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Abstract— In this paper, we propose a Non-negative Mixture
of Experts (NME) model for smart buildings that is capable
of making accurate power forecasting by recognizing charac-
teristic consumption patterns. The model uses prediction error
as a metric to guide the feature learning process subject to
non-negativity constraints. The objective is to understand and
model energy consumption behaviors in commercial buildings
at the appliance level so as to facilitate dynamic pricing and
demand response. Application of the NME model to a large
dataset of device power measurements results in the discovery
of meaningful energy usage patterns that are characteristic of
the working and idle states of the building space, with the
additional advantage that the learned features also optimize
the energy prediction model. The model can be learned by
stochastic gradient descent, which is suitable for large-scale
problems, and an online version is also suggested.

I. INTRODUCTION

Energy consumption relates to environmental issues, eco-
nomic growth, and national security. Commercial and resi-
dential buildings account for 40% of the energy consumed in
the US, compared with just 25% for transportation [1]. The
huge potential of energy saving drives a growing interest in
Energy Information Systems (EIS) that analyzes time-series
data from meters, sensors, and external sources to perform
anomaly detection, electric power tracking and prediction,
efficiency evaluation, and load shaping to accommodate
advanced demand-response schemes [2].

The ability of making reliable energy forecasts is crucial
for future smart grids to implement demand-response (DR)
schemes so as to detect potential demand-supply mismatch
and ensure the overall stability of the power system. Electric
energy forecasts for sensor-rich smart buildings, which are
integral parts of the smart grid system, therefore plays a criti-
cal role in demand-side management and the implementation
of dynamic pricing and other load curtailment strategies
[3]. Amin-Naseri and Sorroush proposed a hybrid neural-
network model based on a self-organizing map integrated
with a feed-forward neural network to predict daily energy
consumption of buildings [4]. Data-driven approaches were
also investigated using Artificial Neural Networks (ANN)
and Support Vector Machines (SVM) [5], [6], [7].

There is also much to learn about the underlying social
structures and working patterns in the building space from
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the rich sensor data. As put forth by Nobel Laureate Kah-
neman in his book “Thinking, fast and slow”, people are
much more habitual and patterned than just acting randomly
[8]. Recognizing the pattern of energy consumption from the
non-intrusive device measurement, for instance, can help us
understand the occupants and their behaviors while circum-
venting privacy issues [9]. It will lead to improvement of the
energy usage efficiency and make the building “smarter” to
understand and interact with its occupants.

It is, therefore, the objective of this paper to investigate
the Non-negative Mixture of Experts (NME), which imposes
practical constraints on the unsupervised learning process
that is guided by some meaningful metric. Specifically, we
apply the NME model to the sensor data collected in a study
to understand the building’s energy consumption behaviors,
and demonstrate its capability of predicting future power
consumption. In addition, we recognize interesting patterns
that point to the underlying energy usage behaviors.

This paper is organized as follows. In Section II, we
motivate the application of NME model and review rele-
vant methods, including the Mixture of Experts model and
non-negative matrix factorization. Section III introduces the
NME model and its learning algorithm based on gradient
descent rules. In Section IV, we apply the model to device
measurement data and discuss the prediction and pattern
recognition results. The paper is concluded in Section V with
a discussion about possible future extensions.

II. RELATED WORK

Buildings can operate in several modes depending on
the occupants activities, which make it difficult to perform
prediction with a single model. The NME model improves
traditional prediction methods by introducing a switching
mechanism, which follows the intuition that buildings’ op-
eration modes can be observed through plug-load level
consumption. Figure 1 (a) illustrates the working principle
of the model: first, relevant information is fed into the first
layer to decide which expert we should consult. Then each
expert gives its opinion based on its own judgment, and the
final decision is a weighted version of all the experts.

We now give a brief review of relevant works in the past
that motivate the development of the NME model.

A. Mixture of Experts Model

One class of relevant models include the Mixture of Ex-
perts (ME) and the Hierarchical Mixture of Experts (HME),
which are ensemble method that utilize a combination of
simple learners to improve predictions [10], [11]. There are



Fig. 1. a). Illustration of the NME model (left). b). Plate notation of the
representation as a mixture model (right).

two basic components of the model: the gating network and
the expert network. The gating network decides which expert
to go to with the gating softmax functions:

gt(x;η) =
exp
(
η>i x

)
∑

k
j=1 exp

(
η>j x

) (1)

The expert network gives its estimates of the query by
maximizing the log-likelihood function obtained for the
mixture probability. The learning of the model is usually
achieved with EM algorithm, by augmenting the likelihood
with a new variable, Z, an indicator variable that determines
which expert to go to. The expectation of this indicator
function can be shown to be the posterior probability of the
expert.

The major drawback of the ME model is that the learning
of the gating network parameters does not take into account
constraints of data, such as the constraint of non-negativity
on the learned parameters. Also the softmax function does
not promote the discrepancy among different gating parame-
ters, and can be difficult to optimize, which can also result in
difficulty in explaining the gating parameters. Nevertheless,
ME and HME models tackle the nonstationarity problem
quite successfully by considering different input regimes.

B. Non-negative Matrix Factorization

Many algorithms for matrix factorization and dimension
reduction have been studied, including principle component
analysis (PCA) and singular value decomposition (SVD).
Their common goal is to use as few features as possible to
account for the most variance presented in the matrix. Non-
negative matrix factorization (NMF), popularized by Lee and
Seung, is a class of methods that are designed for matrices
with only non-negative entries [12]. The method imposes a
constraint on the factor matrices to be non-negative:

min
W,H

V =WH, s.t. Hi j ≥ 0,Wi j ≥ 0 (2)

This simple constraint leads to many interesting discover-
ies, such as discovery of metagenes, text mining, and spectral
data analysis [13].

In the context of device power measurement data from
buildings, such non-negativity constraint arises naturally,
which suggests that we can use NMF to find possible

building states. However, one problem with this approach
is that the factor matrices are generally non-unique, lacking
a metric to guide the learning process to generate meaningful
patterns. Next we will show that the proposed NME model
can deal with this issue effectively.

III. NON-NEGATIVE MIXTURE OF EXPERTS MODEL

A. Model formulation
We set out the formulation of the NME model with

two objectives: first, we want to train a model that makes
accurate predictions of the energy consumption based on all
the available data. Also, we want to learn interesting and
useful patterns of device usage in the building, which help
us understand the occupancy behaviors and possibly charac-
terize the building state. Since the NME can be regarded as
a derivative of the ME model with non-negative constraints,
it is convenient to just adopt the terminologies, such as the
gating and expert networks, introduced in the ME model.

The approach is a joint optimization over the gating and
expert network parameters:

minimize
A,H,R

N

∑
i=1

∥∥∥∥yi−g
(

X (i);A,H
)>

Rz(i)
∥∥∥∥2

subject to H ≥ 0 (non-negativity constraint)

(3)

The objective function, F(A,H,R;y,X ,z), is essentially a
quadratic cost function evaluating how well the model can
represent the data with relevant information. A,H denote the
model’s gating parameters, R denotes its expert parameter,
yi is the target value, and X (i),z(i) are relevant information,
which are not necessarily of the same nature of yi. For
instance, yi can be the next-moment power, while X (i),z(i)

can be the device power consumption data and previous en-
ergy data respectively. This formulation extends the model’s
capacity to include all possible relevant information.

The gating function is given by normalized linear terms:

g
(
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)
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where
(

H>X (i)A>
)

1
= ∑

m
j=1 A1, j

〈
X (i)
·, j ,H·, j

〉
is a weighted

sum of the dot products of the input vectors, X (i)
·, j , with the

1st column of the gating parameter H·, j. This form of gating
function is amenable to gradient-descent methods, and is also
easier to interpret: each component corresponds to the weight
applied to each expert’s opinion, given by:

Rz(u) =
[
R1,·z(i), · · · ,Rp,·z(i)

]>
(5)

where each element in the vector is the opinion of the
corresponding expert.

The structure of the model is best presented with a layered
structure, similar to the artificial neural networks.

Layer 1: Expert weight calculation. In this layer, the
absolute weights of each expert, ωi, is given by:

ωp =
(

H>X (i)A>
)

p
=

m

∑
j=1

A1, j

〈
X (i)
·, j ,H·,p

〉
(6)



The inner product term dictates that the closer the input
information is to the feature vector H·,p, the higher the weight
assigned to the corresponding expert.

Layer 2: Expert weight normalization. In this layer, the
weights are normalized so that they sum to 1, which is
essentially the gating function in (4).

Layer 3: Expert opinion formulation. This layer is as
simple as a linear regression for each expert given the input
information, as given in (5).

Layer 4: Output layer, where we weight all the expert
opinions to give a final result regarding the query:

ŷi = g
(

X (i);A,H
)>

Rz(i) (7)

This layered structure view will facilitate the derivation of
gradients in Section III below.

The switching layer, i.e., Layer 1, is jointly learned with
the prediction experts, i.e., Layer 3, which are typically linear
models such as the most commonly employed AutoRegres-
sive Integrated Moving Average with exogneous variables
(ARIMA–X). The overall model is a mixture of experts
whose weights depend on plug-loads consumption patterns.
The approach is closely related to the contextual bandits in
[14], which selects the best arm to pull given a context in the
form of feature vectors, whereas NME is a generalization to
the continuous domain by weighting the opinions of experts
for prediction.

The switching layer consists of multiple templates, i.e.,
device consumption patterns, corresponding to building op-
eration modes. This is a dimensional reduction technique
similar to PCA and its variants. Nevertheless, there are two
main differences: 1) we impose nonnegative constraints on
the template entries in recognition of the fact that we only
have plug loads and no power sources , 2) NME achieves
dimension reduction through directly minimizing prediction
performance, whereas PCA aims at improving predictions
by performing minimization of matrix approximation errors.
The design considerations are aligned with prediction per-
formance, especially when the buildings can exhibit several
operation modes depending on occupant activities. The gen-
eralization from the 1h ahead prediction to the 24h ahead is
straightforward by incorporating features from the previous
days.

B. Probability Perspectives

The NME bears many similarities with the Mixture of
Experts and the Hierarchical Mixture of Experts model, and
can be viewed as a mixture model with data generated from
different latent processes under their individual probability
distributions, P(yi|xi,zi,θi), as illustrated in the plate notation
in Figure 1 (b). The probability of y conditioned on all the
information is given by:

P(y|X ,Z) = ∑
ci

Pi(ci|xi)P(y|xi,zi,ci,θi) (8)

where Pi(ci|xi) is the gating network outputs (4), ci is the
realization of the latent variable C, an indicator variable that
determines which expert to consult, and θi =

[
µi,σ

2
i
]

is the

expert network parameters, for instance, the Gaussian dis-
tribution with the mean determined by a regressive process,
shown in (5). The posterior probabilities of the latent variable
C, which incorporates the output y as well as the inputs, is
given by:

P(ci|y,xi,zi) =
Pi(ci|xi)P(y|xi,zi,ci,θi)

∑ck
Pk(ck|xi)P(y|xi,zi,ci,θi)

(9)

A simple example would be the case where the output
is a scalar, and the expert network distribution is Gaussian.
Denote the gating outputs as g= [g1, ...,gK ]

>, the probability
of the estimate is then given by:

P(y|X ,Z) =
K

∑
i=1

gi
1√

2πσi
exp
(
− (y−µi)

2

2σ2

)
(10)

This suggests the use of EM algorithm for model learning,
which augments the above probability with the latent variable
C and maximizes the “complete log-likelihood” over all the
gating and expert network parameters [11].

C. Offline Learning: Batch Gradient Descent

The gradients of the objective function F(A,H,R;y,X ,z)
can be derived with a back propagation method, which
utilizes the chain rule of derivatives:

∂Ei

∂Ol
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=
#(l+1)

∑
j=1

∂Ei

∂Ol+1
j,i

∂Ol+1
j,i
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where Ol
k,i denotes the output of the k-th node in the layer

l for the i-th training sample, and Ei = ∑
#(L)
j=1 (Tj,i−OL

j,i)
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the quadratic error measure, summed over all target outputs
in the last layer. For instance, ∂Ei

∂OL
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= 2(Tk,i−OL
m,i) for the

output layer;
∂O1

k,i
∂H·,k
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k, jX
(i)
·, j for the derivative of the

first layer with respect to gating parameter H·,k, where we
view the inputs layer with index 0. The partial derivatives of
the cost function with respect to the parameters, A,R,H can
be derived easily in this fashion.

For the batch method, the update of parameters is based on
full gradient descents by considering all the training samples:

Ai j = Ai j−α
∂

∂
F(A,H,R;y,X ,z)

Ri j = Ri j−α
∂

∂Ri j
F(A,H,R;y,X ,z) (12)

H·, j = Proj+

(
H·, j−α

∂

∂H·, j
F(A,H,R;y,X ,z)

)
where α is the learning rate. In addition to the gradient
descent, we also implement an extra non-negative projection
for the parameter H to satisfy the non-negativity constraint,
with Proj+(v) taking the negative part of v to be zero and
keep other parts unchanged.

Theoretically, one can prove that the sequence of pa-
rameters, (A(k),H(k),R(k)) and (A(k+1),H(k+1),R(k+1)) will
converge to a stationary point (A(∗),H(∗),R(∗)) as the learning
rate α shrinks down. The extra projection step maintains
this good property because of the firm non-expansivity of
projection operators [15].



D. Online Learning: Stochastic Gradient Descent

While batch gradient descent can lead to guaranteed con-
vergence [15], it requires processing all the training samples
in an epoch to update the parameters with a gradient, which
can be memory and computationally demanding. So instead
of using all the samples, it is necessary to make an update
with fewer amounts of samples each time, which gives rise
to the idea of stochastic gradient descent.

For the stochastic gradient descent, we are only con-
sidering N(i) < N training samples, where N is the entire
set of data. Each update is then an accumulated sum of
the gradients of these N(i) samples. Stochastic gradient
descent can lead to a smaller objective function each time in
expectation, and it also converges to a stationary point as the
batch method. It is particularly suitable for online learning
because each time we can update the gating and experts
networks when new data are available, and the computation
is very efficient. The learning algorithm is exactly the same
as the batch method, so we leave it to the interested readers.

IV. NME FOR DEVICE POWER DATA

The NME model connects supervised learning to unsuper-
vised learning by establishing a statistic based on prediction
errors to guide the two processes. In this section, we consider
the application of NME to the smart building device network.
The dataset was gathered in a study of energy consumption
of plug-in devices, which took place in the Building 90
(B90) of Lawrence Berkeley National Lab (LBNL) from July
2010 through February 2011. The measurement frequency
is at a 15 minutes interval, for a span of 3 months. For
the large-scale problem we use the measurement data of 35
devices in an office space, including computers, projectors,
coffee makers, desk lamps, etc. Figure 2 shows some typical
measurements in the data.

Fig. 2. Typical power measurement data in three months for devices, such
as computers, speakers kettle, shredders, and fans.

We denote the device measurement data matrix as X ,
which is of size p by N, where p is the number of devices,
and N is the number of samples. We also sum the columns of
X to obtain the vector y, where each component corresponds
to the total energy consumed by the device network. The
knowledge discovery task is to learn about the energy use
of workplace plug-in devices (also known as Miscellaneous
and Electronic Loads – MELs) from the dataset. A sensible
criterion on whether the discovered patterns are useful is

whether we can make more accurate predictions based on
these discovered patterns. NME exactly achieves these in a
unifying framework of knowledge discovery and prediction.

As discussed in Section III, the training of NME is based
on gradient projection method, which has been shown to
converge to global optimal with a linear rate of convergence,
O(1/k), for convex problems. Due to the non-convexity
of the objective function, we do not have the luxury of
linear convergence rate and global optimality; nevertheless,
with shrinking step-size and firm non-expansive projection
operator, the method will eventually converge to a local
optimal point following a “zigzag” path, as shown in Figure
3 (a). The convergence is compared with ANFIS, a popular
neural network model with fuzzy logic rules [16]. For all the
training cases where we start with random parameter values,
NME converges not only faster, but also to a solution with
lower training errors than ANFIS, indicating that NME can
achieve a model with higher fidelity. The impressive point is
NME has fewer parameters, and it is only limited to linear
multiplication and scalar division, rather than Gaussian ker-
nels as in ANFIS, which might be computationally intensive
for large dataset.

Fig. 3. a) Convergence behavior during model training for ANFIS and
NME (top-left). b) The 1-hour (4 steps) ahead prediction performance of
NME, SVM, ANFIS, and Persistent model (top-right). c) 4-step ahead
prediction results by NME with ground truths (bottom).

The NME model can be naturally extended to predict fur-
ther into the future by adding #Ahead (horizon) by #Feature
number of parameters, so the model size still remains man-
ageable. Figure 3 (b) illustrates prediction results for a 1-hour
ahead prediction, compared with SVM and ANFIS, which
are implemented by the standard MATLAB packages [17].
The persistent model is a naive approach of using the mean
of the most immediate data to predict the future. The 1-
hour ahead prediction is a standard prediction interval used
by power aggregators such as the California Independent
System Operator (CAISO). The testing was performed 1,000
times using different data sets for each model. The box plots
illustrate the mean (red line), the 25th and 75th percentiles,
the whiskers, and the outliers (‘+’). As can be seen, the NME
performs best on average in these testing cases, followed by



SVM and ANFIS, and the Persistent model gives the worst
performance. The results are summarized in Table I.

TABLE I
SUMMARY OF PREDICTION ERRORS FOR DIFFERENT MODELS

Persistent ANFIS SVM NME
Root MSE (kW) 27.9171 24.0796 23.1256 21.1799
Std. Dev. (kW) 1.5618 1.6735 1.4437 1.2155

The result of the 1-hour ahead prediction is shown in
Figure 3 (c). We observe that NME makes reasonably well
predictions. It is worth mentioning that the model tends to
make a conservative guess during the idle times, and a more
aggressive guess during the working time, because of the
segregation of model predictions by different experts.

In addition to the prediction power, the merit of NME
compared with other prediction models is that it blends
unsupervised learning into the supervised model, so that
the knowledge learned from the model naturally arises from
optimizing some metric, in this case, the prediction error.
In the smart building context, we care about the building
occupants’ energy consumption behavior as much as the total
power consumed. We can examine the feature vectors of the
learned NME model, as shown in Figure 4 below.

Fig. 4. Left: the learned feature vector whose active sites are labeled
with devices. Top right: device measurement data matrix with lighter color
indicating high power consumption. Bottom right: Corresponding feature
weights throughout time.

As can be seen, using data of 10 days, we successfully
identified patterns that are typical of working hours as well
as idle times. In particular, the two feature vectors essentially
segregated the devices into two groups. Close inspection
reveals that these two groups have characteristic devices:
devices that are active in group A (left feature vector in
Figure 4) include refrigerators, water fountains, lightings,
servers, HVACs, that generally operate with and without
occupant presence; group B includes mostly desktops, as
well as shredders, projectors, printers, etc., that are used
frequently during working ours, but left idle after work. We
also identified some active desktops in group A, which might
indicate some working patterns of the owners.

The discovered group of feature vectors can assist in
making power predictions as follows. With the corresponding
learned expert models, if presented with a past history of
data, it first decides which expert it should turn to by
calculating the similarities of the past data with each of these
feature vectors, and then makes a prediction based on the
weighted sum of experts’ opinions.

To test the statistical significance of the device patterns
discovered by the NME model, we apply the classical idea of
permutation test based on a statistic that measures the effect
of the claimed expert model selection mechanism. The null
hypothesis H0 is that the selection of expert model based on
the learned device pattern has no effect on NME’s prediction
error. The original time series of the device network have
specific labels, such as projectors, coffeemakers, refrigerators
and computers. Correspondingly, the learned feature vectors
have labels attached to each of its entries as illustrated
in Figure 4. If we randomly permute the labels of the
original time series and use the same feature vector, under
the null hypothesis, this should not make a difference in the
model’s prediction power. To make the added variation due to
resampling as small as possible, this random permutation was
conducted 5,000 times, each time with a randomly permuted
time-series data matrix, where we only permuted the labels
of the time series rather than the points within. Figure 5
shows the permutation distribution of the test statistic.

Fig. 5. The distribution of the statistic of MSE prediction error in the
permutation test.

The test statistic is summarized in Table II. In Figure 5,
the dashed line marks the mean of the distribution. The solid
black line is the .05 significance level for one-tailed test.
The sampling distribution is close to normal, as indicated
by the red fitting line. The P-value of this permutation test
is .0144, which is the probability that we would observe
a statistic value as extreme or more extreme than the one
we did observe under the null hypothesis. Obviously, we
are confident to reject the null hypothesis and adopt the
alternative: the feature vector learned by the NME model
did make a difference in the prediction performance. This
suggests that the learned features are very likely describing
the underlying energy usage patterns.



TABLE II
SUMMARY OF STATISTICS FOR PERMUTATION TEST

Observed Mean SE Permutation test P-value
118.4331 134.0764 8.7313 0.0144*

V. CONCLUSION

Reliable and decentralized electric power forecast based
on local energy consumption behavior is crucial to the
implementation of demand response and dynamic pricing.
Modeling consumer behaviors in commercial buildings is of
particular interests because of the potential to significantly
contribute to the accurate estimation of demand side in the
power system [18].

NME explores a connection of supervised and unsuper-
vised learning by establishing a statistic based on prediction
errors to guide the two learning processes. It has particular
strengths of making accurate prediction of total energy
consumption of a building space, and also recognizing statis-
tically significant energy consumption behaviors that reveal
the underlying social structures and working patterns of
occupants for large-scale problems. The knowledge learned
from the model is valuable input to device-level clustering,
building state classification and local management decisions.

NME can be implemented at the building embedded
system level by adding an extra layer to the existing pre-
diction methods for switching, assuming that the prediction
method is a linear model and can be adapted to the mixture
of experts framework. The computation complexity is not
limiting the performance. For the building level, the building
manager can take plug-loads consumption of each floor or
centers for building modes identification, and the prediction
of building energy consumption can be used to facilitate
demand response scheduling. At the utility, each building
can be associated with a collection of features; nevertheless,
for the concern of privacy, only the consumption of few
devices and public information such as weather forecasts can
be accessible.

One future research direction is to extend the capability
of the model to identify key characteristic devices that are
critical to the local decision of energy consumption, as
well as to detect possible inefficient energy consumption
behaviors. It is also interesting to apply the model in the
optimal control task by designing a decision metric that
maximizes the expected utility based on the learned feature
patterns.
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