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Abstract— In many smart infrastructure applications, flexibil-
ity in achieving sustainability goals can be gained by engaging end
users. However, these users often have heterogeneous preferences
that are unknown to the decision maker tasked with improving
operational efficiency. Modeling user interaction as a continuous
game between noncooperative players, we propose a robust
parametric utility learning framework that employs constrained
feasible generalized least squares estimation with heteroskedastic
inference. To improve forecasting performance, we extend the
robust utility learning scheme by employing bootstrapping with
bagging, bumping, and gradient boosting ensemble methods.
Moreover, we estimate the noise covariance, which provides
approximated correlations between players, which we leverage to
develop a novel correlated utility learning framework. We apply
the proposed methods both to a toy example arising from
Bertrand–Nash competition between two firms and to data from
a social game experiment designed to encourage energy efficient
behavior among smart building occupants. Using occupant voting
data for shared resources such as lighting, we simulate the game
defined by the estimated utility functions to demonstrate the
performance of the proposed methods.

Index Terms— Game theory, inverse optimization, smart
building energy efficiency.

I. INTRODUCTION

DUE TO pervasive utilization of Internet of Things
and cyber-physical systems sensing/actuating platforms,

we are increasingly observing human decision makers being
integrated into operational and managerial decisions in
infrastructure systems. Their actions can be leveraged to
increase both resilience and sustainability thereby making
smart infrastructure a worthwhile investment. Smart buildings,
being no exception, are a fundamental component of emerg-
ing smart cities; their efficient design and operation enables
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flexibility, e.g., by automatically shifting or curtailing demand
during peak hours, in making urban spaces sustainable. More
abstractly, in many infrastructure systems, there is often an
entity acting as a planner (e.g., facility managers and depart-
ments of transportation) that introduces incentives or control
policies to coordinate autonomously acting agents in the
system (e.g., selfish human decision makers) so that their
collective behavior leads to system-level efficiency gains.

One approach to designing such policies is to leverage
game-theoretic models of decision making in an optimiza-
tion framework to produce policies that encourage or induce
behavior that optimizes an objective [1], [2]. Often the planner
has at best a prior on the decision making model of the
individual agents. Such information asymmetries lead to inef-
ficiencies [1], [3]. In this paper, we propose a framework for
estimating decision making models of self-interested decision
makers consuming a shared resource (e.g., lighting in a smart
building) that can be leveraged in control or incentive design
to aid in closing the efficiency gap.

To concretize ideas, consider a smart building—an example
we will return to throughout the text. A facilities manager may
be incentivized or even tasked to encourage energy efficient
behavior if they are accountable for energy costs or are
required, e.g., to maintain an operational excellence mea-
sure (see [4]). At the same time, the facilities manager
generally must also ensure user comfort and productivity.
Beyond these motivations, demand response (DR) programs
are being rolled out by utility companies and third-party
solution providers with the goal of correcting for improper
load forecasting. Participating consumers decide to change
their consumption when DR events are called. The facilities
manager may be required to keep this schedule.

Smart building technologies enable new avenues for facili-
ties managers to keep such a prescribed schedule via automa-
tion or integrating the end user. Yet, in office buildings,
the occupants, as employees, are not typically responsible
for paying for the energy resources they consume. Hence,
there is often a misalignment between the incentives of the
facilities manager and the occupants. Social games are a
means to engage the occupants to address these inefficien-
cies. In Section VI, we describe one such social game that
we designed and implemented on the UC Berkeley campus,
aimed at incentivizing energy efficient consumption of shared
resources by leveraging building automation.

The broader purpose of this paper is to present a gen-
eral framework that leverages game-theoretic concepts to
learn models of players’ decision making in competitive
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environments such as the building energy social game
described above. The framework supports learning agents’
preferences over shared resources as well as understanding
how preferences change as a function of external stimuli such
as physical control or incentives. Such a framework can be
used in the design of incentive mechanisms that realign agents’
preferences with those of the planner, which often represent
system-level performance criteria, through fair compensation.

More concretely, we model decision making agents as utility
maximizers, and using inverse optimization and game-theoretic
techniques, we derive a robust scheme to infer their utility
functions. At the core of our approach is the fact that we
model the agents as noncooperative players in a game playing
according to a Nash equilibrium strategy. From this point of
view, agents are strategic entities that make decisions based
on their own preferences despite others. The game-theoretic
framework both allows for qualitative insights to be made
about the outcome of such a selfish behavior—more so than
a simple prescriptive model—and, more importantly, can be
leveraged in designing mechanisms for incentivizing agents.

We assume a parametric form of utility function for each
player that is dependent on the decisions of others. Corre-
lations between players’ decisions are not known a priori.
Assuming observations are approximately Nash equilibria,
we use first-and second-order conditions on player utility func-
tions to construct a constrained regression model. The result
is as a constrained generalized least squares (cGLS) problem
with nonspherical noise error terms. Using constrained feasible
generalized least squares (cFGLS), an implementable version
of cGLS, we utilize heteroskedastic inference to approximate
the correlated errors.

Noting that data sets of observed decisions often may
be small relative to the number of model parameters in
practice, we employ bootstrapping to generate pseudodata
from which we learn additional estimators. The bootstrapping
process allows us to derive an asymptotic approximation of the
bias and standard error of an estimator. We utilize ensemble
methods such as bagging, bumping, and gradient boosting to
extract an estimator from the pseudodata generated estimators
that results in a reduced forecasting error. The ensemble
methods are robust under noise and autocorrelated error terms.
We apply the robust utility learning framework to a model of
Bertrand–Nash competition between firms in order to illustrate
the framework and its performance.

Building on the robust utility learning framework, we use
the approximated standard error to derive an innovative utility
learning method in which we modify players’ utility functions
to create a correlated game. The resulting correlated utility
learning method leverages correlations between players and
the ensemble estimators to minimize the estimation error by
optimizing scaling coefficients that appear in the correlated
game utility functions. Applying this method results in a
significant improvement over the constrained ordinary least
squares (cOLS) estimations and outperforms many of the
ensemble methods. It also provides insights into how players
interact with one another and indicates which players are
potentially forming coalitions. Moreover, this technique is
amenable to online implementation after an initial training

period so that using cOLS estimators in the correlated utility
learning framework, our adaptive incentive design schemes,
introduced in [3] and [9], can be made robust.

To demonstrate the efficacy of both the robust and correlated
utility learning frameworks, we apply them to data generated
from the smart building social game experiment we conducted.
We show that estimating the players’ utility functions via the
proposed methods results in a predictive model that outper-
forms several other standard techniques such as ordinary least
squares (OLS).

The rest of this paper is organized as follows. We describe
the abstracted game framework for modeling the interaction
of agents as well as define equilibrium concepts in Section II.
In Section III, we formulate the robust utility learning frame-
work and provide an algorithm for implementing it. Section IV
contains the Bertrand–Nash competition example, and we
present the correlated utility learning framework in Section V.
In Section VI, we describe the social game experimental
setup on the UC Berkeley campus within the CREST Center,1

provide a brief literature review, and present the results of
both proposed utility learning methods applied to data from
the social game. We make concluding remarks and discuss
future directions in Section VIII.

II. GAME FRAMEWORK

In this section, we abstract the agents’ decision making
processes in a game-theoretic framework.

A. Agent Decision Making Model

Consider p agents,2 i.e., decision making entities, indexed
by the set I = {1, . . . , p}. Each agent is modeled as a utility
maximizer that seeks to select xi ∈ R by optimizing

fi (xi , x−i ) = f nom
i (xi , x−i )+ f inc

i (xi , x−i ) (1)

where f nom
i (xi , x−i ) and f inc

i (xi , x−i ) are the nominal and
incentive components, respectively, of agent i ’s utility function
and where x−i = (x1, . . . , xi−1, xi+1, . . . , xn) ∈ R

n−1 is the
collective choices of all agents excluding the i th agent.3

The choice xi abstracts the agent’s decision; it could rep-
resent how much of a particular resource they choose to
consume. The nominal component of fi captures the agent’s
individual preferences over xi and may depend on the deci-
sions of others x−i . The incentive component models the
portion of the agent’s utility that can be designed by the
planner; it also may depend on the decisions of other agents.

Agent i ’s optimization problem is also subject to con-
straints; the constraint set is given by Ci = {xi | hi, j (xi ) ≥ 0,
j = 1, . . . , �i }, where each hi, j is assumed to be a concave
function of xi . Such constraints may encode cyber or physical
constraints arising from the underlying system—in the social
game example presented in Section VI-C, we will see that

1http://crest.berkeley.edu/.
2We refer to the decision makers as agents and use the term interchangeably

with players.
3Note that while for notational simplicity we assume that xi ∈ R, the work

easily extends to a higher dimensional choice vector for each agent.
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these constraints are physical bounds. Thus, given x−i , agent i
faces the following optimization problem:

max{ fi (xi , x−i )| xi ∈ Ci }. (2)

B. Game Formulation

The game ( f1, . . . , f p) is a continuous game on a convex
strategy space C = C1 ×· · ·×Cp . To model the outcome of the
strategic interactions of agents, we use the Nash equilibrium
concept.

Definition 1: A point x ∈ C is a Nash equilibrium for the
game ( f1, . . . , f p) on C if, for each i ∈ I

fi (xi , x−i ) ≥ fi
(
x ′

i , x−i
) ∀x ′

i ∈ Ci . (3)

We say x ∈ C is an ε–Nash equilibrium for ε > 0 if the above
inequality is relaxed

fi (xi , x−i )+ ε ≥ fi
(
x ′

i , x−i
) ∀x ′

i ∈ Ci . (4)
We say a point is a local Nash equilibrium (a ε–local Nash

equilibrium) if there exists Wi ⊂ Ci such that xi ∈ Wi and the
above inequalities hold for all x ′

i ∈ Wi .
If each fi is concave in xi and C is convex, then the game

is a p-person concave game. In [6], it was shown that a (pure)
Nash equilibrium exists for every concave game.

The Lagrangian of agent i ’s optimization problem is given
by

Li (xi , x−i , μi ) = fi (xi , x−i )+
∑

j∈Ai (xi )

μi, j hi, j (xi ) (5)

where Ai (xi ) is the active constraint set at xi and μ =
(μ1, . . . , μp) with μi = (μi, j )

�i
j=1 are the Lagrange multi-

pliers. Assuming appropriate smoothness conditions on each
fi and hi, j , the differential game form [3], [7], which charac-
terizes the first-order conditions of the game, is given by

ω(x, μ) = [D1 L1(x, μ1)
� · · · Dp L p(x, μp)

�]� (6)

where Di Li denotes the derivative of Li with respect to xi .
Consider agent i ’s optimization problem (2) with x−i fixed

and where each fi and hi, j for j ∈ {1, . . . , �i }, i ∈ I,
are concave, twice continuously differentiable functions. Then,
assuming an appropriate constraint qualification condition [8],
the necessary and sufficient conditions for optimality of a
point xi are as follows: there exists μi ∈ R

�i+ such that: 1)
Di Li (x, μi ) = 0; 2) μi hi, j (xi ) = 0 for each j ∈ {1, . . . , �i };
and 3) hi, j (xi ) ≥ 0 for each j ∈ {1, . . . , �i }. Regardless of
the concavity assumption, the point xi is a local maximizer if
μi, j > 0 and z�D2

ii Li (x, μi )z < 0 for all z �= 0 such that
Di hi, j (xi )

�z = 0 for j ∈ Ai (xi ). Such conditions motivate
the following definition.

Definition 2 (Differential Nash Equilibrium): Consider a
game ( f1, . . . , f p) on C where fi and hi, j for each j ∈
{1, . . . , �i } and i ∈ I are twice continuously differentiable.
A point x ∈ C ⊂ R

p is a differential Nash equilibrium if
there is a μ ∈ R

∑p
i=1 �i such that the pair (x, μ) Satisfies:

1) ω(x, μ) = 0; 2) for each i ∈ I, z�Dii Li (x, μi )z < 0
for all z �= 0 such that Di hi, j (xi )

�z = 0 and μi, j > 0 for
j ∈ Ai (xi ). If, for a given ε > 0, (i’) ω(x, μ) = ε with all

the other conditions being satisfied, then x is a ε-differential
Nash equilibrium.

The above definition extends the definition of a differential
Nash (if we restrict to Euclidean spaces), first appearing
in [7], to constrained games on Euclidean spaces. Using this
definition, we can also extend [7, Proposition 1], again where
strategy spaces are restricted to be subsets Euclidean.

Proposition 1: A differential Nash equilibrium of the
p-person concave game ( f1, . . . , f p) on C is a local Nash
equilibrium.

The proof is straightforward and we leave it to the Appen-
dix. The proposition says that the conditions of Definition 2
are sufficient for a local Nash. In contrast to single-agent opti-
mization problems, for games, the second-order conditions do
not imply the equilibrium is isolated [7]. A sufficient condition
guaranteeing that a Nash equilibrium x is isolated is that the
Jacobian of ω(x, μ), denoted Dω(x, μ), is invertible [3].

We use necessary and sufficient optimality conditions on
individual player optimization problems holding other players’
strategies fixed to formulate the utility learning framework.

III. ROBUST UTILITY LEARNING

In the previous works, we have explored utility learning
and incentive design as a coupled problem both in theory [3]
and in practice [9], [10]. In this paper, we reexamine the
utility learning problem using statistical methods that serve
to improve estimation and prediction accuracy.

Looking forward, our aim is to fold the new estimation
scheme into the overall incentive design framework. This goal
motivates why we are interested in learning more than a simple
predictive model for agents, but rather a utility-based forecast-
ing framework that accounts for individual preferences.

We parameterize fi by θi = (θi1, . . . , θimi ) ∈ R
mi and a

finite set of basis functions {φi j (xi , x−i )}mi
j=1 such that

fi (x; θi) = λφi (xi , x−i ), θi 〉 + f̄i (x) (7)

where φi = [φi,1 · · · φi,mi ]� and f̄i (x) is a function that
captures a priori knowledge of the agent’s utility function
(e.g., the incentive component designed by the planner).

A. Base Utility Estimation Framework

We start by describing the basic utility estimation frame-
work using equilibrium conditions for the game played
between the players. The utility learning framework we pro-
pose is quite broad in that it encompasses a wide class of
continuous games. In [3], [12], and [13], we have shown that
the utility learning problem can be formulated as a convex
optimization problem by using first- and second-order condi-
tions for Nash equilibria. Let us briefly review this formulation
as it serves as the basis for the robust utility learning method.

Each observation x (k) is assumed to be an ε-approximate
differential Nash equilibrium where the superscript notation
(·)(k) indicates the kth observation. For each observation x (k),
it may be the case that only a subset of the players, say Sk ⊂ I
at observation k, participate in the game. Then notationally
each observation is such that

x (k) = (
x (k)j

)
j∈Sk . (8)
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If player i participates in ni instances of the game, then there
are ni observations for that player. Let n = ∑p

i=1 ni be the
total number of observations.

We can consider first-order optimality conditions for each
player’s optimization problem and define a residual function
capturing the degree of suboptimality of x (k)i [9], [11]. Indeed,
for player i ’s optimization problem, let the residual of the
stationarity condition be given by

r (k)s,i (θi , μi ) = Di fi
(
x (k)i , x (k)−i

) +
�i∑

j=1

μ
j
i Di hi, j

(
x (k)i

)
(9)

and the residual of the complementary conditions be given by

r j,(k)
c,i (μ) = μ

j
i hi, j

(
x (k)i

)
, j ∈ {1, . . . , �i }. (10)

Define

r (k)c,i (μi ) = [
r1,(k)

c,i (μi ) · · · r�i ,(k)
c,i (μi )

]
. (11)

Using data from the players’ decisions (e.g., lighting votes
from the social game experiment, which we describe in
Section VI-A), the base utility learning framework consists
of solving the optimization problem given by

min
μ,θ

p∑

i=1

ni∑

k=1

χi
(
r (k)s,i (θ, μ), r

(k)
c,i (μ)

)

s.t. θi ∈ 	i , μi ≥ 0 ∀ i ∈ {1, . . . , p} (P)

where 	i is a constraint set on the parameters θi that captures
prior information about the objective, χ : R

p × R

∑p
i=1 �i →

R+ is a non-negative, convex penalty function satisfying
χ(z1, z2) = 0 if and only if z1 = 0 and z2 = 0, i.e., any
norm on R

p × R

∑p
i=1 �i , and the inequality μi ≥ 0 is element

wise.
The goal of this optimization problem, which is a finite

dimensional optimization problem in the θi ’s, is to find θi for
each player such that ( f̂i )i∈I is consistent (or approximately
consistent) with the data. As is noted in [11], we also remark
that it is important that the sets 	i contain enough prior
information about the objectives fi in order to prevent trivial
solutions. For example, if it is the case that f̄i (x (k)) = 0 for
each k and each 	i = R

mi , then the trivial solution θi = 0mi

is feasible. For many applications, some a priori knowledge
on part of the utility functions of players may be encoded in
each 	i (e.g., choosing 	i such that θ1i = 1 or similarly
selecting the incentive component of the utility, a design
possibility for the planner [3]) or through other normalization
techniques to prevent such trivial solutions. In the context of
the social game application (in Section VI-C), we explicitly
discuss how to construct this constraint set in such a way
that we ensure that the estimated utility functions are concave,
which in turn guarantees that there exists a Nash equilibrium
to the estimated game.

B. Robust Utility Learning

Let us now formulate a robust version of the utility learning
framework that allows us to reduce our forecasting error and
learn the noise structure that can be leveraged in extracting

pseudocoalitions between players, which we describe in the
sequel. Define

X (k)i =
[

Di hi
(
x (k)i

)
Diφi (x (k)))

ĥi
(
x (k)i

)
0�i×mi

]

(12)

where

ĥi (xi ) = diag(hi,1(xi ), . . . , hi,�i (xi )) (13)

Di hi (xi ) = [Di hi,1(xi ) · · · Di hi,�i (xi)] (14)

and nd = (�i + 1)n is the total number of data points. The
regressor matrix is then defined as X = diag(X1, . . . , X p) ∈
R

nd× (�i+1)p, where Xi = [(X (1)i )� · · · (X (ni )
i )�]�. Define

the regression coefficient

β = [
μ1

1 . . . μ
�1
1 θ1 · · · μ1

p . . . μ
�p
p θp

]� ∈ R
(�i+1)p (15)

and the observation matrix Y = [Y1 · · · Yp]� ∈ R
(�i+1)p,

where

Yi = [ f̄i (x
(1)) 0�i · · · f̄i (x

(ni )) 0�i ]�. (16)

Using the Euclidean norm for χ in (P) leads to an OLS
problem with inequality constraints, i.e., a cOLS

min
β

{‖Y − Xβ‖2
∣
∣ β ∈ B} (P1)

where B = {β| θi ∈ 	i , μi ≥ 0, ∀i ∈ I}. Enforcing that each
of the constraint sets 	i is encoded by inequalities on θi , the
above-stated problem can be viewed as a classical multiple
linear regression model with inequality constraints described
by the data generation process

Y = Xβ + ε, β ∈ B (17)

where ε = (ε1, . . . , εp) is the error term satisfying: 1)
E(ε|X) = 0nd ×1; 2) cov(ε|X) = σ 2 I nd ×nd ; and 3) {εi }p

i=1
independent and identically distributed (i.i.d) with a zero
mean and σ 2 variance. In addition, we assume that ε is
nonspherical [12]. With this general statistical model, we are
able to describe a data generation process in which the error
terms are correlated or lack constant variance. This fact will
be leveraged in creating coalitions between players, as we
describe in Section V.

Mathematically, the nonspherical errors are modeled by

cov(ε|X) = G � 0, G ∈ R
nd ×nd . (18)

One drawback of this technique is that, given nonspherical
standard errors, the cOLS estimator is biased, that is, it does
not satisfy the best linear unbiased estimator (BLUE) property,
a result of the Gauss–Markov theorem [12, Th. 1, Ch. 5].
However, we can derive an unbiased estimator by multiplying
(17) on the left with G−(1/2). This leads to the cGLS statistical
model given by

(G− 1
2 Y ) = (G− 1

2 X)β + (G− 1
2 ε), β ∈ B (19)

which now satisfies the BLUE property. In general, the explicit
form of cov(ε|X) = G is unknown. We use the residuals (17)
to infer the noise by imposing structural constraints on G.

We remark that there are many types of noise structures
that can be used for imposing structure on G. We provide
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two example noise structures that could be used. The first
is the block diagonal structure [12, Ch. 5]; in particular,
we impose that G = blkdiag(K1, . . . , K p) ∈ R

nd×nd where
Ki = blkdiag(Bi,1, . . . , Bi,ni ) ∈ R

(�i+1)ni×(�i+1)ni with each
Bi,k ∈ R

(�i+1)× (�i+1). Estimating β with cOLS, we get β̂cOLS
with residual vector e = Y − X β̂cOLS ∈ R

(�i+1)n . The residual
vector e can be decomposed into residuals for each player
by writing e = [e�

1 · · · e�
p ]�. We use ei to compute an

estimate K̂i of Ki , which is in turn used to compute Ĝ. The

residuals come in triplets since for each k, Y (k)i ∈ R
�i+1.

For ease of presentation and comprehension, we will use a
paired index for the residuals instead of a single index. For
example, for player i , there are ni instances at which we
have �i observations. Let (ei )k, j = (ei )(�i+1)(k−1)+ j , where
k ∈ {1, . . . , ni } and j ∈ {1, . . . , (�i + 1)}. With the residuals,
we can then form estimates B̂i,k ∈ R

(�i+1)× (�i+1) of Bi,k ,
where B̂i,k takes the form

B̂i,k = [(B̂i,k)l, j )]�i+1
l, j=1 (20)

with (B̂i,k) j, j = n−1
i

∑ni
t=1 e2

t, j and (B̂i,k)l, j =
n−1

i

∑ni
t=1 et, j et,l for j �= l. We provide this noise structure

as an example because in our formulation, we allow for
constraints on the players’ optimization problems so that
for each iteration k, we in fact have multidimensional
observations as can be seen in (12).

The second noise structure we consider is adapted from the
HC4 estimator [13] and is given by

Ĝ = diag

(
e2

1

(1 − b1)δ1
,

e2
2

(1 − b2)δ2
, . . . ,

e2
nd

(1 − bnd )
δnd

)

(21)

where δi = min{4, nd bi/(
∑nd

i=1 bi )} and the bi s are the

diagonal elements of B = X (X�X)−1 X�. With this structure,
the penalty for each residual increases with bi/

∑nd
j=1 b j .

As with the previous noise structure, we use the fitted cOLS
estimator β̂cOLS and residuals to get an initial Ĝ. We selected
to present this noise structure because it is computationally
efficient compared with many other noise structures.

In both cases, we substitute the inferred noise Ĝ into cGLS
statistical model (19) to get the one-step cFGLS estimators.
We iterate between the estimation of Ĝ and βcFGLS either
until convergence or for a fixed number of iterations to
prevent overfitting. To resolve this tradeoff and find the optimal
iteration size, we adopt a simple cross validation method.

C. Boosting With Ensemble Methods

In this section, we describe several ensemble methods.
Combined with a bootstrapping process, ensemble methods
not only boost the size of what can often be a small data
set in practice but also allow us to improve the estimator
performance and explore the bias–variance tradeoff.

1) Bootstrapping and Bagging: Bootstrapping is a tech-
nique for asymptotic approximation of the bias and standard
error of an estimator in a complex and noisy statistical
model [12], [14]. We employ wild bootstrapping to generate a
pseudodata set from which we generate several weak estima-
tors that we then combine using bagging. While we assume

that E(Y |X) = Xβ, we also allow for heteroskedasticity by
conditioning on the residual transformations that we imposed
in the noise structure. Wild bootstrapping is a technique of
parametric bootstrapping that is consistent with heteroskedas-
tic inference and cFGLS data generation.

The bootstrapping process can be described in two steps:
1) we fit our cFGLS model, which gives us β̂cFGLS, and 2) then
generate N replicates of pseudodata using the data generation
process

Ỹ = X β̂cFGLS +�(e)ε (22)

where Ỹ ∈ R
nd is the new observation vector (pseudoob-

servations), β̂cFGLS ∈ R
nd is the cFGLS estimator, ε ∼

N(0, I nd ×nd ), e ∈ R
nd is the residual vector given by

e = Ỹ − X β̂cFGLS, and � : R
nd → R

nd is a nonlinear
transformation such that �(e) = Ĝ1/2 ∈ R

nd×nd . Since
E(�(e)ε|X) = �(e)E(ε|X) = �(e)E(ε) = 0nd×nd , using
the data generation process in (24), we resample from i.i.d
variables.

Bagging in regression models and trees is a technique for
reducing the overall variance [14]. Using the N replicates
of pseudodata generated by wild bootstrapping, we train
N different models. We combine the resulting bootstrapped
estimators by averaging

β̂bag = 1

N

N∑

j=1

β̂cFGLS, j (23)

where β̂cFGLS, j is the estimator using the j th pseudo-data sam-
ple. Bagging works efficiently with high variance models and
do not hurt the overall performance of the statistical model.
We refer to the bagged estimates as bagged megalearners
since they combine several weak learners/estimators. Using
wild bootstrapping, the empirical covariance matrix of β̂ is
an asymptotic approximation of the covariance matrix and is
given by

Ĉβ = 1

N

N∑

j=1

(β̂cFGLS, j − β̂bag)(β̂cFGLS, j − β̂bag)
�. (24)

Asymptotic estimation of the empirical covariance matrix
reveals hidden structures between players and is what we
leverage in the correlation utility learning procedures.

2) Bootstrapping and Bumping: In a similar fashion as the
bagging ensemble method, we combine bumping—a method
for fitting cFGLS estimators using a random search over
the model space [15]—with the wild bootstrapping generated
pseudodata. In particular, we apply a stochastic search over
several different statistical models coming from a similar data
process, i.e., the data process in (24).

We add the original training data sample to the N replicates
of pseudodata generated by the wild bootstrapping process
and we use this data to estimate N + 1 cFGLS estimators.
We evaluate these estimators on the training set and select
the one with the least training error. The cFGLS bumping
estimator is given by

β̂bump = arg min
β̂cFGLS, j

‖Ỹ − X β̂cFGLS, j ‖2
2 (25)
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Algorithm 1 L2-Gradient Boosting With cFGLS

where β̂cFGLS, j s are the cFGLS estimators from derived from
the bootstrapped data.

3) Gradient Boosting: We combine L2-gradient boosting,
which is a repeated least squares fitting of residuals [16],
with cFGLS. Gradient boosting is a boosting technique that
uses an L2 loss function combined with a gradient descent
update method for combining weak learners at each iteration.
Boosting estimators are trained in sequence using a weighted
version of the original data set. In general, boosting methods
are extremely useful for combining models by incrementally
training each new model by emphasizing the errors of the
previous training instances. They are used extensively in
classification methods such as logistic regression and support
vector machines.

Repeated residual fitting is applied until we reach iteration
mstop, a stopping criterion selected using the Akaike informa-
tion criterion (AIC) to avoid overfitting [17]. The procedure
is detailed in Algorithm 1.

IV. APPLICATION TO BERTRAND–NASH COMPETITION

Let us illustrate the framework and its performance of
the robust utility learning framework before moving on by
applying it to estimate market demand functions under the
Bertrand–Nash equilibrium (see [18]–[20]). The toy model can

TABLE I

MSE OF FORECASTING USING THE PROPOSED ROBUST UTILITY
LEARNING METHODS VERSUS cOLS ESTIMATORS FOR THE

BERTRAND–NASH COMPETITION. THE BEST PERFORMING

METHOD IS INDICATED IN BOLD FOR EACH OF THE FIRMS

be thought of as an abstraction of Bertrand price setting for
commodities such as oil, gas, and coal [21], [22].

Consider two firms competing to sell their product by setting
the prices p1 and p2 for firm 1 and 2, respectively. The
firms’ utility functions are their revenue, i.e., fi (p1, p2) =
pi Di (p1, p2, ξ), where Di is the demand function for firm i
and ξ ∼ N (1.5, 0.5) is a random variable that captures the fact
that demand is dependent on economic indicators in addition
to the prices set by the firms. In this stylized example, we
consider linear demand functions given by

Di (p1, p2, ξ) = θi,1 + θi,2 p1 + θi,3 p2 + νξ (26)

where θi = (θi, j )
3
j=1 are unknown parameters to be estimated

and ν = 1.5 is a known parameter. The prices are constrained
to be in the interval [0, p̄], where p̄ ∈ R+ is the upper
bound. We let θ1 = (−1.0, 0.5,−1) and θ2 = (0.3,−1, 0.3)
be the ground-truth values for the parameters we wish to
estimate. Thus, f̄i (p1, p2) = νξ , and examining the marginal
revenue functions Di fi (p1, p2), we have that φ1(p1, p2) =
[1 2 p1 p2]� and φ2 = [1 p1 2 p2]�.

In order to generate the data set, we add a noise
term ε ∼ N (0, 0.5) to the marginal revenue functions,
i.e., Di fi (p1, p2)+ ε, and solve for the Bertrand–Nash equi-
librium. We simulate the game between the firms 600 times.
In the robust utility learning framework, for this example,
we employ the HC4 noise structure and compute the cOLS,
cFGLS, bagging, boosting, and bumping estimators. We use
a tenfold cross-validation procedure to prevent overfitting.
Table I contains error using two metrics for both firms.
Fig. 1 shows the forecast for part of the testing set using
cOLS and each of the ensemble methods compared with the
ground truth. While bagging performed best for firm 1 and
boosting for firm 2 in the particular instantiation of this toy
example, the performance more generally is dependent on the
noise structure in the demand and marginal revenue functions,
the sample size, and the dynamics between the two firms.
However, it is interesting to point out that as we increase
the variance on ξ , each ensemble method performance stays
relatively the same, yet the cOLS error increases significantly.

V. CORRELATED UTILITY LEARNING

In this section, we describe how learned correlations
between players can be leveraged to boost estimator perfor-
mance. We add a second step to the estimation procedure in
which we craft a new game where players’ utilities are com-
posed of their original estimated utility plus some combination
of other players’ utilities weighted by the estimated correlation
between players.
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Fig. 1. Forecast for Firms 1 and 2 using cOLS and each of the ensemble
methods. The ground-truth prices are depicted by the blue dashed lines; the
cOLS forecasts are depicted by the black dashed lines, the bagging forecasts
are depicted by the gray dashed lines, the bumping forecasts are depicted by
the green dashed lines, and the boosting forecasts are depicted by the gold
lines.

When the correlations between players are positive, we are
creating what we refer to as pseudocoalitions since players
are not explicitly agreeing to collude in the game but are
rather doing so implicitly. The degree of coalition is discovered
by the robust utility learning process through estimating the
empirical covariance Ĉβ , i.e., asymptotic approximation of the
covariance matrix, of β̂est, where we use the notation β̂est
to abstractly denote the estimator derived from whichever of
the methods described in the previous section is employed.
On the other hand, when the correlations between players are
negative, by combining their utilities, we aim to take advantage
of active players’ richer data sets in predicting the behavior
of players with less variation and frequency in their observed
actions.

We refer to the learned utility— f̂i for player i—from the
robust utility learning framework as the base utility and it is
given by

f̂i (xi , x−i ; θ̂i) = f̄i (xi , x−i )+ 〈φi (xi , x−i ), θ̂i 〉 (27)

where θ̂i is extracted from β̂est,i .
Using the correlations we learn that when we estimate f̂i ,

we construct a new utility ĝi by combining scaled versions of
a subset (potentially all) of the other agents’ utilities that are
correlated with agent i . We formulate an optimization problem
to determine the scaling coefficients. The correlated utility ĝi

for player i is given by

ĝi (xi , x−i ) =
∑

j∈Ki

zi, jσi, j f̄i (xi , x−i )

+ σi, j 〈φi (xi , x−i ), θ̂ j 〉 (28)

where Ki ⊂ Ii is a subset of the players correlated with
player i , σi,i is the estimated variance of player i determined
by the empirical covariance matrix, σi, j is the covariance
between the parameter estimates for player i and j also

determined by the empirical covariance matrix, and zi, j are
scaling constants to be optimized. We refer to the resulting
game as an approximated correlation game.4

Given the form of ĝi , our goal is to select the scaling
constants zi, j in order to reduce the forecasting error. Anal-
ogous to the base utility learning framework presented in
Section III-A, using our training data, we formulate a convex
optimization problem using optimality conditions on each
player’s individual optimization problem where we assume
that player i is optimizing ĝi with respect to its own choice
variable xi . In particular, we solve a convex optimization
problem formulated as follows. Define the vector zi ∈ R

|Ki | by
zi = (zi, j ) j∈Ki and let z = (zi )i∈I . For player i ’s optimization
problem max{ĝi(xi , x−i )| xi ∈ Ci }, let the residual of the
stationarity condition be given by

r (k)s,i (zi , μi ; θ̂ ) = Di ĝi
(
x (k)i , x (k)−i

) +
�i∑

j=1

μ
j
i Di hi, j

(
x (k)i

)
(29)

and the residual of the complementary conditions be
given by

r j,(k)
c,i (μi ) = μ

j
i hi, j

(
x (k)i

)
, j ∈ {1, . . . , �i }. (30)

As before, let r (k)c,i (μi ) = [r1,(k)
c,i (μi ) · · · r�i ,(k)

c,i (μi )]. Define
Qi ∈ R

ni ×|Ki | by

Qi = [
σi, j D2

i,i f̄i (x
(k))

]ni

k=1, j∈Ki
(31)

and qi ∈ R
ni by

qi =
⎡

⎣
∑

j∈Ki

σi, j
〈
D2

i,iφi (x
(k)), θ̂ j

〉
⎤

⎦

ni

k=1

. (32)

Then, we have the following convex optimization problem to
determine the scaling factors zi, j :

min
z,μ

p∑

i=1

ni∑

k=1

χi
(
r (k)s,i (zi , μi ; θ̂ ), r (k)c,i (μi )

)

s.t. Qi zi + qi ≤ 0, μi ≥ 0 ∀i ∈ I (P′).

Solving (P′) gives us estimated correlated utilities ĝi for each
i ∈ I that we then use to forecast the players’ decisions.

VI. APPLICATION TO SMART BUILDING SOCIAL GAME

We now specialize the robust and correlated utility learning
frameworks to the smart building social game.

A. Social Game Experimental Set-Up

Our experimental setup is in a collaboratory space—an
open shared work space with cubicles—within the CREST
Center on the UC Berkeley campus. We crafted a social
game such that occupants in this collaboratory freely vote
according to their usage preferences of shared resources and

4We remark that there exists an equilibrium concept called correlated
equilibrium [23], which generalizes a Nash equilibrium by characterizing cor-
relations between randomized strategies; we mention this only to alleviate any
potential confusion. The equilibrium concept we utilize for the approximated
correlation game is still a pure Nash equilibrium and there is no coordinating
mechanism.
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Fig. 2. Graphical user interface (GUI) for energy-based social game. (a) Display, in table form, of points and votes for energy consumption, HVAC, and
lights. (b) Display of the GUI for logging lighting setting preferences.

are rewarded with points based on how energy efficient their
strategy is in comparison with the strategy of the other
occupants. We employ a lottery mechanism consisting of three
Amazon gift cards executed biweekly to reward occupants;
occupants with more points are more likely to win the
lottery.

The office is divided into five lighting zones and two heat-
ing, ventilating, and air conditioning (HVAC) zones. In this
space, there are a total of 20 occupants who are eligible
to participate in the social game. If the occupants are not
present in the office, they are excluded from the game at
that time instant. When they arrive at the office, they can
rejoin the game. To enforce the rule that those who are not
present in the space cannot vote remotely, we executed a
simple presence detection algorithm based on their power
usage [24].

We have installed a Lutron5 system for precise control of
the lighting setting (dim level of the lights) in the office as well
as desk-level energy monitoring devices (i.e., ACME wireless
sensors [25]) to meter the energy usage of each occupant.
In addition, we have modified the HVAC system so that it
can be precisely controlled. We have verified prior to our
experiment that the implemented control of these systems
results in expected performance.

We have developed a platform to interface with the occu-
pants as well as manage and process collected data. The
platform includes a Web portal and a mobile app that the
occupants may use to participate in the game. It also allows
occupants to visualize different aspects of the social game,
e.g., the lighting setting and the energy efficiency level of
different occupants or the entire building, as well as view
the point level and historical voting record of other occupants
among many other statistics. Fig. 2 shows the user interface
for viewing points and logging votes. Fig. 3(a) shows a
visualization of the current light level using a green-to-red
scale with green being more energy efficient. The current
temperature is also displayed. Fig. 3(b) shows a visualization
of each present and participating occupant’s energy efficiency
level.

5http://www.lutron.com/en-US/Pages/default.aspx.

In this paper, we report on a social game experiment
conducted based only on the lighting shared resource.6 Prior
to the start of the social game experiment, the lighting setting
was 90% of the maximum possible lighting setting. At the
start of the social game experiment, we set a default lighting
setting, which acts as the suggested lighting setting and is the
dim level setting in the office if no occupants are participating
in the game. Throughout the game, we adjust the default
lighting setting as well as the points. The lottery mechanism
coupled with the points we distribute comprises the incentive
component of the feedback to the participants while the
default lighting level is the physical control component of the
feedback. These two mechanisms act as our control inputs
and our feedback mechanism to the participants. We seek to
design them by taking into consideration the preferences of
the participants. In this way, these mechanisms close the loop
around the participant, and with our proposed utility learning
scheme, these mechanisms can be modified to encourage more
energy efficient resource consumption.

The game is designed to leverage interactions among occu-
pants, who win points based on how energy efficient their
lighting vote is compared with others. An occupant’s vote is
for the lighting setting in their zone as well as neighboring
zones. The occupants select their desired lighting setting in
the continuous interval [0, 100], where each value represents
the percentage of the maximum lighting setting possible in
the space. The occupants can vote as frequently as they like
and the average of all the occupants’ current votes sets the
implemented lighting setting in the collaboratory. An occupant
can leave the lighting setting as the default level after logging
in or they can change it depending on their preferences and
other environmental factors that may affect their choice.

The experimental trials reported on in this paper were
conducted over the period of 285 days.7 Experiments with
four different default levels, {10%, 20%, 60%, 90%}, were

6We remark that while our experimental platform is capable of conducting
a social game that includes lights, HVAC, and personal energy consumption,
we report only on an experiment that focuses on lighting in order to isolate
combined effects from these different resources. In on-going experiments,
we are examining all aspects jointly.

7The period of the experiment was March 3, 2014 to December 14, 2014.
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Fig. 3. Occupants can access a variety of information when they log into the
social game portal, including various displays of energy consumption by other
participants in the game. (a) Display of current light level and temperature
in the collaboratory space; energy efficiency of the lights is coded by color,
where the light green strip indicates higher energy efficiency. (b) Display of
collaboratory floor plan with dots indicating where present and participating
players sit. Players not in the office are excluded from the game. The color of
the dot indicates the level of energy efficiency of the player compared with
the other participants; the green light indicates higher efficiency, while the red
light indicates lower efficiency.

conducted, covering a spectrum of lighting conditions. Since
occupants were allowed to vote whenever they chose, their
response rate per day varies. The data set we collected consists
of occupant votes (meaning the lighting level they select) over
the period of investigation as well as the points that were
distributed to each occupant. We collected 6885 votes over
the period of the experiment.

B. Brief Background

In order to place the work pertaining to building energy
efficiency in the context of the state of the art, we briefly
overview existing approaches.

Recognizing that HVAC systems are responsible for a
large portion of building energy consumption, many control
theoretic approaches such as those in [30] and [31] derive
model predictive and distributed control polices for HVAC
systems. While these control theoretic approaches make efforts
to account for the presence of occupants, they tend to ignore
occupant behaviors and, more importantly, their heterogeneous
preferences.

There are other works that make strides toward incorpo-
rating behavioral models of occupants, Boman et al. [28]
employ a multiagent system approach to develop a framework

for incorporating occupant comfort preferences and
Bourgeois et al. [29] develop behavioral models for lighting
usage. In a more active approach, Song [30] develops a
collaborative setting definition paradigm in which occupants
and facilities managers submit preferences and requirements
and a rule engine tries to resolve them in order to create
a universal control policy. While occupants’ preferences
are taken as inputs to the building control design, it is not
clear that it is possible to satisfy all the occupants’ comfort
preferences simultaneously with those of the facilities
manager; hence, the misalignment between preferences and
incentives remains.

In our approach, on the other hand, we leverage a social
game that creates a friendly competition between users and
employs incentives to resolve conflicting preferences by
compensating users. Within the energy application domain,
gamification has been largely used for education or aware-
ness (see [31], [32]). There are works that are closely related
to ours in the sense that they also recognize that occupants
are self-interested participants in smart buildings and try to
account for their strategic behavior. For example, Li et al. [33]
develop an interesting scheme for engaging occupants directly
in DR. Analogous to our approach, occupants are modeled
as utility maximizers in a game theoretic context where they
are incentivized to curtail their consumption in response to
an event. Our approach differs in that we focus on shared
resources such as lighting and HVAC instead of personal
devices (e.g., desk appliances). Furthermore, it is assumed
in [33] that the type space (i.e., their preferences) of the users
is a known finite set of two possible values. We do not assume
that the facility manager knows the utility function or the type
of the users and we propose an algorithm for learning this
utility function from the observations of decisions.

While incorporating occupant preferences into building
automation is not novel in and of itself, we propose an
innovative algorithm for learning occupant preferences in
competitive environments and, moreover, learning how their
actions are correlated. Such correlations can be leveraged in
improving incentive mechanisms to shape users’ preferences
thereby providing more flexibility. Our method is applied
to real-world data from experimental trials we conducted as
opposed to simulations as is the case with many existing
works. Furthermore, it is agnostic to the application and
could be applied in general to other scenarios in which
users are competing for constrained but shared resources. For
example, the utility learning method can be easily adapted to
learning preferences of individual buildings interacting with
an aggregator or learning preferences of drivers seeking on-
street parking. In each of these cases, there exists a planner—
the aggregator or department of transportation—tasked with
managing a resource being consumed by self-interested users.

C. Occupant Decision Making Model

Each agent’s vote xi is constrained to be in the interval
[0, 100] ⊂ R. Let x̄ denote the average of the lighting
votes and the setting that is implemented, e.g., at observation
instance indexed by k, x̄ (k) = (1/|Sk |)∑ j∈Sk x (k)j . We model
each agent’s utility as being composed of two basis functions
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that capture the tradeoff between desired lighting (satisfaction)
and desire to win. The lighting satisfaction an occupant
feels may be a function of several factors including their
productivity (ability to perform their job) and physical com-
fort. We abstractly model their desired lighting level using
a Taguchi loss function, ψi (xi , x−i ) = −(x̄ − xi )

2, which is
interpreted as modeling occupant dissatisfaction in such a way
that it is increasing as variation increases from their reported
desired lighting setting (their vote) [34].

We acknowledge that an agent may have some internal
desired lighting level that is different from its vote, e.g.,
the agent may realize that voting an extreme value pushes the
average toward a more desirable setting. This type of gaming
results in moral-hazard- type issues that can be addressed
in the incentive design step [1], [2]. Thus, we set this type
of gaming aside for the time being and focus instead on
the unknown preferences—a different kind of asymmetric
information that leads to adverse selection—between lighting
and winning.

Points are distributed by the planner using the relationship
ρ(xb − xi )(p(xb − x̄))−1, where xb is the baseline setting for
the lights. For the experiment xb = 90%, i.e., the lighting
setting used before the implementation of the social game.
However, we model each occupant as having a winning basis
function given by φi (xi , x−i ) = −ρc (xi )

2, where ρ is the
total number of points distributed by the planner and c is a
scaling factor that is used primarily to scale the two terms of
the utility function, given that we artificially inflate the points
offered in order to increase their appeal to players and thus
induce greater participation.8 The form of the winning function
can be interpreted as capturing the perception that by voting
zero, the occupant is selecting the action that will provide the
greatest return of points, given that points are awarded based
on how energy efficient their vote is compared with others.9

Hence, the utility functions for the social game are modeled
as fi (xi , x−i ; θi) = θiφi (xi , x−i )+ψi (xi , x−i ). The constraint
sets Ci for each player are determined by the box constraints on
the lighting vote for that player, i.e., Ci = {xi ∈ R| hi, j (xi ) ≥
0, j ∈ {1, 2}}, where hi,1(xi ) = 100 − xi and hi,2(xi ) = xi .

In order to formulate (P) for the social game application,
we need to determine the admissible parameter sets 	i , i ∈ I
in such a way that we ensure the estimated utility functions
are concave and such that equilibria of the estimated game
are isolated. We derive a lower bound θLB such that all
θi ∈ 	i = {θi ∈ R| θi > θLB}, i ∈ I, induce games with these
characteristics. To this end, we utilize the second derivative
condition on players’ utility functions, that is, if for each

8Inflating the points is a process of framing [35], that is, dependent on
how the reward system presented to agents greatly impacts their participation.
Framing is routinely used in reward programs for credit cards among many
other point-based programs. The scaling factor c in the winning function
removes the framing effect from the estimation procedure. It is selected to
ensure that the scale of the two basis functions are similar.

9We explored other forms of the winning function including the log
function, a quasi-concave function that is typically used to represent how
individuals value money since it represents the diminishing returns property
well [9]. However, the quadratic form of the function we report on here
significantly outperformed other choices so that, for the purpose of a pre-
scriptive model, it captures the agents’ perceptions about the point distribution
mechanism and their value more accurately.

i ∈ I, D2
i,i fi (x) < 0, then the game is concave. Computing

D2
i,i fi and using some algebra, we have that θi > −(cρ)−1

(1− p−1)2, where the right-hand side is a negative nonincreas-
ing function of p. Thus, concavity is ensured regardless of the
number of players by setting p = 2, the minimum number of
players in a noncooperative game. Then, given fixed ρ and
0 < ζ � 1, the lower bound θ̄LB = −(4cρ)−1 + ζ will
guarantee that the estimated game is concave.

If Dω(x, μ) is invertible, we know that differential Nash
equilibria are isolated [7]. Hence, we can augment the con-
straint sets 	i to encode this condition. Given the structure of
the utility functions, Dω(x, μ) is simply the game Hessian
H = [Hi, j ]p

j,i=1 with Hi,i = D2
i,i fi and Hi, j = D2

i, j fi .
Hence, if H is invertible, then the differential Nash are
isolated; this is guaranteed for p ≥ 4 provided the constraint
defined by θ̄LB = −(4cρ)−1 + ζ using ζ = 10−2. Indeed, let
H (p) denote the game Hessian as a function of the number
of players and note that for a particular p, with some simple
algebra, it is easy to write H (p) as an off-diagonal matrix
constant matrix such that Hii = di + α and Hi, j = α,
where di = −2(1 − 1/p) − 2cρθi and α = 2(p − 1)/p2.
It is straightforward to verify by determining the eigenvalues
of H as p varies via the method described in [36] that for
p ≥ 4, H will be invertible. For the social game data, at each
observation indexed by k, the number of participating players
is at least 4. Thus, to ensure concavity and isolated equilibria
of the estimated social game, we define 	i = {θi ∈ R| θi >
θ̄LB} with θ̄LB = −(cρ4)−1 + ζ with ζ = 10−2.

VII. UTILITY LEARNING RESULTS

We now present the results of the proposed robust utility
learning method applied to data collected from the social game
experiment.

As we previously described, our data set consists of the
votes logged by the players who vote throughout the day.
We present estimation results for the complete data set of
all the votes, which we refer to as the dynamic data set,
and estimation results for an aggregated data set constructed
by taking the average of a players’ votes over the course of
each day in the experiment—this is referred to as the average
data set. While this aggregation significantly reduces the size
of our data set, it smooths the players’ voting profiles and
increases the size of active players in each game—occupants
may arrive or leave the office when they so choose. This
average data set also reduces the computational load, which
may be beneficial to a facilities manager in the incentive design
process, especially if the incentive scheme is quasi-static and
uses historical data to generate the next incentive. The dynamic
data set is much richer, being composed of every vote (a total
of 6885 votes) the occupants made throughout the duration
of the experiment (285 days). The time from one vote to
the next may be several minutes to hours depending on the
activity of the occupants. This data set is much larger and
thus increases the computational load. However, it allows us
to extract more distinct player profiles and can support real-
time incentive design schemes.

We present results for both data sets using data from the
period of the experiment in which the default lighting setting
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Fig. 4. Forecasting results for (a) dynamic data and (b) averaged data for the default lighting setting 20: For the dynamic data, the x-axis values indicate
the index of when a choice was made by one or more of the occupants (i.e., when the implemented lighting setting is changed); the time from one index
to the next may be several minutes to hours depending on the activity of the occupants. For the averaged data, the x-axis values are dates (month and day).
The ground-truth average of the lighting votes is depicted by the blue curves, the forecast for cOLS is depicted by the black curves, the forecast for bagging
is depicted by the gray curves, the forecast for bumping is depicted by the green curves, and the forecast for boosting is depicted by the gold curves. The
forecast for the robust utility learning methods is approximately near the ground truth for both data sets, while the cOLS estimates produce Nash equilibria
with a large error.

was 20%—the results for the other default lighting settings
are similar. The period of the experiment where the default
lighting setting was 20% consisted of 42 days and thus the
size of the averaged data set is 42. Over this period, there
were 220 votes by occupants, which is the size of the dynamic
data set. We divide each of the data sets into training (80%
of the data) and testing (20% of the data) sets and apply each
of the methods discussed in Section III. We apply a tenfold
cross validation [14] procedure to limit overfitting.

A. Forecasting via Robust Utility Learning

We estimate the parameters using cFGLS and the ensemble
methods bagging, bumping, and boosting for both the average
and dynamic data sets. For gradient boosting, we use the HC4
noise structure (21) since the leverage values bii of B are
larger [13]; in each of the other methods, we used the block
diagonal noise structure (20).

Using the estimated utility functions, we simulate the game
using a projected gradient descent algorithm, which is known
to converge for concave games [38]. In Fig. 4(a) and (b),
we compare the ground-truth voting data to the predictions
for each of the learning schemes using the dynamic and
averaged data sets, respectively. Our proposed robust models,
i.e., using the estimated parameters obtained via bagging,
bumping, and boosting, capture most of the variation in the
true votes (in both data sets) and significantly outperform
cOLS. In Table II, using three metrics—root-mean-square
error (RMSE), mean absolute error (MAE), and mean absolute
scaled error (MASE)—we report the forecasting error for each
of the methods.

The estimated models using our robust utility learning meth-
ods significantly reduce the forecasting error compared with
cOLS. The cOLS method has particularly poor forecasting
performance on the dynamic data set since it does not capture
the correlated error terms describing the interactions between
users. Moreover, our robust methods perform better than cOLS
with the averaged data set even though the sample size is
small.

TABLE II

RMSE, MAE, AND MASE [37] OF FORECASTING USING THE PROPOSED

ROBUST UTILITY LEARNING METHODS VERSUS cOLS ESTIMATORS

FOR BOTH DATA SETS IN DEFAULT LIGHTING SETTING 20. THE
BEST PERFORMING METHOD IS INDICATED IN BOLD FOR EACH

OF THE DATA SETS, DYNAMIC AND AVERAGE

As for the ensemble methods, bagging outperforms the other
three methods when using the dynamic data set. On the other
hand, for the averaged data set, gradient boosting gives the
least forecasting error. This is in large part due to the fact
that we use the HC4 noise structure. Since the average data
set has been smoothed, we expect less correlation between
players and the HC4 noise structure captures this.

B. Estimated Utility Functions

Fig. 5 shows the estimated utility functions and their contour
plots for occupants 2 and 8—passive and aggressive occupants,
respectively—using the parameters obtained via the bagging
ensemble method with the dynamic data set. We remark that
we do not observe the actual value of agents’ utilities; we
instead observe only the agents’ decisions. The purpose of the
figures is to show the estimated utility shapes for players with
significantly different voting profiles (the observable we have).
The particular occupants we selected represent players that
prefer winning to lighting satisfaction (occupant 8) and players
that prefer lighting satisfaction to winning (occupant 2). In par-
ticular, occupant 2’s estimated utility function appears to be
higher at greater lighting settings. Exactly the opposite occurs
for occupant 8 whose estimated utility function indicates that
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Fig. 5. Bagging estimated utility functions—using the dynamic data set—of (a) agent 2 and (b) agent 8. The functions are plotted as a function of each
agent’s own vote x2 (x8) and other players’ votes x−2 (x−8). Note that agent 8, a very aggressive player, is indifferent to the choices of the other agents as
indicated by the fact that its utility is maximized in the same location given any value of x−8. On the other hand, occupant 2 responds to changes in the other
agents’ votes and appears to prefer a greater lighting setting (more illumination). This indicates that there are different types of players, and thus, incentives
may need to be designed individually for these player types in order to elicit the desired response.

Fig. 6. Agent 8’s cOLS estimated utility function—using the dynamic data
set—plotted as a function of (x8, x−8). This figure demonstrates that using
cOLS (the worst performing estimator) results in learning a utility function
that is not representative of this type of player’s behavior [as can be seen by
comparing with Fig. 5(b)]. Incentives or control designed using this function
may result in performance.

despite changes in the average lighting vote of other players,
occupant 8 aggressively votes for a zero lighting setting, which
returns the most points.

For comparison and to highlight the improvement that the
robust utility learning framework offers, in Fig. 6, we show the
estimated utility function for occupant 8 using cOLS. What we
see is a very different utility function that indicates occupant 8
cares more about lighting satisfaction than winning—indicated
by the fact that its utility is not maximized at zero. This is
misleading since occupant 8 predominately votes for zero. This
is significant since incentive/control design based on such an
erroneous utility function may lead to very poor performance
and occupant dissatisfaction.

C. Bias Approximation and Bias–Variance Tradeoff

Forecasting accuracy can be enhanced by allowing for a
small amount of bias if it results in a large reduction in
variance. For a process Y = Xθ + ε, the mean square

TABLE III

cFGLS ESTIMATOR VALUE AND THE BAGGING, GRADIENT, BOOSTING,
AND BUMPING ENSEMBLE METHODS BIAS APPROXIMATION FOR THE

MOST ACTIVE USERS. WE UTILIZED THE DYNAMIC DATA SET

FROM THE PERIOD IN WHICH THE DEFAULT LIGHTING

SETTING WAS SET TO 20. WE DENOTE THE

OCCUPANTS WITH NEARLY UNBIASED
ESTIMATORS IN BOLD

error (MSE) characterizes the bias–variance tradeoff

MSE(x) = E
[(

Y − θ�
estx

)2] (33)

= (
E

[
θ�

estx
] − Y

)2

︸ ︷︷ ︸
bias

+ E
[(
θ�

estx − E
[
θ�

estx
])2]

︸ ︷︷ ︸
variance

. (34)

Introducing bias in exchange for reduced variance is widely
used in ridge regression and in lasso techniques in the form
of a priori knowledge [14]. In our robust utility learning
framework, we introduce noise structures that approximate the
true data process so that we can fit cFGLS estimators that
are nearly unbiased for those players whose historical voting
record has a large amount of variation.

We approximate the bias for each of the estimators.
In Table III, we present cFGLS estimates obtained using the
dynamic data during the time window in which the default
lighting setting was 20%10 for selected occupants—the most
active players—as well as the approximated bias for the
estimates generated by bagging, bumping, and boosting.

Figs. 7 and 8 contain histograms of the cFGLS estimators
obtained using the dynamic data and bootstrapped average,
respectively. In each of these histograms, we also indicate

10The results for the other default lighting settings are similar.
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Fig. 7. Histograms depicting the estimates generated with the wild bootstrapping technique using the dynamic data set for (a) player 2 and (b) player 8.
The vertical lines mark the value of the cFGLS (red dashed line), bumping (green dashed line), bagging (blue dashed line), and boosting (orange dashed line)
estimators. The histogram for player 2 is approximately normally distributed around the initial cFGLS estimator, indicating that it is unbiased. On the other
hand, this is not the case for player 8. Thus, its cFGLS estimator is biased. Overall, the majority of the proposed ensemble methods result in a significant
reduction in variance in exchange for a small increase in bias and a greater forecasting accuracy. In [39], we develop a hierarchical mixture model that
considers both bias and variance.

Fig. 8. Histogram depicting estimator values for player 2 using the wild
bootstrapping technique using the average data set. The vertical lines mark the
value of the cFGLS (red dashed line), bumping (green dashed line), bagging
(blue dashed line), and boosting (orange dashed line) estimators. We remark
that the estimators are all biased. This is expected due to the limited sample
size of the average data set. Thus, the average data set cannot be used for
optimizing the bias–variance tradeoff.

the original cFGLS11 (indicated by the red dashed line), bag-
ging (indicated by the blue dashed line), bumping (indicated by
the green dashed line), and boosting (indicated by the orange
dashed line) estimators with dashed vertical lines.

The histogram in Fig. 8 contains the cFGLS estimators
for occupant 2. This histogram is representative of the other
occupants for the average data set. We see that the original
cFGLS, bagging, bumping, and boosting estimators each show
some amount of bias. This is largely due to the fact that the
average data set has a small sample size.

On the other hand, in Fig. 7(a), we show the histogram of
cFGLS estimators for occupant 2 produced via bootstrapped
dynamic data and we can see that the original cFGLS esti-
mator (vertical red line) is nearly unbiased, indicated by the
approximate Gaussian distribution around the cFGLS estimate.
This is generally true for the occupants with the most variation

11This is the cFGLS estimator produced using the original average and
dynamic data sets and not the bootstrapped data sets.

and frequency in their voting record. However, bagging, bump-
ing, and boosting produce estimates that are slightly biased in
exchange for a reduction in estimator variance (33).

Occupant 2 is representative of players who prefer to
focus on lighting satisfaction as opposed to winning, whereas
occupant 8 is representative of players who prefer winning
to lighting satisfaction. While a very active voter, frequently
participating in the game, occupant 8’s voting record has little
variation (the majority of the time x8 = 0). Fig. 7(b) contains
the cFGLS estimators for occupant 8 and we see that each
of the estimators are slightly biased. Again, these estimators
introduce bias in exchange for a reduction in variance.

D. Forecasting via Approximated Correlated Game

We now show the results for the correlated utility learning
method. Let us use the notation

ĝi (xi , x−i ; {θ̂ j } j∈Ki ) =
∑

j∈Ki

zi, jσi, jψi (xi , x−i )

+ σi, j θ̂ jφi (xi , x−i ) (35)

where recall that Ki ⊂ I is the index set for the players
whose parameters are used to modify player i ’s utility function
in generating the correlated game and θ̂ j is the estimated
parameter from the utility learning methods including cOLS,
cFGLS, bagging, bumping, and boosting. We use the notation
ĝi(·; {θ̂ j } j∈Ki }) as shorthand.

In Table IV, we show a subset of the estimated covari-
ance matrices obtained using the dynamic and average data
sets. Using these values, we construct the following cor-
related game. Player 2’s utility function is modified by
player 20’s

ĝ2(x2, x−2;K2) = (z2,2σ2,2 + z2,20σ2,20)ψ2(x2, x−2)

+ (σ2,2θ̂2 + σ2,20θ̂20)φ2(x2, x−2) (36)

where K2 = {2, 20}. Player 2 and 20 are passive players in
that their votes tend to be strongly related to their lighting
satisfaction as opposed to increasing their chances of winning.
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TABLE IV

ESTIMATED COVARIANCE MATRIX FOR THE MOST ACTIVE PLAYERS USING THE (A) DYNAMIC DATA SET AND (B) AVERAGE DATA SET. THE COLORED
COLUMN–ROW PAIRS INDICATE THE AGENTS WHOSE UTILITIES WE MODIFY TO CREATE THE CORRELATED GAME; THE COLUMN INDICATES

THE AGENT(s) WHOSE ESTIMATED PARAMETER IS USED TO MODIFY THE ROW AGENT’S UTILITY. IN PARTICULAR, AGENT 2’S UTILITY

FUNCTION IS MODIFIED BY BY AGENT 20’s ESTIMATED PARAMETER (IN RED), AGENT 8’s UTILITY FUNCTION IS MODIFIED

BY AGENT 14’s ESTIMATED PARAMETER (IN GREEN), AND AGENT 14’s UTILITY FUNCTION IS MODIFIED BY AGENT 2’S
AND AGENT 8’s ESTIMATED PARAMETER (IN BLUE). NOTE THAT AGENTS 2 AND 14 ARE ANTICORRELATED,

WHERE AGENTS 8 AND 14 (AGENTS 2 AND 20) ARE POSITIVELY CORRELATED. AGENTS 2 AND 20 ARE

PASSIVE PLAYERS, VOTING MORE FOR COMFORT THAN WINNING, WHERE
AGENTS 8 AND 14 VOTE MORE AGGRESSIVELY

They are also very active players, having a lot of variation in
their voting record. These two players are positively correlated
with one another (see the red cells in Table IV).

On the other hand, players 8 and 14 are aggressive players
in that their votes tend to be much lower indicating a greater
desire to win points. These players are also positively corre-
lated (see the green cell’s in Table IV). With this in mind,
we modify player 8’s utility function by player 14’s

ĝ8(x8, x−8;K8) = (z8,8σ8,8 + z8,14σ8,14)ψ8(x8, x−8)

+ (σ8,8θ̂8 + σ8,14θ̂20)φ8(x8, x−8) (37)

where K8 = {8, 14}.
Player 14 is also negatively correlated with player 2. Hence,

player 14’s utility function is modified by player 2’s and 8’s
utilities. That is, with K14 = {2, 8, 14}, we have

ĝ14(x14, x−14;K14) =
∑

i∈K14

(z14,iσ14,iψ14(x14, x−14)

+ σ14,i θ̂iφ14(x14, x−14)). (38)

All the other players’ utilities in the correlated game
remain unchanged, that is, they are taken to be ĝi = f̂i ,
i ∈ I/{2, 8, 14}.

These player combinations were selected since, through
the correlated game, we aim to improve our estimators by
leveraging correlations between players. In particular, the goal
is to utilize information learned from players with the most
variation in their votes in improving the estimates of players
who consistently vote the same value or have a limited
participation record.

In Table V, we present the RMSE, MAE, and MASE for
the estimated correlated game {ĝi (·; {θ̂ j } j∈Ki )}i∈I where the
θ̂ j s are taken to be the cOLS, bagging, boosting, and bumping
estimators. Comparing these results with those in Table II, we
see that correlated estimation schemes applied to the dynamic
data set reduce the estimation error for almost every method.
Moreover, correlated bagging outperforms bagging, the best
performing ensemble method, by all three metrics. For the
average data set, correlated boosting outperforms the best
performing ensemble method, boosting, again by all three
metrics.

TABLE V

RMSE, MAE, AND MASE OF FORECASTING USING THE ESTIMATED

CORRELATED UTILITY FUNCTIONS. WE ESTIMATED CORRELATED

UTILITY FUNCTIONS ĝi (·; {θ j } j∈Ki
) USING PARAMETERS FROM

THE BAGGING, BUMPING, BOOSTING, AND cOLS METHODS

FOR BOTH DATA SETS IN THE DEFAULT

LIGHTING SETTING 20

In Fig. 9, we show the forecast produced by the cor-
related utility learning method using the cOLS, bagging,
bumping, and boosting estimators and the ground-truth test
data. Fig. 9(a) and (b) shows the forecasts for the dynamic
and average data sets, respectively.

What is perhaps most interesting is that for both data sets,
the correlated cOLS results improve the forecasting error com-
pared with those of cOLS and the results are not significantly
different than the other ensemble methods. This can be seen
in Table V and Fig. 9. The importance of this finding is
that correlated cOLS has the potential to be integrated into
an online algorithm. The classical cOLS can be performed
online and is, thus, amenable to an online incentive design
framework [3], [9]. However, as we have seen, the ensem-
ble methods significantly outperform cOLS. Determining the
estimated covariance matrix requires solving a GLS and noise
covariance estimation problem [40]. Given that the estimated
correlated game using cOLS parameters provides nearly the
same estimation error as the ensemble methods, these methods
can be adapted to estimate the correlated game parameters and
then introduced into an adaptive incentive design framework.
We are currently exploring this extension as the ultimate
objective is to utilize the learned utilities in an incentive
design framework, preferably one that can be executed in an
adaptive/online manner. This will support a more robust online
utility learning and incentive design algorithm.
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Fig. 9. Forecasting results for the correlated game using (a) dynamic data and (b) averaged data for the default lighting setting 20. For the dynamic data,
the x-axis values indicate the index of when a choice was made by one or more of the occupants (i.e., when the implemented lighting setting is changed);
the time from one index to the next may be several minutes to hours depending on the activity of the occupants. For the averaged data, the x-axis values
are dates (month and day). The ground truth of the average of the lighting votes is depicted by the blue dots, the forecast for cOLS is depicted by the black
curves, the forecast for correlated cOLS is depicted by the purple curves, the forecast for correlated bagging is depicted by the gray curves, the forecast for
correlated bumping is depicted by the green curves, and the forecast for correlated boosting is depicted by the gold curves. The forecast for the robust utility
learning methods is approximately near the ground truth for both data sets, while the cOLS estimates produce Nash equilibria with a large error. However,
the correlated cOLS forecast significantly improves on the cOLS forecast.

VIII. DISCUSSION AND CONCLUSION

We presented a general framework for robust utility learning
using a heteroskedastic inference adaptation to cGLS and we
leveraged learned correlations between players in construct-
ing a correlated utility learning framework that matches the
robust utility learning errors while also being amenable to
online implementation. The latter is important for integrat-
ing the proposed utility learning techniques with adaptive
control or online incentive design. For example, it has been
shown that static programs for encouraging energy efficiency
are subject to the rebound effect in which participants often
return to less efficient behavior after some time [41], [42].
By integrating our utility learning framework with incentive
design, we will be able to create an adaptive model that learns
how users’ preferences change over time and thus generate the
appropriate incentives to ensure active participation.

To demonstrate the utility learning methods, we applied
them to data collected from a smart building social game
we conducted where occupants vote for shared resources
and participate in a lottery. We were able to estimate nearly
unbiased estimators for several agent profiles and significantly
reduce the forecasting error compared with cOLS. The robust
utility learning framework enables us to effectively close
the loop around smart building occupants by providing the
foundation for learning a decision making model that can be
integrated into the incentive or control design process. While
we apply the method to smart building social game data, it can
be applied more generally to scenarios with the task of inverse
modeling of competitive agents and provides a useful tool for
many smart infrastructure applications where learning decision
making behavior is crucial.
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APPENDIX

PROOF OF PROPOSITION 1

Proof of Proposition 1: Suppose the assumptions hold.
The constraints for each player do not depend on other
players’ choice variables. We can hold x∗−i fixed and apply
[8, Proposition 3.3.2] to the i th player’s optimization problem
max{ fi (xi , x∗−i ) | xi ∈ Ci }. Since each fi is concave and
each Ci is a convex set, x∗

i is a global optimum of the i th
player’s optimization problem under the assumptions. Since
this is true for each of the i ∈ {1, . . . , n} players, x∗ is a Nash
equilibrium.
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