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ABSTRACT
Through a social game, we integrate building occupants
into the control and management of an office building
that is instrumented with networked embedded systems
for sensing and actuation. The goal of the social game
is to both incentivize building occupants to be more en-
ergy efficient and learn behavioral models for occupants
so that the building can be made sustainable through
automation. Given a generative model for the occu-
pants behavior in the competitive environment created
by the social game, we develop a method for learning the
parameters of the behavioral model as we conduct the
experiment by adopting a learning to learn framework.
Using tools from statistical learning, we provide bounds
on the parameter inference error. In addition, we pro-
vide an algorithm for computing the stopping time re-
quired for a specified level of confidence in estimation.
We show the performance of our algorithm in several
examples.

Categories and Subject Descriptors
F.1.2 [Theory of Computation]: COMPUTATION
BY ABSTRACT DEVICES—Modes of Computation;
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imental design; I.6.m [SIMULATION AND MOD-
ELING]: Miscellaneous

1. INTRODUCTION
Energy consumption of buildings, both residential and

commercial, accounts for approximately 40% of all en-
ergy usage in the U.S. [8]. Lighting is a major consumer
of energy in commercial buildings; one-fifth of all energy
consumed in buildings is due to lighting [16].
Intelligent lighting control system, among other build-

ing automation and control (BAC) systems, has been
designed and implemented to ensure both energy ef-
ficiency and user comfort. Striking the right balance
between these two objectives is fundamental aspect of
BAC systems, which requires thorough understanding
of the preferences and behaviors of the occupants. BAC
systems are composed of many embedded devices linked
together for information sharing, sensing, and actua-
tion. They are inherently cyber-physical systems (CPS).
Some tasks that a building manager might be inter-

ested in include predicting energy load, incentivizing
users to change behavior, or—at a more basic level—
learning user preferences for improving building automa-
tion. In all of these tasks the building manager needs
a way to distinguish between occupants. One way to
think about this problem is as a classification task.
We design a social game in which building occupants

compete for points that determine their likelihood of
winning a lottery by voting according to their light-
ing preferences via online platform—the more energy
efficient an occupant’s behavior, the more likely they
are to win. Our initial experiments demonstrate desir-
able reduction of energy consumption while ensuring the
lighting comfort of occupants [12].
The goal of the building manager in this setting is

two-fold; the desire to induce the occupants to be more
energy efficient as well as desire to have an accurate
model of occupant behavior for improved automation.
Given a desired classification accuracy, we apply results
from statistical learning to provide bounds on parame-
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ter inference error as well as estimate stopping time that
achieves the classification rate. In particular, strategies
for stopping time estimation, as presented in this study,
include lower bound based on Cramér-Rao bounds types
of bounds that have been used in statistics to conduct
feasibility analysis and judgment of proposed estima-
tors, as well as upper bounds based on Delta method [5]
and concentration inequalities [11]. The latter provide
the theoretical foundation for the reliable estimation
of stopping time (REST) algorithm (Section 6, Algo-
rithm 1).
The remainder of the paper is organized as follows.

We begin with a brief discussion of motivations and an
overview of the social game experimental setup in Sec-
tions 2 and 3 respectively. In Section 4 we present the
theoretical formulation including the game-theoretic, gen-
erative behavior model based on a game–theoretic view
of player interactions and the learning to learn frame-
work. We provide our results on parameter inference
error bounds which lead to stopping time bounds in
Section 5. In Section 6 we present the REST algo-
rithm. Finally, in Section 7 we illustrate the applica-
bility of the REST algorithm to stopping time estima-
tion in the learning of behavior parameters, the predic-
tion of lighting energy consumption, and classification
of players into behavior–based categories. We conclude
in Section 8 with some discussion on the results and
comments on future work.

2. BACKGROUND AND MOTIVATION
The estimation of stopping times is useful for the

proposal, experimental design, and evaluation of per-
formance of various CPS with socioeconomic and en-
vironmental considerations. For instance, to evaluate
the structure wherein nearby homes explicitly share en-
ergy with each other to balance local energy harvesting
and demand in microgrids proposed in [18], we need to
decide how long to run the experiment to arrive at a re-
liable conclusion. Another example is the evaluation of
the control algorithm and embedded platform for HVAC
systems proposed for energy savings [7]. Although the
experimental periods in these studies are often chosen
according to time and resource constraints, a recommen-
dation of experimental period based on the complexity
of the learning objectives is often informative in prac-
tice.
The social game based on lighting control systems is

a pilot experiment to study the behavior of occupants
in non-cooperative setting and to evaluate the potential
of energy savings. We are interested in knowing how
long we should run the experiment if we scale up from
22 people as is in the current setting to, for instance,
100 people in a much larger office to achieve more sub-
stantial impact on energy savings. This is one of the

major motivations for the work presented in the present
article.
The problem of determining the sample size has been

long studied in theoretical statistics by an approach
called power analysis that obtains the sample size re-
quired to correctly reject the null hypothesis (see, e.g.,
[3]). In addition, statistical learning theory provides
generalization error bounds based on sampling complex-
ity, such as the Rademacher complexity that is used for
progressive sampling (see e.g. [1]). The probably ap-
proximately correct (PAC) property is similar to the
probably close enough criteria (see e.g. [4]) where model–
based dynamic sampling methods are evaluated. An-
other related line of work is called virtual sample gen-
eration that uses techniques, such as intervalized kernel
methods and bootstrapping, to produce extra informa-
tion for expediting learning (see, e.g., [6]). It was shown
that virtual sample generation can be used to improve
the small-data-set learning in manufacturing systems.
Since only few examples can be obtained in the early
stages in social experiments, we adopted a similar strat-
egy to produce virtual samples based on our generative
behavior model to reliably estimate the stopping time.

3. SOCIAL GAME
In this section, we provide a brief overview of the

experimental setup. We have instrumented an office
space with a heating, ventilation, and air condition-
ing (HVAC) system, automated lighting control (Lutron
system1), plug-load metering and carbon dioxide sen-
sors. The social game for energy savings that we have
designed is such that occupants in an office building vote
according to their usage preferences of shared resources
and are rewarded with points based on how energy ef-
ficient their strategy is in comparison with the other
occupants. Having points increases the likelihood of the
occupant winning in a lottery. The experiments we have
conducting thus far focus only on controlling the light-
ing dim level in the office.
We have developed an online platform in which the

occupants can login and participate in the game. In the
platform, the occupants can log their dim level votes,
view point balances of all occupants, and observe all
the behavior (voting) patterns of all occupants.
An occupant chooses a value in the interval [0, 100]

representing their vote for the dim level in their zone
as well as neighboring zones. The lighting setting that
is implemented in each zone is the average of all the
votes weighted according to proximity to that zone. For
analysis, the occupants can be in one of three states.
If an occupant actively logs in and votes, we say the
occupant is in the state active. If an occupant is present

1http://www.lutron.com/en-US/Pages/default.aspx
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in the office but leaves their vote at the default dim level,
we say their state is default. Finally, if the occupant is
not present, we say their state is absent.

4. THEORETICAL FORMULATION
In this section we provide the theoretical formula-

tion of our approach to estimation of stopping time.
The problem is formulated as an inference problem in a
transfer learning setting [2,10]. A fundamental assump-
tion is that the learner’s uncertainty concerning the true
model (or equivalently, the true prior) is large, while the
dimensionality of the true model is in fact quite low.
In our experimental setup we aim to learn agents pref-

erences with respect to usage of shared resources. We
assume that consistency in the office setting in terms of
schedules and behaviors will lead to a low dimensional
model for occupant preferences.

4.1 Generative Behavioral Model
In previous work we took a game-theoretic approach

for designing incentives and estimating utility functions
of the occupants [12]. We were able to estimate the
parameters of each occupant’s utility function via solv-
ing a convex optimization problem. In this section we
present the essential model; for the interested reader, a
more detailed description can be found in [12].
Let n denote the number of players. Each player op-

timizes their utility function Ψi(xi, x−i) over some set
Ci = {xi ∈ R| ci,j(xi) ≥ 0, j ∈ {1, . . . ,mi}}. Let
C =

∏n
i=1 Ci be the joint strategy space. We param-

eterized each occupant’s utility functions as follows:

Ψi(xi, x−i, γ; ξ) =ψ0(xi, x−i, γ(xi, x−i))

+ ξiψ1(xi, x−i, γ(xi, x−i)) (1)

where γ is the announced incentive, ψ0 and ψ1 are con-
cave basis functions representing the occupants comfort
and desire to win respectively, and ξi is the parame-
ter. We remark that this framework easily extends to
any finite number of basis functions and therefore, pa-
rameters; we choose only two basis functions as this is
a reasonable model for the energy management social
game we conducted.
Then we relaxed the first-order conditions for (differ-

ential) Nash equilibria. In particular, we defined resid-
uals using the stationarity and complementary slack-
ness conditions of each player’s individual optimization
problem at each iteration {xk, γk}Kk=1 where xk is the
observed Nash equilibrium of the γk induced game at
iteration k. The stationarity residual is given by

rks,i(ξi, λi) =DiΨi(x
k, γk(xk)) +

mi∑
j=1

λi,jDici,j(x
k
i ) (2)

where mi = |Ai(x
k
i )| is the cardinality of the active

constraint set at xk
i and λi = (λ1,1, . . . , λi,mi

). The
complementary slackness residual is similarly defined by

rj,kc,i (μi) = λi,jci,j(x
k
i ), ∀ j ∈ {1, . . . ,mi}. (3)

Define rks (ξ, λ) = [rks,1(ξ1, λ1) · · · rks,n(ξn, λn)]
T and

rkc,i(λi) = [r1,kc,i (λi) · · · rmi,k
c,i (λi)] so that we can de-

fine rkc (λ) = [rkc,1(λ1) · · · rkc,n(λn)]
T . We took a non-

negative, convex penalty function, χ : Rn × R
m → R+

where m =
∑n

i=1 mi, and defined the following opti-
mization problem in the parameters ξ = (ξ1, . . . , ξn)
and the Lagrange multipliers λ = (λ1, . . . , λn):

min
λ≥0,ξ≥0

K∑
k=1

χ(rks (ξ, λ), r
k
c (λ)) (4)

Note that since the basis functions are concave and
we force the parameters to be positive, the resulting
game is a n–person concave game and thus we know
a Nash equilibrium exists [14]. If the observations are
non-degenerate differential Nash equilibria in the games
determined by the estimated parameters, then we know
the observed Nash are unique [13]. The condition re-
quired to verify this is checking the derivative of the
differential game form, i.e. a matrix of the second-order
partial derivatives of each player’s utility function, is
negative definite. This condition may be added as a
constraint in the above optimization problem.

4.2 Learning to Learn
Having an objective prior used in a classification or

other learning task is extremely advantageous. Part of
our goal in this paper is to utilize the learning to learn
framework to learn an objective prior by starting with
a subjective prior [2].
We model the human behavior as a hierarchical Baye-

sian model with two levels. The first level represents
individuality, such as personality and psychology, which
is responsible for decision making, denoted as π ∈ Π.
Given the individuality parameter, the parameter ξ of
the generative behavior model proposed in Section 4.1
is distributed according to the objective prior, p(ξ|π),
and we assume by realizability that π∗ ∈ Π corresponds
to the true prior.
The data generated by the behavior model, x ∈ C,

allows direct inference to the parameters ξ. Our frame-
work is general enough to incorporate other types of
data, e.g. survey data, which allows for direct inference
to the individuality π of each of the players. In addi-
tion, we remark that this framework does not preclude
the inclusion of labels in the data set. We do not observe
all the factors in the environment that influence agent
behavior and individuality and we treat these unobserv-
able environmental factors as sources of randomness.
In practice, since the social game will have a large
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number of players, we can model the parameters of each
players utility functions as following a normal distribu-
tion. We thus establish the hierarchical Bayesian model
for the group as follows:
Group–level variation (first layer): μj ∼ N (ν, σ),
θj ∼ Γ(α, β) where μj is the mean response sampled
from the normal distribution and θj is the variance of
the response sampled from the gamma distribution for
player j.
Individual randomness (second layer): ξki ∼ N (μi, θi)
is the random parameter for individual i sampled at time
k according to the normal distribution whose parameters
μi and θi are sampled from the first layer.
Observation (third layer): We will denote the data
collected up to time t by xt = {x1, . . . , xt} where xk are
the responses generated from the model in Section 4.1
where ξki ∼ N (μi, θi) is the parameter used in the model.
Since the game is a concave game, there exists a unique
Nash equilibrium so that there is a one-to-one mapping
from the parameters ξk1 , . . . , ξ

k
n to the Nash equilibrium

xk = (xk
1 , . . . , x

k
n).

We use the additional notation xt
i = {x1

i , . . . , x
t
i} to

denote the data for player i up to time t where xk =
(xk

1 , . . . , x
k
n) is the Nash equilibrium at time k.

5. BOUNDS ON INFERENCE ERROR
In this section we utilize existing statistical theory to

derive lower bounds on the inference error of the hyper–
parameters θ = (θ1, . . . ,θ4) = (α, β, ν, σ). Since the
hyper–parameters are deterministic, we can apply the
maximum likelihood estimator (MLE) given by

θ̂MLE = argmax
θ

ln p(xt|θ) (5)

which maximizes the log–likelihood of the data xt col-
lected up to time t. For any estimators which are un-
biased, the Cramér–Rao bound [17] provides a lower
bound on the mean square error (MSE) of the estima-
tion if certain regularity conditions are met (see, e.g., [9,
Def. 7.21]). According to the transfer learning frame-
work, each occupant i ∈ {1, . . . , n} will provide one
instance of the subjective prior as they are responsi-
ble for contributing xt

i to the data set. Intuitively, si-
multaneously learning a group of participants will give
us a better inference of the hyper–parameters, which is
demonstrated in the following propositions.

Proposition 1. Suppose xt
1, . . . ,x

t
n are i.i.d. from

an unknown distribution pθ(·) parameterized by the hyper–
parameters θ = (θ1, . . . ,θ4). For any estimators that
meet the regularity conditions, the MSE of estimation
of θi is lower bounded by

Ext

[
(θi − θ̂i)

2
]
≥ 1

nζi
(6)

where ζi = −Ext

[
∂2 ln p(xt|θ)

∂θ2
i

]
is the curvature whose

expectation is taken over the random variable xt.

Now we consider estimating the random parameters
μi, θi at the second–level given the observations ξti =
(ξ1i , . . . , ξ

t
i) for each i ∈ {1, . . . , n}. Note that the op-

timization problem to find the admissible set of pa-
rameters {ξk1 , . . . , ξkn} that induce the observed Nash
(xk

1 , . . . , x
k
n) is convex. Hence, given an observed Nash

equilibrium, through solving the convex optimization
problem, we have a unique set of parameters {ξk1 , . . . , ξkn}.
Thus we can consider our data to be ξti for each i ∈
{1, . . . , n}.
Define the MSE matrix for estimator as θ̂(ξt) as

R(θ̂) = Eξt,θ

[(
θ̂(ξt)− θ

)(
θ̂(ξt)− θ

)T
]
. (7)

One possible estimator that could be used is the maxi-
mum a posteriori estimator (MAP) given by

θ̂MAP = argmax
θ

[
ln p(θ|ξt)] . (8)

In Bayesian estimation, the performance of any esti-
mator θ̂(ξt) can be bounded by the Bayesian Cramér–
Rao bound (BCRB), under suitable regularity condi-
tions [15, Def. 2.78].

Proposition 2. Suppose we have a social game that
has been carried out for time T with n players whose be-
havior model parameters are distributed as ξki ∼ N (μi, θi)
where μi ∼ N (ν, σ) and θi ∼ Γ(α, β) for k ∈ {1, . . . , T}
and i ∈ {1, . . . , n}. Suppose that μi and θi are inde-
pendent. Then, under suitable regularity conditions, the
MSE matrix is lower bounded:

R
(
μ̂i, θ̂i

)
≥

[
(α−1)βσ

Tσ−(α−1)β 0

0 2(α−1)(α−2)β2

T+2α−2

]
. (9)

We remark that the importance of the lower-bound in
the above proposition is that it bounds the MSE achiev-
able by the optimal estimator and reveals the relation-
ship between the MSE and the number of rounds, T ,
required in the experiment to achieve that bound. The
error bound also decreases as a function of 1

T .
As we see the BCRB involves the hyper–parameters of

the subjective priors, which are non–random variables
and often unknown. The hybrid Cramér–Rao bound
(HCRB) [17] is applicable to the joint estimation of ran-
dom and non–random parameters. The following propo-
sition provides a HCRB for the parameter estimation for
an individual.

Proposition 3. Suppose we have a social game that
has been carried out for time T with n players whose be-
havior model parameters are distributed as ξki ∼ N (μi, θi)
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where μi ∼ N (ν, σ) and θi ∼ Γ(α, β) for k ∈ {1, . . . , T}
and i ∈ {1, . . . , n}. Let θnr = (ν, σ, α, β) and θr =
(μi, θi) in the parameter vector θ = (θnr,θr). Then,
under suitable regularity conditions, the MSE matrix is
lower bounded by

R(θ̂) ≥
[
A B
BT C

]−1

(10)

where

A =

⎡
⎢⎢⎢⎣

1
σ 0 0 0
0 1

2σ2 0 0

0 0 Γ”(α)Γ(α)−Γ′(α)2

Γ(α)2
1
β

0 0 1
β

α
β2

⎤
⎥⎥⎥⎦ , (11)

B =

⎡
⎢⎢⎣
− 1

σ 0
0 0
0 − 1

(α−1)β

0 − 1
β2

⎤
⎥⎥⎦ , (12)

and

C =

[
Tσ+(α−1)β
(α−1)βσ 0

0 T+2α−2
2(α−1)(α−2)β2

]
. (13)

In particular, the MSE for the individual parameters
θr = (μi, θi) is lower bounded by

R(μ̂i, θ̂i) ≥
⎡
⎣ (α−1)β

T 0

0 2(α−1)(α−2)β2

T+
4c(α−1)2−4α+6

α2c−αc−α+1

⎤
⎦ (14)

where c = Γ(α)Γ′′(α)−Γ′(α)2

Γ(α)2 and Γ(·) is the gamma func-
tion.

We remark that the above bounds are theoretical and
often difficult to compute in practice. In the next sec-
tion we present an approach to computing stopping time
based on these bounds.

6. REST ALGORITHMS
In this section we present the reliable estimation of

stopping time (REST) algorithm. Let us first describe
the inputs to the REST algorithm. As before, let n be
the number of players in the game. We use the notation
θ to denote the set of model parameters {μi, θi} for
each i ∈ {1, . . . , n}. Let Yt ∈ R

t×n be a random matrix
where [Y t]i,j ∈ Ci is the random variable representing
player i’s vote at time j ∈ {1, . . . , t} and Y k ∈ C is the
vector valued random variable representing the Nash
equilibrium at time k. For the McDiarmid method, we
are given a target function f : Cm → R that is a function
of Y 1, . . . , Y t satisfying for all j and all x1, . . . , xt, x̂j ∈
C that

|f(x1, . . . , xj , . . . , xt)−f(x1, . . . , x̂j , . . . , xt)| ≤ cj . (15)

The target function represents the objective; for in-
stance, it may be the average of the lighting votes or
the amount of energy consumed by the system at the
Nash equilibrium. Note that Y t is the random variable
and we again use the notation xt to denote the data up
to time t.
For the Delta method, we are given real-valued, dif-

ferentiable function g that is a function of the sample
mean. We use the notation g′(xt) for the first derivative
of g.
We define the following functions: Mest(x

t) returns
the estimated model parameters θ, Msim(θ, t) is the
generative model which returns the simulated data xk

sim

for time k, Φ(z;μ, θ) is the cumulative density function
of N (μ, θ) evaluated at point z ∈ R. In addition, let
ε > 0 be the precision and 1− δ > 0 probability bounds
(see either (16) or (20)) and let t be the start time of
the experiment.
The REST algorithm is given in Algorithm 1. The

two methods at the core of the REST algorithm are
the McDiarmid method [11] and the Delta method [5].
We have the following results showing that for each of
the methods a probably approximately correct (PAC)
property holds.

Algorithm 1 Reliable Estimation of Stopping Time

1: function REST(xt,ε,δ,Mest,f
′,Msim,L,M)

2: Initialization:
3: θ̂ ← Mest(x

t) � estimation of model parameters
4: τ ← L � initialization of stopping time
5: tstart ← t � initial time
6: k ← tstart � iteration number
7: σ̂ ← std(xt) � estimation of standard deviation
8: stop ← false � stopping condition
9: Main program:

10: while ¬stop ∧ (k < L) do
11: k ← k + 1
12: switch M do
13: case Delta

14: if
(
Φ

(
ε; 0, f ′(xt)σ̂√

k

)
− 1

2

)
≥ δ

2 then

15: stop ← true
16: end if
17: case McDiarmid
18: xk−tstart

sim ← Msim(θ̂, k − tstart)

19: xtot ← [xt,xk−tstart
sim ]

20: if exp
(
− 2ε2

c2ub(xtot)

)
≤ 1−δ

2 then

21: stop ← true
22: end if
23: end while
24: Outputs: τ ← k − tstart
25: � Estimated stopping time from now
26: end function
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Theorem 1. (McDiarmid’s stopping time) The
output of stopping time, τEST

MD , according to the McDi-
armid method of the REST Algorithm satisfies the fol-
lowing PAC property,

P
( |f(Ym)−E [f(Ym)]| ≥ ε

) ≤ 1− δ, ∀m ≥ τEST
MD

(16)
where f(Ym) ∈ R is the random variable of investiga-
tion, ε is the desired precision, and 1− δ is the specified
probability bound.

Proof. Consider Y m = (Y 1, ..., Y m) where the Y k

are independent random variables taking values in the
set C, and a real–valued function f(Y m). Define the
quantity based on the upper bounds

cub(Y
m) =

m∑
j=1

c2j . (17)

The algorithm produces bounds on the maximum dif-
ference between two realizations of function values:∣∣f(x1, ..., xj , ..., xm)− f(x1, ..., x̂j , ..., xm)

∣∣ ≤ cj (18)

The stopping time estimator τEST
MD satisfies:

exp

( −2ε2

cub(Y τEST
MD )

)
≤ 1− δ

2
(19)

Therefore by the McDiarmid’s inequality [11] the PAC
property is satisfied.

Theorem 2. (Delta method stopping time) The
output of stopping time, τEST

Delta, by the Delta method of
the REST Algorithm satisfies the following PAC prop-
erty whose parameters are specified a priori:

P
( |g(Ym)−E [g(Ym)]| ≥ ε

) ≤ 1− δ, ∀m ≥ τEST
Delta

(20)
where the notation is consistent with Theorem 1.

Proof. Define the random variable Z = g(Ym) −
E [g(Ym)] and let σY m be the variance. Then by the
Delta method [5, Prop. 8.14], the asymptotic distribu-
tion of Z converges to N (0, |g′(E [Y m])|σY m). Since
the stopping time estimate τEST

Delta satisfies

P (|Z| ≤ ε) = 2Φ

(
ε

|g′(E [Y m])|σY m

)
− 1 ≥ δ (21)

where Φ(·) is the cumulative density function of N (0, 1),
the proof is completed.

The basic idea of REST is to find the shortest span of
experiment to satisfy the criteria shown in (19) and (21)
so that the PAC property holds. The parameters that
appear in the bounds, such as ci in (18) as well as σY m

and g′(E [Y m]) in (21), are estimated from a set of real
data and virtual samples that are generated to be con-
sistent with the real data according toMsim(θ, t), which

accounts for the fluctuations in the stopping time esti-
mates. In particular, in (18) and (21) we use cub(τ

EST
MD ),

σ̂xm , and E[xm] estimated from the data set xm.

7. APPLICATION OF REST
To illustrate the application of REST algorithms, we

use it to estimate stopping time for tasks including learn-
ing behavior parameters, predicting energy consump-
tion, and classifying users into categories.

7.1 Behavior Parameter Learning
In the building energy management social game fo-

cused on lighting control, we have shown that our game-
theoretic model can capture the dynamics and behavior
of the agents in the non–cooperative game [12]. The
parameter we are interested in learning is ξi, which cap-
tures the tradeoff between winning as a function of the
incentive and lighting comfort.
Denote the lighting vote matrix xt ∈ R

n×t, where t
is the span of the experiment. At time k, user i’s vote
is xk

i . We synthetically generate the votes by draw-
ing the parameters ξi for i ∈ {1, . . . , n} from N (μi, θi).
In addition, user i votes the default lighting level with
probability pdefi , votes according to the Nash equilib-
rium strategy with probability pacti , and is absent with
probability pabsi in which case the user does not vote.

Figure 1: Distribution of lighting votes for the simu-

lated population and individual user.

Figure 2 illustrates the lighting votes for a population
of size n = 100 and user i = 1 and utility function pa-
rameter is ξ1 which is drawn from the generative model
(Section 4). Our task is to estimate the mean of the
behavior parameter, μ1, as appears in the individual
randomness layer in the hierarchical Bayesian model in
Section 4.2. The unbiased MLE estimator for μ1 is the
sample mean, μ̂1 = 1

t

∑t
k=1 ξ

k
1 , where ξk1 is estimated

by the method in Section 4.1 from the lighting votes up
to time k.
The Cramér-Rao lower bounds derived in Section 5

directly apply to the inference of stopping time to sat-
isfy the lower bounds on error. For the Delta method of
REST, the sample standard deviation is applied to ξk1
for k ∈ {1, ..., t}. We define g(μ̂1) = μ̂1, and its deriva-
tive is unity. For the McDiarmid method, the bound
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ci in (18) is taken as 1
t (maxk(ξ

k
1 ) − mink(ξ

k
1 )) so that

cub(x
t) = 1

t

(
maxk(ξ

k
1 )−mink(ξ

k
1 )
)2
.

The Cramér-Rao lower bounds and the REST esti-
mated stopping time are shown in Figure 3. The Delta
method produces tighter bounds than the McDiarmid
method. Both are lower bounded by the Bayesian and
Hybrid Cramér-Rao bounds as expected.

ε δ
ε δ

ε δ
ε δ

ε
ε

Figure 2: Estimated stopping time by REST for infer-

ence of μ1 for user 1, and lower bounds given by Bayesian

and Hybrid Cramér-Rao. For each day in the experiment

(x-axis) we estimate the stopping time from that day for-

ward (y-axis).

To evaluate the stopping time produced by REST, for
a given period of experiment, we simulate the data 100
times and obtain the empirical distribution of the esti-
mated μ̂1 (see Figure 4). The estimation is concentrated
within the bounds starting from day 100, which agrees
with the Delta method. The McDiarmid method gives
an overestimated result since the bounds are less tight.

Figure 3: Distribution of μ̂1 for 100 simulations of pos-

sible realizations when the size of dataset varies (x-axis).

The edges of the box are the 25th and 75th percentiles,

the whiskers extend to the most extreme data points, and

outliers are plotted individually. The true parameter and

±1 upper/lower bounds are also indicated.

7.2 Energy Consumption Prediction
One objective of the social game is to estimate the ef-

fects of game dynamics on energy savings of the system.
The energy consumption, Elight, is a monotone increas-

ing function of the mean lighting vote and is given by

Elight = g

(
1

|S \ Sabsent|
∑

i�∈Sabsent

xi

)
(22)

where Sabsent and S \ Sabsent are the sets of absent and
present (active and default) users respectively, and xi is
the individual lighting vote. The relationship between
energy consumption and lighting level can be described
by a piece-wise linear function, as demonstrated in Fig-
ure 5. There are two quantities that can be used to char-
acterize the effect of the social game on energy savings,
namely, the mean energy consumption, μE = E

[
Elight

]
and the percentage of energy consumption below a cer-
tain threshold, pE,λ = P

(
Elight < λ

)
where λ can be

chosen, for instance, as a target level set by the building
manager. The latter quantity is particularly useful for
demand response programs; a building manager can de-
termine the likelihood that in the next time period (e.g.
15 minutes or 1 hour) that the energy consumption will
be below a certain threshold.

Figure 4: Lighting energy consumption (kWh) is fitted

with a piece-wise linear function.

Figure 5: Distribution of daily lighting energy con-

sumption (kWh) for different populations.

Compared to the fixed set point under the traditional
control scheme, energy consumption in social games is
random and depends on the competitive environment;
the value depends on the set of players and also their
strategies. The effects of the game are illustrated in
Figure 6 where we show the normalized frequency of
the energy consumption for the original population, the
population with 10% of the active players (ranked by
the active probability pact) removed, and the population
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with 10% of the inactive players (ranked by the default
probability pdef ) removed. An interesting observation
is that even though the average of the lighting votes is
implemented, the influence of the introduction/removal
of one active user, is larger than the weighting of its
vote, 1

|S\Sabsent| , since the dynamics of the game suggest

that other users will change their votes to match this
situation.
Given the lighting votes xt up to time t and estimators

μ̂E for the mean, the task is to estimate the stopping
time of the experiment to satisfy the PAC property (15)
with precision ε and probability bound 1 − δ. For the
Delta method, the target function is g(E[xt]) as in (22).
Its first derivative is given by the slope of the piece-
wise function. For the McDiarmid method, the upper
bound ci is obtained by 1

t (maxi E
light
i −mini E

light
i ), and

cub(x
t) = 1

t

(
maxi E

light
i −mini E

light
i

)2
.

Figure 7 illustrates REST estimated stopping time.
For evaluation purpose, the empirical distribution of the
estimates of mean energy are shown in Figure 8 thereby
showing that the estimated stopping time achieves the
desired result.

7.3 Classification of Player Category
Another potential goal of social game experiments is

to classify agents into different categories based on their
behavior. Classification of players is extremely impor-
tant for incentive design because it provides a data–
driven method for understanding the preference space
of the competitive agents. Further, in the context of
energy management, it is important for customer seg-
mentation which can be used for targeting in demand
response programs.

ε δ
ε δ

ε δ
ε δ

Figure 6: Estimated stopping time by REST for energy

consumption prediction.

From the social game we previously conducted [12],
we identified four categories that cover the profiles of
all the users: those who care most about lighting com-
fort, those who care most about winning the lottery,
those who are less extreme than the previous two, and
those who are ambivalent about the game. The ambiva-
lent type is easy to identify based on their votes or the
number of times they log on to the website; therefore,
we are most interested in classification of the first three

Figure 7: Distribution of estimated mean of energy

consumption when the sample size varies, obtained from

100 simulations.

types of users into their categories.
Following the notation from Section 6, we denote the

data for user i as xt
i ∈ Ct ⊂ R

1×t where t is the time. We
denote the category yi ∈ Y and the function that maps
lighting votes to the parameter ξti as Υ : xt

i �→ ξti . For
each user we compare the empirical distribution Pi of
ξti = Υ(xt

i) to the distributionQj of ξj for category j ac-
cording to the Jensen-Shannon divergence, JSD(P ||Q),
given by

JSD(P ||Q) =
1

2
D(P ||M) +

1

2
D(Q||M) (23)

whereM = 1
2 (P+Q), andD(P ||M) =

∑
k P (k) ln P (k)

Q(k)

is the Kullback-Leibler divergence and the summation
is over the number of bins used in the computation of
the empirical distribution.
Our classification rule is thus

h(xt
i) = arg min

j∈{1,...,4}
JSD(Pi||Qj). (24)

We apply the classification rule to the data of each user
i in the population. The cost function L(h;xt,y), where
xt = [xt

1, ...,x
t
n] ∈ Rt×n is the data matrix and y is the

vector of categories for all the players, is given by

L(h;xt,y) =
1

n

n∑
i=1

1(h(xt
i) = yi); (25)

it is the proportion of misclassified users. Define the
random function

f(h;xt,y) = L(h;xt,y)− inf
s∈(0,∞)

E [L(h;xs,y)] ; (26)

it represents the deviation of the observed misclassifi-
cation error from the best performance. If we assume
that the task is κt-learnable, i.e E [f(h;xt,y)] ≤ κt

and the misclassification infx∈(0,∞) E [L(h;xs,y)] of the
best performer is upper bounded by �, then the task of
estimating stopping time reduces to finding a constant
ci for all i ∈ {1, . . . , t} such that when xt and x̂t differ
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in only the i-th column, we have∣∣f(h;xt,y)− f(h; x̂t,y)
∣∣ ≤ ci. (27)

By Algorithm 1 and Theorem 1 , the following property
is satisfied:

P
(
Lt ≥ ε+ κt + �

) ≤ P
(
Lt ≥ ε+ κt + inf

t
E [Lt]

)
= P

(
ft ≥ ε+ κt

)
= P

(
ft −E [ft] ≥ ε+ κt −E [ft]

)
≤ P

(
ft −E [ft] ≥ ε

) ≤ 1− δ
(28)

where we use the notation Lt = L(h;xt,y) and ft =
Lt − infs E [Ls]. This property directly relates the mis-
classification error in practice to the bound obtained in
Theorem 1, which implies that an algorithm with lower
values for � and κt will perform well in practice with
high probability.
Using strategy profiles learned from experiments re-

ported in [12], we simulate a large population interacting
in a lighting control social game by making 33 replicates
of each of the three prototypical users which correspond
to three categories of interest. People in the same group
share the same strategy profile, which is the empirical
distribution of ξi, but on each day their specific parame-
ter value, ξi, is random, independent and is revealed by
the lighting votes through the mapping from the Nash
equilibrium to parameter value (see Section 4.2).

Figure 8: Distribution of estimated total time of exper-

iment determined by REST for initial phases of length

20, 40, and 60 days. For example, for an initial phase

of length 40, we have collected data x40 and we ap-

ply REST to each of the 100 bootstrapped sample sets,

x40
boot,j , j = 1, ..., 100 drawn from x40 to obtain 100 esti-

mates of stopping time. This is added to the length of

the initial phase to get the total experiment time. The

three distributions are indistinguishable, which indicates

that the total experiment time is stable over time.

Starting from an initial phase, i.e. some period over
which the experiment has been running, we provide es-
timation of the additional number of days required in
order to correctly classify the users. The estimated to-
tal length of experiment is thus the sum of the length
of the initial phase and additional days estimated by

Figure 9: Empirical distribution of the misclassification

error when the sample size varies (x-axis) for the user

type classification problem.

REST. In Figure 9, we show the distribution of the esti-
mated total experimentation time determined by REST
for initial phases with 20, 40, and 60 days, and with
parameters ε = 0.1, δ = 0.9. The distributions are in-
distinguishable from each other, with mean of 89, 78,
94 days respectively, which indicate that sample size of
around 90 days is sufficient to give us reliable estimates
of each user’s category.
To evaluate the usefulness of the stopping time recom-

mended by REST, we obtain the distribution of misclas-
sification error for a given sample size, as shown in Fig-
ure 10. The misclassification error generally decreases as
we increase the size of sample set, and reaches a plateau
around day 80. Although the stopping time provided
by REST appears slightly overestimated, it captures the
complexity of the problem and is useful in practice.

7.4 Summary of Results
In summary, if a problem can be formulated as a hier-

archical Bayesian network and the target function and
its derivative can be written out in an analytic form,
as in the case of parameter inference and energy esti-
mation, REST with the Delta method can be applied
to provide tighter asymptotic estimation, and Cramér-
Rao types of bounds can be derived for lower bounds.
REST with McDiarmid method, nevertheless, can be
applied to more general problems such as the classifica-
tion of player category, as long as the upper bounds in
(18) can be estimated. As in many CPS applications,
the required length of experiment is a reflection of the
complexity of the problem, and reliable estimation can
be useful for project planning, experimental design, and
budget management.

8. DISCUSSION
The length of social game type experiments based on

shared resource usage in CPS with socioeconomic and
sustainability concerns, such as intelligent office build-
ings, depends on resource constraints as well as system
and environment complexity. We provided a method
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(REST Algorithm 1) for estimating bounds on stop-
ping time based on Cramér-Rao types of bounds, the
Delta method, and concentration inequalities. We ap-
ply REST to problems of parameter inference, energy
consumption estimation, and user type classification all
of which are of interest in the operations of intelligent
buildings. In particular, these problems and results can
be used for increasing sustainability by improving au-
tomation and control, providing guarantees for demand
response programs, and for developing game-theoretic
behavioral models that can be used in the design of in-
centives used to induce energy efficient behavior.
There are a number of directions for future research

including employing the REST in practice on our ex-
perimental platform. We are currently in the process
of implementing such an experiment. Further, in pre-
vious work we designed incentives based on a game–
theoretic behavioral model estimated from the data [12].
We are currently working on incorporating the design of
incentives into the framework presented in this paper.
One method of improving the behavioral model of com-
petitive agents is to explore the input space by issuing
incentives early in the game that maximize the infor-
mation provided to the learner (or building manager).
Another direction for future research is to apply the
transfer learning framework to improve automation; we
can transfer the behavioral model learned in the com-
petitive environment (social game) to one in which the
lighting settings are determined automatically.
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