for the grid. Key findings of the study are:

Optimal rate design:

� Time-differentiated rates can be co-optimized with MG dis-
patch to reflect generation cost. For instance, electricity rates
for a MG with CHP are much lower during peak hours than that
without CHP, due to the prompt switching to natural gas (see
Figs. 12 and 13).

� RTP demonstrates considerable potential in improving profits
and load factors while reducing peak loads and environmental
impact (Fig. 14 and Table 4). The benefits can be expected to
accrue in the long run, as customers tend to adjust their con-
sumption behaviors and make investments in energy efficient
products [50].

� The variation of RTP and TOU rates across the month of evalua-
tion is limited, as a result of the restrictions imposed by the
pricing mechanism to ensure competitiveness and consumer
protection (see Figs. 12 and 13 and Table 3).

Economic dispatch and DR:

� The most significant reduction in operational costs is brought
by the CHP plant, which performs fuel switching by exploiting
the spark spread when the electricity wholesale tariff is high
(Table 4). Natural gas is effective for curbing CO2 emissions,
which can be incorporated in the objective as a trade-off with
economic gains (Fig. 20).

� By incentivizing load curtailment during on-peak hours, the
proposed DR scheme ensures both profitability and customer
bill savings, which in turn encourages participation in DR pro-
grams (Fig. 17). In essence, as the retailer’s incentives are chan-
ged to encourage consumers to conserve energy rather than sell
it in ever-increasing amounts, a certain level of decoupling of
rates and profits is achieved [47]. This can spur the use of clean
and renewable energy resources, and enhance the MG’s DR
capability.

While energy retailing services provide consumers with more
options, it is critical to ensure customer bill reduction, retailer risk
Please cite this article in press as: Jin M et al. Microgrid to enable optimal dist
http://dx.doi.org/10.1016/j.apenergy.2017.05.103
management, and proper sharing of revenues among stakeholders
[4]. Though retail choices can potentially extend the market pene-
tration of dynamic pricing programs, a main barrier is the recovery
of fixed costs for smart metering, communication and control sys-
tems. As for DR, the challenges of interoperability among stake-
holders, and the security and privacy of customer data need to
be addressed in future works [60].

With an increasing penetration of renewables and the advent of
electric vehicles as mobile batteries, fundamental changes in utility
rate structures are vital. Rate design, for example, can have a sub-
stantial impact on the deployment of customer-sited solar [46]. We
plan to investigate game-theoretic pricing in future work for MGs
with distributed energy resources such as rooftop solar panels and
batteries owned by households.

Acknowledgements

This manuscript has been authored by authors at Lawrence
Berkeley National Laboratory with the U.S. Department of Energy.
This work is also supported by the Energy Foundation China, and
the Republic of Singapore’s National Research Foundation through
a grant to the Berkeley Education Alliance for Research in Singa-
pore (BEARS) for the Singapore–Berkeley Building Efficiency and
Sustainability in the Tropics (SinBerBEST) program.

References

[1] Obama B. The irreversible momentum of clean energy. Science 2017;355
(6321):126–9.

[2] Qdr Q. Benefits of demand response in electricity markets and
recommendations for achieving them. Tech. Rep. Washington (DC, USA): US
Dept. Energy; 2006

[3] Wu J, Yan J, Jia H, Hatziargyriou N, Djilali N, Sun H. Integrated energy systems.
Appl Energy 2016;167:155–7.

[4] Morey MJ, Kirsch LD. Retail choice in electricity: what have we learned in 20
years? Washington, DC: Christensen Associates Energy Consulting LLC for
Electric Markets Research Foundation; 2016.

[5] Jin M, Bekiaris-Liberis N, Weekly K, Spanos CJ, Bayen AM. Occupancy detection
via environmental sensing. IEEE Trans Autom Sci Eng 2016;99:1–13.

[6] Velik R, Nicolay P. Grid-price-dependent energy management in microgrids
using a modified simulated annealing triple-optimizer. Appl Energy
2014;130:384–95.

[7] Kamyab F, Amini M, Sheykhha S, Hasanpour M, Jalali MM. Demand response
program in smart grid using supply function bidding mechanism. IEEE Trans
Smart Grid 2016;7(3):1277–84.

[8] Kim Y, Norford LK. Optimal use of thermal energy storage resources in
commercial buildings through price-based demand response considering
distribution network operation. Appl Energy 2017;193:308–24.

[9] Jin M, Zou H, Weekly K, Jia R, Bayen AM, Spanos CJ. Environmental sensing by
wearable device for indoor activity and location estimation. In: Industrial
electronics society, IECON 2014-40th annual conference of the IEEE. IEEE;
2014. p. 5369–75.

[10] Zou H, Huang B, Lu X, Jiang H, Xie L. A robust indoor positioning system based
on the procrustes analysis and weighted extreme learning machine. IEEE Trans
Wireless Commun 2016.

[11] Jin M, Jia R, Kang Z, Konstantakopoulos IC, Spanos CJ. Presencesense: zero-
training algorithm for individual presence detection based on power
monitoring. In: Proceedings of the 1st ACM conference on embedded
systems for energy-efficient buildings. ACM; 2014. p. 1–10.

[12] Ghatikar G, Mashayekh S, Stadler M, Yin R, Liu Z. Distributed energy systems
integration and demand optimization for autonomous operations and electric
grid transactions. Appl Energy 2016;167:432–48.

[13] Zhou Y, Li D, Spanos CJ. Learning optimization friendly comfort model for
HVAC model predictive control. In: Data mining (ICDM), 2015 IEEE
international conference on. IEEE; 2015. p. 523–9.

[14] Dimeas AL, Hatziargyriou ND. Operation of a multiagent system for microgrid
control. IEEE Trans Power Syst 2005;20(3):1447–55.

[15] Zhou Y, Arghandeh R, Spanos CJ. Partial knowledge data-driven event
detection for power distribution networks. IEEE Trans Smart Grid 2017;PP
(99). 1–1.

[16] Marnay C, Venkataramanan G, Stadler M, Siddiqui AS, Firestone R, Chandran B.
Optimal technology selection and operation of commercial-building
microgrids. IEEE Trans Power Syst 2008;23(3):975–82.

[17] Chen Y-H, Lu S-Y, Chang Y-R, Lee T-T, Hu M-C. Economic analysis and optimal
energy management models for microgrid systems: a case study in Taiwan.
Appl Energy 2013;103:145–54.

[18] Jin M, FengW, Liu P, Marnay C, Spanos C. MOD-DR: microgrid optimal dispatch
with demand response. Appl Energy 2017;187:758–76.
ributed energy retail and end-user demand response. Appl Energy (2017),

http://refhub.elsevier.com/S0306-2619(17)30606-2/h0005
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0005
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0015
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0015
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0025
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0025
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0030
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0030
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0030
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0035
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0035
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0035
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0040
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0040
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0040
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0045
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0045
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0045
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0045
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0050
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0050
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0050
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0055
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0055
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0055
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0055
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0060
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0060
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0060
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0065
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0065
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0065
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0070
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0070
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0075
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0075
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0075
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0080
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0080
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0080
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0085
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0085
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0085
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0090
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0090
http://dx.doi.org/10.1016/j.apenergy.2017.05.103


M. Jin et al. / Applied Energy xxx (2017) xxx–xxx 15
[19] Ommen T, Markussen WB, Elmegaard B. Comparison of linear, mixed integer
and non-linear programming methods in energy system dispatch modelling.
Energy 2014;74:109–18.

[20] Hawkes A, Leach M. Modelling high level system design and unit commitment
for a microgrid. Appl Energy 2009;86(7):1253–65.

[21] Guo L, Wang N, Lu H, Li X, Wang C. Multi-objective optimal planning of the
stand-alone microgrid system based on different benefit subjects. Energy
2016;116:353–63.

[22] Niknam T, Azizipanah-Abarghooee R, Narimani MR. An efficient scenario-
based stochastic programming framework for multi-objective optimal micro-
grid operation. Appl Energy 2012;99:455–70.

[23] Baziar A, Kavousi-Fard A. Considering uncertainty in the optimal energy
management of renewable micro-grids including storage devices. Renew
Energy 2013;59:158–66.

[24] Nguyen DT, Le LB. Risk-constrained profit maximization for microgrid
aggregators with demand response. IEEE Trans Smart Grid 2015;6(1):135–46.

[25] Kim S-J, Giannakis G. Scalable and robust demand response with mixed-
integer constraints. IEEE Trans Smart Grid 2013;4(4):2089–99.

[26] Jin M, Jia R, Spanos C. Virtual occupancy sensing: using smart meters to
indicate your presence. IEEE Trans Mob Comput 2017;PP(99). 1–1.

[27] Jin M, Bekiaris-Liberis N, Weekly K, Spanos C, Bayen AM. Sensing by proxy:
occupancy detection based on indoor co2 concentration. In: The 9th
international conference on mobile ubiquitous computing, systems, services
and technologies (UBICOMM’15). p. 1–14.

[28] De Jonghe C, Hobbs BF, Belmans R. Optimal generation mix with short-term
demand response and wind penetration. IEEE Trans Power Syst 2012;27
(2):830–9.

[29] Hatami A, Seifi H, Sheikh-El-Eslami M. Optimal selling price and energy
procurement strategies for a retailer in an electricity market. Electr Power Syst
Res 2009;79(1):246–54.

[30] Díaz G, Moreno B. Valuation under uncertain energy prices and load demands
of micro-CHP plants supplemented by optimally switched thermal energy
storage. Appl Energy 2016;177:553–69.

[31] Delarue E, Van Den Bosch P, Dhaeseleer W. Effect of the accuracy of price
forecasting on profit in a price based unit commitment. Electr Power Syst Res
2010;80(10):1306–13.

[32] Boroojeni KG, Amini MH, Nejadpak A, Dragicevic T, Iyengar SS, Blaabjerg F. A
novel cloud-based platform for implementation of oblivious power routing for
clusters of microgrids. IEEE Access 2017.

[33] Shen B, Ghatikar G, Lei Z, Li J, Wikler G, Martin P. The role of regulatory
reforms, market changes, and technology development to make demand
response a viable resource in meeting energy challenges. Appl Energy
2014;130:814–23.

[34] Faria P, Vale Z. Demand response in electrical energy supply: an optimal real
time pricing approach. Energy 2011;36(8):5374–84.

[35] Amini MH, Nabi B, Haghifam M-R. Load management using multi-agent
systems in smart distribution network. In: Power and energy society general
meeting (PES), 2013 IEEE. IEEE; 2013. p. 1–5.

[36] Patteeuw D, Bruninx K, Arteconi A, Delarue E, Dhaeseleer W, Helsen L.
Integrated modeling of active demand response with electric heating systems
coupled to thermal energy storage systems. Appl Energy 2015;151:306–19.

[37] Mohsenian-Rad A-H, Leon-Garcia A. Optimal residential load control with
price prediction in real-time electricity pricing environments. IEEE Trans
Smart Grid 2010;1(2):120–33.
Please cite this article in press as: Jin M et al. Microgrid to enable optimal dist
http://dx.doi.org/10.1016/j.apenergy.2017.05.103
[38] Yousefi S, Moghaddam MP, Majd VJ. Optimal real time pricing in an agent-
based retail market using a comprehensive demand response model. Energy
2011;36(9):5716–27.

[39] Moghaddam MP, Abdollahi A, Rashidinejad M. Flexible demand response
programs modeling in competitive electricity markets. Appl Energy 2011;88
(9):3257–69.

[40] Filippini M. Short-and long-run time-of-use price elasticities in swiss
residential electricity demand. Energy policy 2011;39(10):5811–7.

[41] Alberini A, Filippini M. Response of residential electricity demand to price: the
effect of measurement error. Energy Econ 2011;33(5):889–95.

[42] Doostizadeh M, Ghasemi H. A day-ahead electricity pricing model based on
smart metering and demand-side management. Energy 2012;46(1):221–30.

[43] Kirschen DS, Strbac G. Fundamentals of power system economics. John Wiley
& Sons; 2004.

[44] Carbon tax center. Where carbon is taxed? <https://www.carbontax.org/
where-carbon-is-taxed/> [accessed 2017-03-01].

[45] Moghaddam AA, Seifi A, Niknam T. Multi-operation management of a typical
micro-grids using particle swarm optimization: a comparative study. Renew
Sustain Energy Rev 2012;16(2):1268–81.

[46] Darghouth NR, Wiser RH, Barbose G, Mills AD. Net metering and market
feedback loops: exploring the impact of retail rate design on distributed PV
deployment. Appl Energy 2016;162:713–22.

[47] S.E.I. Association. Utility rate structure. <http://www.seia.org/policy/
distributed-solar/utility-rate-structure> [accessed 2017-03-01].

[48] Barbose G, Goldman C, Neenan B. A survey of utility experience with real time
pricing. Lawrence Berkeley National Laboratory; 2004.

[49] Jin M, Zhang L, Spanos C. Power prediction through energy consumption
pattern recognition for smart buildings. In: IEEE international conference on
automation science and engineering (IEEE CASE 2015). p. 419–24.

[50] Borenstein S. The long-run efficiency of real-time electricity pricing. Energy J
2005:93–116.

[51] Diagne M, David M, Lauret P, Boland J, Schmutz N. Review of solar irradiance
forecasting methods and a proposition for small-scale insular grids. Renew
Sustain Energy Rev 2013;27:65–76.

[52] Weron R. Electricity price forecasting: a review of the state-of-the-art with a
look into the future. Int J Forecast 2014;30(4):1030–81.

[53] Jin M, Spanos CJ. Brief: Bayesian regression of infinite expert forecasters for
single and multiple time series prediction. In: 2015 54th IEEE conference on
decision and control (CDC). IEEE; 2015. p. 78–83.

[54] Kim J-H, Shcherbakova A. Common failures of demand response. Energy
2011;36(2):873–80.

[55] Kintner-Meyer MC, Goldman C, Sezgen O, Pratt D. Dividends with demand
response. Tech. rep. Richland, WA (US): Pacific Northwest National Laboratory
(PNNL); 2003.

[56] Wilcox S, Marion W. Users manual for TMY3 data sets; 2008.
[57] McParland C. openADR open source toolkit: developing open source software

for the smart grid. In: IEEE power and energy society general meeting. p. 1–7.
[58] State and trends of carbon pricing. Washington, DC: World Bank report; 2016

[accessed 2017-03-01].
[59] Li C, Shi H, Cao Y, Wang J, Kuang Y, Tan Y, et al. Comprehensive review of

renewable energy curtailment and avoidance: a specific example in china.
Renew Sustain Energy Rev 2015;41:1067–79.

[60] Jia R, Dong R, Sastry S, Spanos C. Privacy-enhanced architecture for occupancy-
based HVAC control. In: Proceedings of the 8th ACM/IEEE international
conference on cyber-physical systems. ACM; 2017. p. 177–86.
ributed energy retail and end-user demand response. Appl Energy (2017),

http://refhub.elsevier.com/S0306-2619(17)30606-2/h0095
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0095
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0095
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0100
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0100
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0105
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0105
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0105
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0110
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0110
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0110
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0115
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0115
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0115
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0120
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0120
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0125
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0125
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0130
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0130
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0135
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0135
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0135
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0135
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0140
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0140
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0140
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0145
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0145
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0145
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0150
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0150
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0150
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0155
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0155
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0155
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0160
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0160
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0160
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0165
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0165
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0165
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0165
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0170
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0170
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0175
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0175
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0175
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0180
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0180
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0180
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0185
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0185
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0185
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0190
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0190
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0190
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0195
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0195
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0195
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0200
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0200
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0205
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0205
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0210
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0210
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0215
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0215
https://www.carbontax.org/where-carbon-is-taxed/
https://www.carbontax.org/where-carbon-is-taxed/
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0225
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0225
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0225
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0230
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0230
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0230
http://www.seia.org/policy/distributed-solar/utility-rate-structure
http://www.seia.org/policy/distributed-solar/utility-rate-structure
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0240
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0240
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0245
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0245
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0245
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0250
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0250
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0255
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0255
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0255
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0260
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0260
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0265
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0265
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0265
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0270
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0270
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0285
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0285
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0295
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0295
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0295
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0300
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0300
http://refhub.elsevier.com/S0306-2619(17)30606-2/h0300
http://dx.doi.org/10.1016/j.apenergy.2017.05.103

	Microgrid to enable optimal distributed energy retail and end-user demand response
	1 Introduction
	2 Related work
	2.1 MG modeling and dispatch
	2.2 Demand response
	2.3 Optimal rate design

	3 MG retailer model
	3.1 Problem formulation
	3.2 MG energy pricing
	3.3 Energy demand and supply

	4 MG operation strategy
	4.1 Planning under uncertainty
	4.2 DR incentivization

	5 Experimental setup
	5.1 Dataset
	5.1.1 Building loads

	5.2 MG specification

	6 Scenario analysis
	6.1 Energy dispatch and uncertainty effect
	6.2 Optimal retail pricing strategies

	7 MG case study
	8 Conclusion
	Acknowledgements
	References


