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Virtual Occupancy Sensing:
Using Smart Meters to Indicate Your Presence
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Abstract—Occupancy detection for buildings is crucial to improving energy efficiency, user comfort, and space utility. However, existing
methods require dedicated system setup, continuous calibration, and frequent maintenance. With the instrumentation of electricity
meters in millions of homes and offices, however, power measurement presents a unique opportunity for a non-intrusive and
cost-effective way to detect occupant presence. This study develops solutions to the problems when no data or limited data is available
for training, as motivated by difficulties in ground truth collection. Experimental evaluations on data from both residential and
commercial buildings indicate that the proposed methods for binary occupancy detection are nearly as accurate as models learned
with sufficient data, with accuracies of approximately 78 to 93% for residences and 90% for offices. This study shows that power usage
contains valuable and sensitive user information, demonstrating a virtual occupancy sensing approach with minimal system calibration
and setup.
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1 INTRODUCTION

T ECHNOLOGICAL innovations in sensor networks and
mobile computing extend the frontiers of building sci-

ence and opens up a wealth of opportunities. A combination
of factors contribute to the connectedness of pervasive sens-
ing nodes: lowered manufacturing cost, miniaturized size
and enhanced functionality, integrated sensing services, vi-
sualization, and actuation, and raised awareness of energy,
privacy, and security issues.

Individuals spend 90% of their time in buildings, either
in their homes or in their offices. Buildings consume ap-
proximately 40% of all energy usage in the United States.
Heating, ventilation, and air conditioning (HVAC) and light-
ing are responsible for 43% and 11% of energy usage in
residential buildings, and 33% and 26% of energy usage
in commercial buildings [1]. Among various measures for
energy savings, such as building renovations, dynamic pric-
ing, and social games, occupancy sensing has been shown
to contribute to both occupant comfort and energy efficiency
[2], [3]. The current study focuses on binary-level presence
detection (i.e., 0/1 decision – a room or a house is either
occupied or vacant), as opposed to the occupancy of an
identified individual or the number of people in a region.
Binary information is usually sufficient for applications like
automated zonal control for indoor temperature, air quality,
and lighting [2], [3], [4], [5], as well as health monitoring in
residential buildings [6].

Existing approaches to occupancy detection use either
reliable but specialized sensors, such as cameras [3], passive
infrared (PIR) [7], magnetic reed switches [2], [3], active
RFID badges [5], or non-specialized for occupancy detection
yet fallible environmental measurements, including CO2
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[8], [9], temperature [10], and particulate matters [11]. With
the installation of electricity meters in millions of homes
and offices [12], which are continuously monitoring power
usage, one question comes to mind:

“Can energy consumption be used to indicate one’s presence?”

While previous work that relies on power measurements
focuses on situations where sufficient data is available from
target households [10], [13], [14], [15], [16], [17], collecting
the occupancy ground truth that is required to train the
detection algorithms is a challenging process. It often relies
on 1) user engagement, e.g., completing a survey every 15
or 60 minutes [13], [16], or uploading the GPS trajectory
data as a proxy for their presence ground truth [14], 2)
instrumentation efforts, e.g., setting up a wireless network
of cameras, motion sensors, or door switches [10], [17]. A
systematic approach that relaxes the requirement of ground
truth data collection is desirable for practical application.

The following scenarios illustrate some emerging ap-
plications of smart meters [18], in which user presence
information can bring direct benefits:

Scenario 1 (S1): Occupants in an office building partici-
pate in a social game to save energy by having their cubicles
instrumented with power meters [19]. Building managers
want to correlate the energy consumption pattern of the
building with the schedules of its occupants and assess its
energy efficiency. However, they prefer an easy and non-
intrusive way to access the occupant presence information
without additional infrastructures or surveys.

Scenario 2 (S2): A start-up company on smart meters
for home automation has collected a substantial amount
of occupancy and electricity data from incentivized house-
holds to train its presence detection system. A targeted
product feature is effortless calibration by requiring minimal
inputs from new customers while maintaining comparable
performances.
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Fig. 1: Key system components that offer occupancy-aware services that are enabled by presence detection.

In both situations, smart meters are viable proxies for de-
mand approximation [18] (S1) and/or home automation [20]
(S2) by extending basic metering functionality to presence
detection. The benefits of higher detection accuracy include
more substantial energy savings and reliable automation
systems with no additional costs to instrument sensors [2].
Nevertheless, these two problems differ in training source
availability: While S1 is characterized by very limited pres-
ence data accessible to the learner, while S2 features exten-
sive data but not from its customers’ households.

Hence, the objective of this study is to develop solu-
tions to address the issues that arise while learning from
limited or no training data. Key components of the end
system include 1) electricity measurements from building-
and/or device- level meters, 2) occupancy detection based
on power usage, e.g., Non-intrusive Learning (NL) or
Transfer-Learning (TL) methods proposed in the study, and
3) occupancy-aware applications, e.g., demand controlled
ventilation [2], [5], [9], [21] and lighting [19], and building-
level demand response [22] (Fig. 1).

Our main contributions are summarized below:

• Formulates the problems as Base Learning (BL), Non-
intrusive Learning (NL), and Transfer Learning (TL).

• Explores power features and studies the window and
sampling effects as a practice guide.

• Develops and evaluates solutions to NL and TL
for residential and commercial buildings, which
achieves around 80 to 90% accuracy.

The rest of the paper is organized as follows. Formula-
tions of BL, NL, and TL are described in § 2. § 3 introduces
the methods, in particular, multiview-based iteration and
surrogate loss methods for NL (§ 3.2), and the transfer
learning optimization method for TL (§ 3.3), as well as
explores power features (§ 3.4). BL, NL, and TL datasets
and results are reported and discussed in § 4. While related
work is summarized in § 5, § 6 concludes this study and
proposes future work.

2 PROBLEM FORMULATIONS

In this section, we first describe the basic framework, and
then formulate the problems that prompted the solutions
proposed in the study.

2.1 Basic Framework
We set the basic framework of our learning problem, in
which the notations follow the literature from statistical
decision theory. We use “presence” and “occupancy” inter-
changeably in the texts.

The dataset, S = {(x1, y1), · · · , (xn, yn)}, includes elec-
tricity and occupancy data. The presence information, y ∈
Y = {−1,+1}, takes either the value of +1 or−1, indicating
the state of presence (occupancy) or absence (vacancy),
which are often provided by users [15] or reliable sensors
like camera [3], ultrasonic [23], and passive infrared (PIR)
sensors [7]. The measurement data, x ∈ X =

Śm
j=1Xj ,

consists of m distinct features derived from electricity and
time, as described in § 3.4. We make the following assump-
tions in the design of occupancy detectors.

Assumption 1: While an individual’s energy consump-
tion and occupancy behaviors are stable over the period
of interests, two individuals’ consumption and occupancy
behaviors may differ.

Assumption 2: Samples in S are independent and iden-
tically distributed (i.i.d.).1

Our goal is to learn the presence detector f that mini-
mizes the risk, Rl,F (f) = Ef∈F [l(y, f(x))], where F delin-
eates the range of detectors, for instance, the class of linear
classifiers, and l : Y × Y → R is the loss function, which
penalizes mistakes in detection. An example is the 0-1 loss
l01(y, f(x)) = 1(y 6= f(x)) that results in 1 if the two
arguments differ and 0 otherwise.

Since we can only access the unknown power consump-
tion behaviors through the dataset S, our strategy is to
search for the empirical risk minimizer (ERM) as given by:

f̂ = arg min
f∈F

1

n

n∑
i=1

l(f(xi), yi) (1)

The regret characterizes how “poorly” the learner has
performed compared to the performance of the best achiev-
able learner in the class, as given by

δRl,F (f) = Rl,F (f)︸ ︷︷ ︸
risk of f

− inf
f ′∈F

Rl,F (f ′)︸ ︷︷ ︸
risk of the best detector

(2)

where a tight upper bound on the regret suggests a perfor-
mance guarantee of the algorithm when used in practice.

1. Although time series data may have time auto-correlation issues,
they are resolved when the data is organized into groups of 10 to 15
minutes, thereby justifying the i.i.d. assumption.
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2.2 Problem Formulations
Presence learning problems can be described as follows:
• Base Learning (BL): Find the optimal detector given

the power and occupancy data from a user, S .
• Non-intrusive Learning (NL): Find the correspond-

ing occupancy classifier with only the electricity us-
age data.

• Transfer Learning (TL): Learn a presence detector
for the target home where limited data is available
based on sufficient power and occupancy data from
a group of similar households.

The set up of BL, as in most previous studies [10], [14],
[15], [16], [17], [24], requires the collection of presence and
energy data for an extended period of time to train the
classifier. Then, the classifier makes presence decisions when
new electricity measurement information is provided.

NL, in comparison, corresponds to Scenario 1. Instead of
intrusively collecting user’s states for training purposes, the
learning process is based on electricity data alone.

TL refers to Scenario 2, in which several individuals
(households), or source, have been surveyed for a prolonged
period of time. But, only limited data has been obtained
for the individuals of interests, or target. The objective is to
transfer the knowledge from the source to the target, and
improve the detection accuracy of the target task.

2.3 Discussion
Due to the difficulties in collecting the occupancy ground
truth data, there is increasing demand to move away from
BL and shift toward NL and TL.

The design of occupancy detection algorithm involves
trade-offs among the following practical concerns:

Accuracy. Generally, a higher rate of accuracy for the
algorithm is preferred. But, the cost of an erroneous detec-
tion differs based on the presence system’s application and
issue severity. For instance, if a company’s alarm system
fails to detect an intrusion, the issue severity and resulting
cost are high. However, if a home automation system falsely
assumes presence, the issue severity and resulting cost are
low [25].

Costs. The capital costs are due to the smart meters
quantity and complexity, as well as the communication and
storage infrastructures. The training costs involve the time
and labor invested in collecting presence data for system
calibration, which might be different for recruited individu-
als and new customers.

The solution to the more challenging NL and TL prob-
lems is based on three key observations:

1) Energy consumption differs markedly when indi-
viduals are present versus when they are absent.

2) Office buildings are usually vacant during non-
business hours.

3) As noted by Nobel laureate Kahneman in his book
“Thinking, Fast and Slow” [26], people’s behaviors
are patterned (the “slow” system) with spontaneous
deviations (the “fast” system). These patterns are
consistent over time.

While the third point lays the foundation for tackling the
TL problem, the first two points lead to the solutions to the
NL problem, as detailed in the next section.

3 METHODOLOGY

The core of the presence detection methods is embodied in
the answers to these two questions: 1) What is the set of
features derived from power usage that is most indicative
of user presence, and 2) How can one estimate this cor-
respondence. BL approaches approximate this relationship
based on training data from the target. Due to a lack of
direct access to data for NL and TL, the “multiview” and
“transferability” assumptions have been created. They are
detailed in § 3.2 and § 3.3, respectively. § 3.4 illustrates the
design and selection of power features that address the first
question about the features that are the most indicative of
user presence.

3.1 Base Learning Methods

The BL goal is to find the learner f̂ that can minimize the
empirical loss (1). A variety of models have been proposed,
such as naı̈ve Bayes, Bayes net, logistic regression, support
vector machines (SVM), adaptive boosting (AdaBoost), de-
cision tree (J48), and random forest. These models follow
the same ERM framework but differ in the loss function
selection.

For instance, SVM optimizes the hinge loss:
lhinge(f(xi), yi) = max(0, 1 − yif(xi)) where
f(xi) = 〈ω,xi〉 is linear and parameterized by ω ∈ Rm.
Intuitively, it seeks a decision boundary that maximizes the
distance from the two classes, with a special focus on those
near the boundary, a.k.a., the “support vectors”.

The loss function reflects how the model treats the mis-
classification error, which, together with the function that
predicts each instance, offers a summary of the method.
More details about the BL algorithms can be found in
[27]. BL algorithm implementations are also available, for
example, LibSVM [28] and Weka [29]. Experimental results
are reported in § 4.2.

As BL’s framework generally requires substantial train-
ing data, it is not suitable if user convenience is key. In
the next section, we discuss how the NL and TL solutions
satisfy the user convenience requirement by modifying the
loss function or optimization problem, e.g., surrogate loss in
§ 3.2.2, and knowledge transfer in § 3.3.

3.2 Non-intrusive Learning Methods

Unlike BL, the solution to the NL problem requires the
use of problem-specific structures as we lack sufficient data
to estimate the presence – electricity correspondence. The
key is to use time as clues to infer occupant presence.
As individuals are habitual, this demonstrates consistency
principle for commercial and residential buildings (Fig. 2).

Let Xv1 and Xv2 be two “views” that partition the
original feature space, X = Xv1

Ś

Xv2 =
Śm

j=1Xj , and Fv·
be the associated function space. Our methods are based on
the following assumption:

Multiview Assumption: The risks Rl,Fv·(f
∗
v·) of learn-

ers trained by each “view” v· separately, f∗v· =
arg minf∈Fv· E [l(y, f(x ∈ Xv·))], is comparable to the risk,
Rl,F (f∗), of the learner trained on the complete feature
space, f∗ = arg minf∈F E [l(y, f(x ∈ X ))].
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Fig. 2: Typical daily power consumption of an occupant in a commercial building (left) and in a household (right). The red
color indicates user presence while the blue color indicates user absence.

The multiview assumption states that each view, power
or time, is sufficient for the problem at hand, as suggested
by Blum and Mitchell [30].

Next, we describe two approaches, multiview-based it-
eration training (MIT) and surrogate loss. Based on our
previous work [23], the first method initializes the training
set by the time view, and iteratively refines the labels until a
stopping criterion is met. Built on the work of Natarajan
et al. [31], the second method uses the surrogate loss in
replacement for the original loss, in order to “reverse” the
effect of labels’ corruption introduced to the training data
by the time view.

3.2.1 Multiview-based Iteration Training

Assign the first view, Xv1, as the time of the day, and
the second view, Xv2, as the power-derived features, and
let fv1 and fv2 denote the classifiers based on the two
views respectively. Given the unlabeled dataset S =
{(xv1

1 ,xv2
1 ), · · · , (xv1

n ,x
v2
n )}, where xv1

i ∈ Xv1 and xv2
i ∈

Xv2, MIT proceeds as follows (the pseudo-code can be found
in the appendix):

1) Initialization: Set the initial training set according to
the prior information provided by the time view, or
(rough) occupancy schedules.

2) Multiview training: For rounds t = 1, 2, ..., train
the power-based classifiers, and determine the new
guesses based on the majority votes among the
power- and time-based classifiers.

3) Labeled set updates: Perform the following update:

Lt+1
j = {Ltj ∩ Ltj,n} ∪ Sample{Ltj∆Ltj,n;αj} (3)

for j ∈ {−1,+1}, where Ltj = {((xv1
i ,x

v2
i , ŷi)|ŷi =

j}, and Ltj,n denote the set of samples whose labels
are newly classified as j, Ltj∆L

t
j,n is the symmetric

difference set operation, and αj is the sampling rate
for label j ∈ {−1,+1}.

4) Stopping condition: Stop the iteration whenever (7) in
Theorem 3.3 is satisfied.

The dataset update (3) keeps the samples in which the
labels are agreed upon in the two successive iterations,
and insert a random subset of “controversial” samples,
with αj ∈ [0, 1] controlling the learning rate. The stopping
rule (7) is triggered when it seems unlikely that additional
iterations can improve the accuracy rate.

Different than the BL, MIT operates in a condition such
that the noise in the training set can not be ignored. The
probably approximately correct (PAC) framework proposed
by Valiant [32] can be applied to resolve this issue.

Theorem 3.1. [32] If we draw a sequence of

n ≥ 2

ε2 (1− 2η)
2 log

(
2N

δ

)
(4)

samples from a distribution and find any hypothesis fi that
minimizes disagreement with the training labels, where ε is the
hypothesis worst-case classification error rate, η is the upper
bound on the training noise rate, N is the number of hypotheses,
and δ is the confidence, then the following PAC property is
satisfied:

P [d (fi, f
∗) ≥ ε] ≤ δ (5)

where d(, ) is the sum over the probability of elements from
the symmetric difference between the two hypotheses fi and the
optimal f∗.

The above theorem provides a high probability bound on
the classification error given the training noise rate, which
can be estimated as follows. If we let Lt−1 = Lt−1,X ∪Lt−1,×,
where Lt−1,X and Lt−1,× are the set of true negative and
false positive samples, respectively, similarlyLt+1 = Lt+1,X∪
Lt+1,×, also U t = U t−1∪U t+1 is the set of unlabeled samples,
then the training noise rate, ηt, is given by:

ηt =
|Lt−1,×|+ |Lt+1,×|
|Lt−1|+ |Lt+1|

(6)

Assume the hypothesis makes classification errors at the
rate εt. The following lemma is established to estimate the
training noise rate ηt and hypothesis classification error εt
in each iteration.

Lemma 3.2. The training noise rate ηt and hypothesis classifica-
tion error εt can be estimated assuming we have access to any two
of the following quantities:

a) (Prior information) the number of negative samples,
namely |Lt−1,X|+|Lt+1,×|+|U t−1|, or |Lt−1,X|+|Lt+1,×|
for the labeled set

b) (Type I or II error) the misclassification rate for either
the positive or negative samples, namely

|Lt−1,×|
|Lt−1,×|+|Lt+1,X|

or
|Lt+1,×|

|Lt+1,×|+|Lt−1,X|
.

The set of equations for estimation are derived in the appendix.

Theorem 3.1 provides the relationship among the num-
ber of training samples, n, the training noise bound, η,
and the classification error rate, ε, of the hypothesis that
minimizes the training error. Lemma 3.2 offers a method
to calculate the classification noise rate ηt in the t round.
Inspired by Zhou and Li [33] and Goldman and Zhou
[34], we state the following theorem that guarantees that
classification performance will improve in each round.
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Theorem 3.3. The gap between the learned and optimal hy-
potheses as shown in PAC property (5) will decrease with high
probability in each iteration with suitable sampling rates, α−1

and α+1, whenever the following condition is satisfied:(
|Lt+1
−1 |+ |L

t+1
+1 |

)
(1− 2ηt+1)

2
>
(
|Lt−1|+ |Lt+1|

)
(1− 2ηt)

2

(7)
where

(
|Lt+1
−1 |+ |L

t+1
+1 |

)
is the total number of samples in the

training set in round t+ 1, and ηt+1 is the training noise rate.

Theorem 3.3 suggests the stopping indicator as follows:

1{
(
|Lt+1
−1 |+|L

t+1
+1 |

)
(1−2ηt+1)

2≤
(
|Lt−1|+|Lt+1|

)
(1−2ηt)

2}
(8)

which evaluates to 1 when the condition in (7) is not
satisfied. Frequent occurrences of such events might be a
strong indication to stop the algorithm and avoid potential
deterioration, as illustrated in § 4. The proof for Lemma 3.2
and Theorem 3.3 can be found in the appendix.

3.2.2 Surrogate Loss

The MIT proposed in the previous section initializes the
training data based on common schedules, and iteratively
refine the labels until a stopping condition is met. As sug-
gested by Natarajan et al. [31], another approach is to rec-
ognize the presence of noise with ρ−1 = P(ỹ = +1|y = −1)
and ρ+1 = P(ỹ = −1|y = +1) as the label corruption
probability, and a design loss function as a substitute for
the original loss to “reverse” the corruption process. The
procedure of the surrogate loss approach is described below,
and Algorithm 1 illustrates the implementation.

1) Initialization: Set the collected data where the pres-
ence is estimated by prior knowledge, i.e., occu-
pancy schedules (line 1).

2) Cross-validation: For each parameter θ ∈ ΘCV ⊂ Θ
in a finite subset of the parameter space, obtain the
empirical risks associated with θ, R̂CV (θ), follow-
ing the standard cross-validation procedure on the
surrogate loss, l̃(t, y; θ) (lines 2, 3).

3) Learning with surrogate loss: Identify the best pa-
rameter as suggested by the previous step, θ∗ =
arg minθ∈ΘCV R̂CV (θ), and use it to obtain the new
presence labels for the dataset (lines 4 to 6).

The first step in the above procedure is based on the
multiview assumption, and the second step is motivated by
parameter optimization θ = {ρ+1, ρ−1}, since the condi-
tional noise rates, ρ±1, are unknown.

Based on corrupted learning [35] and label-dependent
loss [31], two different surrogate losses are summarized
below:

• With the learning under corruption scheme, the sur-
rogate loss is given by:

l̃(f(x), ỹ) =
(1− ρ−ỹ)l(f(x), ỹ)− ρỹl(f(x),−ỹ)

1− ρ+1 − ρ−1
(9)

where ρỹ is the conditional noise rate, and l : Y ×
Y → R is the original loss function.

Algorithm 1: Learning with Surrogate Loss

Learning Surrogate Loss(X , Prior, MaxIter)
Input: X : feature matrix of size n×m, where n is the

number of samples, m is the number of views.
Prior: expert knowledge for initialization.

Initialization:
1 L← Prior(X) // initial estimation by Prior

Cross-validation:
2 for θ ∈ ΘCV do
3 RCV (θ)← CVEstMdl(X,L, l̃(t, y; θ))

Learning with surrogate loss:
4 θ∗ = arg minθ∈ΘCV RCV
5 EstMdl← MdlEst(X,L, l̃(t, y; θ∗))

6 L∗ ← MdlPred(X,EstMdl, l̃(t, y; θ∗))
Output: L∗ // labeled datasets

• The γ-weighted label-dependent loss is given by:

lγ(f(x), ỹ) = (1−γ)1(ỹ = 1)l(f(x), ỹ)

+ γ1(ỹ = −1)l(−f(x), ỹ) (10)

where γ is the weight chosen according to the condi-
tional noise rates 1−ρ+1+ρ−1

2 .

The two surrogate loss functions above are designed
such that the procedure of seeking the empirical risk mini-
mizer (1) under the “corrupted” distribution is as if we are
working with the original loss function under the “clean”
distribution, where the labels are the ground truth (the
derivation of (9) is obtained in the Appendix). The next
theorem provides an upper bound on the regret (2) using
the surrogate loss function (9).

Theorem 3.4. [31] Let l(t, y) be L-Lipschitz in t for ev-
ery y, then with probability at least 1 − δ, and f̂ =
arg minf∈F

1
n

∑n
i=1 l̃(f(xi), yi) be the ERM with the corrupted

data,

δRl,F (f̂) ≤ 4LρR(F) + 2

√
log(1/δ)

2n
(11)

where R(F) = Exi,εi

[
supf∈F

1
n

∑n
i=1 εif(xi)

]
is the

Rademacher complexity of the function class F with εi as the
i.i.d. Rademacher (symmetric Bernoulli) random variables [36],
and Lρ ≤ 2L/(1 − ρ+1 − ρ−1) is the Lipschitz constant of l̃
given in (9).

Theorem 3.4 suggests that the upper bound on regret de-
creases as we have more samples, whose infimum depends
on the Lipschitz constant and complexity of the function
class only. As the proposed procedure is like “exploration
in the darkness”, the result offers performance guarantee;
nevertheless, the precondition is specified that neither ρ±1

is greater than .5. Indeed, the bound improves as the condi-
tional noise rates reduce. We will refer to (9) as the unbiased
loss (U. L.), since the expectation of the original loss l(·, ·)
under the “clean” distribution is identical to that of the
surrogate loss l̃(·, ·) under the “corrupted” distribution [35].

The γ-weighted label-dependent loss is designed in a
similar fashion, except that the corrupted risk, Rlγ ,F (f),
now is an affine transformation of the original risk, Rl,F (f):
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Lemma 3.5. [31] There exists a constantB that is independent of
f such that by choosing γ = 1−ρ+1+ρ−1

2 and Aρ = 1−ρ+1−ρ−1

2 ,
and for all functions f ∈ F ,

Rlγ ,F (f) = AρRl,F (f) +B (12)

Intuitively, the loss puts more weights on data with la-
bels that are less corrupted. With the chosen γ, optimization
with l̃γ is equivalent to that with the original loss due to
the affine relation (12). The next theorem gives performance
guarantee.

Theorem 3.6. [31] Let L be the Lipschitz constant for l as
before, and f̂ = arg minf∈F

1
n

∑n
i=1 l̃γ(f(xi), yi), then with

probability at least 1− δ,

δRl̃γ ,D̃,F (f̂) ≤ 4LR(F) + 2

√
log(1/δ)

2n
(13)

where R(F) is the Rademacher complexity.

There are two keys for using the surrogate loss approach
to solve the NL problem. One, the initialization of the
training set is based on a common occupancy schedule,
which provides useful information for human behavior
mining. Two, the surrogate loss is designed such that the
expectation of the objective under the corrupted distribution
is equivalent to that of the original problem. Hence, the
solution is unaffected by the noise introduced in the initial
phase.

3.3 Transfer Learning Methods

The main issue with the TL problem as outlined in § 2.2 is
data abundance/scarcity. While the dataset from the house-
holds of interests, or target, is limited, the dataset from the
different households that might have different energy usage
patterns, or source, is ample.

The key lies in the answer to the question, how we can
we ‘’apply the knowledge” gained from analyzing a dataset
with similar characteristics to the dataset in question? We
can completely ignore the question by performing BL, such
as SVM, for each individual independently; however, it
might be difficult for the learner to generalize the learning
instances by relying on the limited data from the target
household alone. In this case, data from the other house-
holds that share similar consumption patterns might be
useful in estimating the correspondence between the occu-
pancy and power measurements, crucial to the detector’s
performance overall.

For SVM, the learner assumes the form f (k)(x) =
sgn (〈x,ωk〉), where x ∈ X is the feature input and ωk is
the parameter for individual k. Instead of training ωk inde-
pendently, Evgeniou and Pontil [37] proposes the following
decomposition:

ωk = ω0 + vk (14)

where ω0 is the common component that is shared in
the group, and vk represents the individual effect which
is unique for each household. With the model specified

above and based on the original problem as in (1), the new
optimization is formulated as:

min
ω0,vk,ξ

(k)
i

J1(ξ
(k)
i ) + J2(ω0,vk)

s. t. y
(k)
i

〈
ω0 + vk,x

(k)
i

〉
≥ 1− ξ(k)

i

ξ
(k)
i ≥ 0, k ∈ ST ∪ {K}, i ∈ [m(k)]

(P1)

where m(k) is the data size for task k, [m(k)] =
{1, ...,m(k)} uses our set notation, ST ∪ {K} is the union
of the source (ST ) and target (K) index set, J1(ξ

(k)
i ) is the

classification cost:

J1(ξ
(k)
i ) =

m(K)∑
i=1

ξ
(K)
i + λ0

∑
k∈ST

m(k)∑
i=1

ξ
(k)
i (15)

with λ0 as the importance weight of the source tasks, and

J2(ω0,vk) =
λ1

K

∑
t∈ST∪{K}

‖vk‖2 + λ2‖ω0‖2 (16)

is the regularization term to avoid overfitting. There are two
trade-offs in this formula:

• Source vs. target tasks
• Individuality vs. conformity

The individuality vs. conformity trade-off effectively
controls the amount of knowledge transfer across tasks [37].
In fact, setting λ1/λ2 → ∞ would correspond to learning
tasks independently, or no knowledge transfer, and setting
λ1/λ2 → 0 would result in learning a single model, or
transfer all knowledge.

New in this study, the source vs. target trade-off rec-
ognizes the relative importance of learning the target task
well, as compared to the source, by setting λ0 < 1. Since the
target dataset is usually smaller than the source dataset, this
avoids the target from being overwhelmed, and can further
improve the performance. The principles of this tradeoff is
illustrated in § 4.

The common and individual models of (P1), ω∗0 and v∗k,
are related as follows:

Lemma 3.7. It can be shown that ω∗0 = λ1

Kλ2

∑K
k=1 v

∗
k.

The connection of (P1) to the standard SVM is depicted
in the next proposition (see the appendix for the proof):

Proposition 3.8. With the following transformation of features,
Φ, for samples in all tasks, k ∈ {1, ...,K},

Φ(x, k) =

(
x
√
µ
,0, ...,0︸ ︷︷ ︸

k−1

,x,0, ...,0︸ ︷︷ ︸
K−k

)
(17)

and the construction of the parameters,

ω = (
√
µω0,v1, ...,vK) (18)

where µ = Kλ2

λ1
, (P1) can be converted to the standard SVM.

According to Proposition 3.8, we can use the popular
SVM solvers, e.g., LibSVM [28], to tackle the TL problem.
Also, we can extend the proposition to nonlinear SVM by
“lifting” Φ(x, t) to higher, even infinite, dimensions, which



IEEE TRANSACTIONS ON MOBILE COMPUTING 7

0.0

0.2

0.4

0.6

0 50 100 150

Power (W)

N
o
rm

a
liz

e
d
 f
re

q
u
e
n
c
y

Absence

Presence

Average power

0.0

0.2

0.4

0.6

0 25 50 75 100

Power (W)

N
o
rm

a
liz

e
d
 f
re

q
u
e
n
c
y

Absence

Presence

Power MAC

Fig. 3: Conditional distributions of features, i.e., average power and MAC, given occupancy states for u17.

corresponds to various kernels, e.g., radial basis and sig-
moid, in the dual formulations. In the experimental section,
we will illustrate the empirical rules for selecting µ, and our
strategy to implement λ0 for the source-target trade-off.

3.4 Power Features Exploration

The key question resolved in this section is: which features
based on power usage are the most indicative of occupancy?
We motivate the exploration by observing the power traces
in tandem with the occupancy information for residential
and commercial buildings (Fig. 2).

Although the presence of occupants generally means
a higher power usage, it is not uncommon for occupants
to leave their computers on while they are out of office.
In the next section, power features are designed based on
power magnitude, transition, and transient effects. We also
investigate how the length of aggregation window and the
electricity sampling rates influence the separability of these
features. Throughout this section, xi is used to denote real
power measurement at time index i.

3.4.1 Power Magnitude
When people are in their homes or offices, they tend to use
more devices, such as computers, televisions, microwaves,
and lights than when they are absent. This indicates that the
distributions of power magnitudes, as shown in Fig. 3, are
distinct for the states of occupancy and vacancy.

Specifically, the mean of the distribution for occupancy
is higher than the mean for the vacancy, and it also has more
spreads over the spectrum due to the variety of devices
used. Additionally, there are more high power samples
due to devices like microwaves, kettles, blenders, etc., that
consume a large amount of power in a short period of time.

The overlap between the two distributions can be at-
tributed to two factors. One, there are devices such as
televisions that are in stand-by modes, or devices such
as refrigerators that are always on regardless of human
presence. Two, individuals forget to turn off devices such as
computers, lights, and HVAC when they leave the rooms,
resulting in energy waste. Clearly, features that look beyond
power magnitudes are required to distinguish occupancy
presence and absence.

3.4.2 Transition Effect
The basic learning problem is described by (l,D,F , en), where
l : Y × Y → R is the loss function to penalize misdetection,
e.g., the 0-1 loss l01(y, f(x)) = 1(y 6= f(x)), which evalu-
ates to 1 if the two arguments differ and 0 otherwise.

A reliable indication of human presence is when individ-
uals switch devices ON or OFF, causing an abrupt change

in power consumption. This transition effect has been used
for non-intrusive load monitoring (NILM) to disaggregate
devices from power measurement [38]. Also, change-point
detection methods in time series also analyze the divergence
of distributions to signal transitions in states.

The transition effect is characterized by the following
features:

• Maximum absolute change (MAC):

δMAC = max
i,j∈Sd

|xi − xj | (19)

where Sd is the set of points with window size d.
• Counts of ON/OFF events (SOF), δSOF , is the

number of events such that: the change of power
|xi − xi−1| is greater than δp, and no such changes
occur in the next δt period.

Distribution of MAC is shown in Fig. 3, which illustrates
separability in the new dimension.

3.4.3 Transient Effect
Apart from transitions that happen infrequently, a critical
observation from Fig. 2 is that despite the high power level,
there are much fewer “spikes” and “ripples” during human
absence. One plausible explanation is that when devices,
such as computers, are in active use, they frequently switch
among several modes, i.e., browsing, simulation, and word
processing. Compared to the stand-by mode with a constant
power need, these various modes have different power
needs.

Features are designed to capture the transient effect:

• Mean of absolute difference (MAD):

δMAD =
1

d

∑
i∈Sd

|xi − xi−1| (20)

• Mean of absolute height difference (MAHD):

δMAHD =
1

|Cd|
∑

(i,j)∈Cd

|xi − xj | (21)

• Standard deviation (SD):

δSD =

√
1

d− 1

∑
i∈Sd

(xi − x̄)
2 (22)

where Cd = {(i, j)|x monotone between i, j, i < j ∈ Sd},
and x̄ = 1

d

∑
i∈Sd xi is the average power.

As shown in Fig. 3, the distributions of δMAD and δSD
achieve good feature separability. Although it illustrates
the active/inactive device usage, this information indirectly
relates to occupant presence, requiring corroboration with
other features for the occupancy inference.
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3.4.4 Window Effect

The “window” mentioned above is used to aggregate a
chunk of data to calculate features. The choice of window
size, d, depends on two independent factors: the time
resolution of occupancy detection, and the separability of
obtained features. Although many authors use the former
to determine window size [15], [16], [17], [24], the latter
is critical to detection performance, and should be studied
systematically.

The more separable the feature, the easier it is to classify
[27]. Several divergence metrics for distributions have been
employed to measure feature separability, including the
Jensen-Shannon (JS) divergence, Hellinger distance (HD),
total variation (TV) distance, and Bhattacharyya distance
(BD). These definitions are provided in the appendix. For
these metrics, larger values indicate that the features are
more effective in distinguishing between occupancy and
vacancy states, key to the detection accuracy.

While average power is generally insensitive to win-
dow size, other features that characterize the transition and
transient effects are more sensitive to window size and
have better qualities as the window expands, assuming the
same sampling rates (Fig. 4). Since occupancy resolution
decreases for large windows, a sampling rate of 1 sample
per minute during the 15 minutes period (i.e., 15 aggregated
data points) seems to be a good trade-off.
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Fig. 4: Divergence measures to study the window effect. HD
and TV are offset by -1 and -0.25 for comparison.

3.4.5 Sampling Effect

The sampling rate refers to how frequently power is mon-
itored. While the window size determines the span of
information to investigate, the sampling rate controls the
density of data to collect. Higher sampling rate means
denser sample time data.

Data collected at higher rates usually reveal more in-
formation, e.g., the use of high frequency monitoring for
power disaggregation [39]. But, it also introduces redun-
dancy, especially for the detection of occupancy that typi-
cally changes slowly. There are limitations to data storage
and transmission bandwidth, as well as trade-offs between
privacy and detection resolution at different sampling rates.

Using the divergence metrics, we investigate the sep-
arability of the features as we increase the sampling in-
tervals, with a fixed window size of 30 minutes (Fig. 5).
Although the power average feature seems to be relatively
robust when sampling rates decrease, the MAD feature
becomes less effective in distinguishing between presence
and absence states. This phenomenon can be observed from

the diminishing divergence metrics. In general, features
that describe the transition and transient effects are most
impacted by a sparse power usage request, leaving out
valuable temporal information as a result. The sampling
frequency is 1 sample per second for the ECO [15] and
UMass Smart* [14] datasets, and 1 sample per minute for
the PC [23] dataset used for evaluation. In practice, it is
sufficient to capture the transition and transient effects with
1 minute sampling interval.
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Fig. 5: Divergence measures for power average and MAD to
study the sampling effect.

4 EXPERIMENTAL EVALUATION

Using the datasets for office cubicles (PC) [23],and the ECO
[15] and Smart* [14] that cover the commercial and residen-
tial buildings, we evaluate the BL, NL, and TL methods and
facilitate a comparison with previous work [14], [15].

4.1 Experimental Setup and Data Collection
4.1.1 Personal Cubicles in an Office
The goal is to evaluate individual presence detection based
on power measurement in personal cubicles to facilitate
lighting and HVAC control for social games [19]. Located
in Cory Hall on UC Berkeley campus, the office is instru-
mented with the following sensors [23]:

Ultrasonic sensors, placed on user’s desk as shown in
Fig. 6, measures the distance to their nearest obstacles, i.e.,
individuals or chairs, by recording the time of flight ∆t of
triggered sound wave: dobs = 1

2∆tvs, where vs
.
= 340m/s

is the velocity of sound in the air. Radio modules, con-
trolled by Arduino microprocessors, implement the ZigBee
networking protocol for data transmission (Fig. 7). Measure-
ments can be processed by simple thresholding for presence
inference.

Acceleration sensors, attached to the chairs (Fig. 6), detects
presence by sensing chair motions. Collected by our previ-
ously developed Building-in-Briefcase (BiB) sensors [40], the
data is stored on our PI server for remote access.

WiFi access points, deployed across the office for indoor
positioning by measuring the radio signal strength (RSS)
[41], can be used to infer the presence of smart phones
when they are connected to the network. Due to the IEEE
802.11 protocols, the connection interval ranges from several
seconds to increments of ten minutes for energy efficiency.

In addition, we asked 4 users (id: 8, 17, 20, 26) to com-
plete surveys that indicate their presence designed with 5
minutes resolution. This user survey data is combined with
the above sensor measurements to provide ground truth.
The power consumption is collected by ACme sensors [42]
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Fig. 6: Experimental setup of presence sensing networks.

Fig. 7: Communication configuration based on ZigBee.

at a resolution of a second. More details can be found in our
previous work [23]. We refer to this dataset as “PC” in the
discussions.

4.1.2 Residential Buildings
For the residential building occupancy detection, we use the
publicly available Electricity Consumption and Occupancy
(ECO) dataset, which consists of fine-grained electricity and
occupancy measurements for five Swiss households (id: r1,
..., r5) during summer (July to September 2012) [15]. We also
employ the UMass Smart* home dataset [14], [43] from two
homes during the summer in western Massachusetts.

Aggregate power is collected by off-the-shelf digital elec-
tricity meters at a sampling rate of 1 Hz for ECO and Smart*.
Occupancy information is entered manually by residents
using the tablet mounted near the main entrance. Details
about the households (number of occupants, types of de-
vices, etc.) and data preprocessing techniques are described
in [14], [15], [43].

4.2 Base Learning Results

We analyze the BL problem as described in § 2.2 by exam-
ining both residential buildings (ECO) and personal cubicle
(PC) data. Features, including average power, MAC, SOF,
MAD, MAHD, SD, are derived within a 15 minutes window,
and the sampling intervals are 1 second for ECO and Smart*
and 1 minute for PC.

Hypothesis 1. Power can be used to infer occupancy.

First, we verify this hypothesis using simple threshold-
ing methods. Then, we demonstrate in Figs. 8 and 9 for PC
and ECO that the accuracy improves with more advanced
classifiers such as J48 decision tree and random forest.

Power thresholds are based on magnitudes (Mag/Th),
changes in power magnitude (Chg/Th), and changes in
percentage (Prc/Th), where the thresholds can be optimized
over the training set, as detailed in [23]. We also used the
static schedule as the baseline, which indicates occupancy or

Fig. 8: BL results for u17 in the PC dataset, obtained by
10-fold cross-validation. The methods, except for the static
baseline, Chg/Th, Mag/Th, Prc/Th, are implemented by the
Weka Machine Learning Toolkit [29].

Fig. 9: BL results for household r3 in the ECO dataset by
10-fold cross-validation.

vacancy from 8am to 6pm for the PC or ECO, and vacancy
or occupancy for the rest of the day.

Our findings show that power thresholding can achieve
basic inference. As for accuracy of power features, Mag/Th
is more suitable for PC and Prc/Th is more suitable for
ECO. As PC has a few devices such as computers and
desk lamps that are turned on or off when individuals
arrive or leave their offices, Mag/Th are sound indicators
of occupancy. As ECO has loads that are in stand-by modes
even during individuals’ absence, Mag/Th is not a suitable
indicator. Since some devices such as microwaves, kettles,
that draw high instantaneous power during individuals’
presence, Prc/Th are strong indicators for occupancy. Since
the households follow regular occupancy patterns, the static
baseline produces effective results, and even outperforms
the power thresholding methods in ECO.

The advanced classifiers, especially SVM, random forest,
and J48 decision tree, seem to outperform the baseline
methods for overall accuracy, true negative rates (TNR) for
accurate vacancy inference, and true positive rates (TPR)
for correct occupancy inference. Due to devices in stand-
by modes and devices with auto-triggers [15], the advanced
classifiers’ performance is slightly worse for ECO. However,
the experimental results clearly show that power is a reliable
indicator for occupancy.

Hypothesis 2. Inference accuracy is limited by training sample
size, and improves as more data is available.

To evaluate this hypothesis, we show the relationship be-
tween the inference accuracy for well-performing classifiers
and training data size in Fig. 10. The graph illustrates that
the classifiers’ accuracy improves rapidly and reaches the
upper limit with 5% or more training data. However, as the
training data size falls below 5%, or 1 to 4 days of occupancy
data, the classifiers’ accuracy deteriorates significantly. The
key problem is that while the learner can have a reasonable
estimate of the power-occupancy correspondence with 5%
of data, it seems difficult for the learner to generalize the
learning instances with 1% or less data. But, if we can train
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a well-performing classifier with only 1% or less data, more
than 80% of the survey effort can be saved for the user. In
the next section, we will explore this extreme data sparsity
regime, or NL and TL problems.

Fig. 10: Accuracy of well-performing classifiers imple-
mented for r2 in ECO, as training set size varies in the range
of (1, 5, 10, 15, 20, 30)%.

4.3 Non-Intrusive Learning Results
While the previous section discusses occupant presence
detection using readily available energy data, this section
examines the following hypothesis:

Hypothesis 3. When no training data is available, our power-
based occupancy detectors can still work by exploiting the common
schedules of average users.

Evaluation of this hypothesis requires the examination
of the two paradigms proposed in § 3.2:

• Multiview-based Iteration (MIT): initialized by time
schedules, the presence labels are iteratively refined
until certain stopping conditions are met.

• Recognize the noise in the training data, and learn
under corruption by designing surrogate losses.

Results for PC and ECO are reported in Figs. 11 and 12
for MIT, unbiased loss (U. L., (9)), and γ-weighted loss (10).2

Generally, all methods deliver satisfactory performances
compared to the static schedule. However, due to the vari-
ability in the occupancy and device usage, ECO is more
challenging than PC. According to TNR and TPR, the γ-
weighted loss seems to be a better absence detector, and
unbiased loss excels at presence detection.

Fig. 11: NL results for user u17 in the PC dataset by 10-fold
cross-validation for baseline methods and MIT, γ-weighted,
and unbiased losses.

Similar to BL results (Fig. 9), the TNR/TPR rates report
for ECO (Fig. 12) indicates that the NL methods have

2. As illustrated in Fig. 13, we implemented Naı̈ve Bayes in each
iteration of MIT, and terminated the iteration based on the stopping
conditions. LibSVM is used to realize the γ-weighted loss with radial
basis function (RBF) kernel. The logistic loss is selected for the unbiased
loss, optimized by Nesterov’s accelerated gradient method [44].

Fig. 12: NL results for household r3 in the ECO dataset by
10-fold cross-validation.

Fig. 13: Misclassification rate during training iterations of
MIT for u17 in PC. As the user can only observe the stopping
conditions, or the red regions, the user can terminate the
training to avoid deterioration [23].

relatively low TNR, or more mistakes when the households
are vacant. This is mainly due to: (1) user behavior – some-
times the power consumption is high or has considerable
fluctuations despite user absence, (2) the balance of dataset
– users in some ECO households tend to be present in
late mornings or early afternoons, as shown in the exam-
ple traces (Figs. 2 and 14), resulting in more instances of
occupancy than vacancy data [15]. While (1) illustrates the
fundamental limitation in the proposed approach, or the
difficulty in using only power data to indicate user presence
or absence due to similar consumption patterns, (2) can be
resolved by using existing methods such as putting a larger
penalty on vacancy misclassification [45] to improve the
TNR performance.

We employ the Matthews correlation coefficient (MCC),
as suggested in [15] as a balanced measure of the prediction
quality to overcome the difficulties in comparing different
sizes of positive and negative instances:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

where TP, TN,FP, FN are the numbers of true posi-
tive, true negative, false positive (ground truth: vacancy,
estimation: occupancy), and false negative (ground truth:
occupancy, estimation: vacancy) instances. The MCC returns
a value between -1 and +1: a coefficient of +1 represents a
perfect prediction, a coefficient of 0 represents no better than
random prediction, and a coefficient of -1 indicates total dis-
agreement between prediction and observation. Overall, the
proposed NL methods significantly outperform the baseline
models in the PC dataset, but only slightly outdo the base-
line models in the ECO dataset. The latter is likely caused
by a lack of substantial discrepancy of power characteristics
between occupancy and vacancy states in the residential
buildings of ECO. Based on the PC results which measure
the plugloads in an office cubicle, further improvements
can be achieved by sensor fusion [10] or submetering key
devices such as plugloads or lighting systems.
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Fig. 14: Examples of presence detection for u17 (left) and r2 (right) with MIT and γ-weighted loss, respectively. The power
traces are shown on the top, whereas the bottom plots the true (red) and estimated (blue) occupancy, for comparisons.
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Examples of occupancy detection in time series are
demonstrated in Fig. 14. This data suggests that the detec-
tors base their occupancy determinations on power magni-
tudes as well as transition and transient effects. Compared
to thresholding methods, the γ-weighted loss is more effec-
tive in occupancy detection, especially for the ECO dataset
with periodic power surges and diversified device usage
patterns. In Fig. 15, hypothesis 3 is further verified. Closely
following the ground truth, the learned occupancy schedule
outperforms the common template for occupancy detection.

4.4 Transfer Learning Results

As depicted in Scenario 2 in § 1, the TL problem is due to
limited data from new individuals, or target, and abundant
data from similar individuals, or source. The following
hypothesis resolves this data imbalance:

Hypothesis 4. Occupancy detection for the target can be im-
proved by incorporating data from the source.

Proposed in § 3.3, the model consists of common and
individual components, and the solution is developed by
solving the optimization program (P1). The source-target
tradeoff parameter is set to balance the number of samples
in the two sets (e.g., if there are nS and nT samples in the
source and target, respectively, then λ0 = nS/nT ). While
the conformity-individuality parameter µ is usually set at 0
to 2, a lower value encourages more transfer for conformity.

In Fig. 17, results of TL applied to ECO is reported as
ECO is more challenging and relevant due to the prevalence
of smart meters in homes. The schemes of Transfer A and B
refer to the inclusion of one home as the source dataset (e.g.,
r1 as the source for r2 to r5, and r3 as the source for r1), or
all other homes except for the target as the source dataset
(e.g., r1 to r4 for target r5). Standard SVM performs poorly
with only 1% of training data, which amounts to 30 to 70

randomly sampled points, with each sample representing
15 minutes occupancy/vacancy state. It is promising to note
that due to abundant training data, both transfer schemes
are highly accurate.

Fig. 17: TL results when only 1% of target dataset is avail-
able, averaged over 100 independent trials.

Fig. 18: JS divergence for normalized features of homes
within (ECO, Smart*) and across (ECO-Smart*) datasets.

While the hypothesis presumes knowledge transfer from
“similar” individuals, Fig. 16 illustrates that this require-
ment is far from stringent. Even though the source’s occu-
pancy schedule is very different from the target’s schedule,
the results of learning with transfer from source data is more
favorable than the results of no transfer.

Further, we demonstrate TL’s capability by transferring
knowledge across two publicly available datasets (Transfer
scheme C). Specifically, from the Smart* dataset reported
by Chen et al. [14], we use two households’ power usage
information during the summer (Home A and B) to predict
occupancy for homes in the ECO dataset. While the house-
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Dataset BL NL TL

HMM [15] SVM-PCA [16] HMM-PCA [16] Rand. Forest NIOM [14] MIT γ-weighted U. L. Tran. B Tran. C

r1 0.83 0.83 0.83 0.88 0.74 0.83 0.83 0.83 0.82
r2 0.82 0.92 0.90 0.92 0.74 0.75 0.77 0.78 0.80
r3 0.81 0.83 0.82 0.84 0.76 0.78 0.77 0.76 0.75

Home A 0.92 0.79 0.81 0.78 0.84 0.87 0.84
Home B 0.96 0.91 0.85 0.84 0.89 0.91 0.86

TABLE 1: Comparison of our results with prior art [14], [15], [16], showing the overall accuracy metric. While the best
performance in BL is bolded, the best performances in NL and TL are underlined.

holds in Smart* and ECO differ in geographical locations
and home sizes, they share similar energy consumption
patterns. This is verified by the JS divergence metrics for
power features conditioned on the presence/absence states
within and across datasets (Fig. 18). Transfer scheme C’s
performance is on par with schemes A and B in terms of the
overall accuracy and MCC (Fig. 17). The learned occupancy
schedule for r3 in ECO is closer to the ground truth due to
the similarity with the homes in Smart* (Fig. 16). The results
indicate tangible benefits to preselecting sources for TL by
segmenting customer energy consumption data [46].

4.5 Comparison with Prior Art

We compare the best results from previous work [14], [15],
[16] that also use the ECO and Smart* datasets for evalu-
ation. For BL, the methods include hidden Markov model
(HMM) [15], HMM-PCA, and SVM-PCA [16], which use
principal component analysis (PCA) for feature selections.

For NL, Chen et al. [14] proposed a threshold-based non-
intrusive occupancy monitoring (NIOM) algorithm, which
assumes constant presence during nighttime, and then clus-
ters the occupancy based on the deviation from nighttime
power features. One drawback with this approach is that
the nighttime power usage used to set the thresholds may
not be an accurate indicator for occupancy. We address this
problem by two distinct ideas: MIT uses a rough occupancy
schedule to initialize the data, and then refines the labels
by exploiting the power information; the surrogate loss
methods recognize the noisy labels in initialized data, and
customize loss functions to reduce the adverse effects.

Due to a lack of previous work that also use the ECO
and Smart* datasets, we reported our TL results without a
comparison. The evaluation procedures for transfer B and
C are reported in § 4.4. Since there are only 7 days of data
for each household in Smart*, we randomly selected 10% of
the target data, or less than one day of training effort, and
combined it with data from households (r1 to r3) in ECO for
training.

Table 1 indicates that the random forest has the highest
overall accuracy among all competitors in BL. The unbiased
surrogate loss (U.L.) outperforms NIOM for Home A (84%
vs. 79% accuracy), but slightly underperforms for Home B
(89% vs. 91%). However, it remains consistently competitive
for ECO compared to MIT and γ-weighted surrogate loss
method. TL within the same dataset (Tran. B) seems to be
more efficient than TL across two datasets (Tran. C). Overall,
both TL performances are satisfactory due to the transfer of
shared patterns.

5 RELATED WORK

Due to the large volume of relevant methodology and appli-
cation literature, we focus on the following three topics that
are most pertinent, and refer the readers to the references in
§ 3 and its bibliography.

Occupancy Detection. As for occupancy detection, on
the one end of the spectrum are the more specialized but
reliable devices such as PIR [7], magnetic reed switches [2],
[3], cameras [3], telephone handset sensors [47], network
logins and GPS trackers [47], active RFID badges [5], and
smart phones [48]. On the other end of the spectrum are
the mechanisms that safeguard user privacy but are more
error-prone, such as models based on environmental mea-
surements, including temperature [10], CO2 [8], [9], partic-
ulate matter [11], and ultrasonic chirps [49]. Concerns for
practical implementations often include system cost, faulty
installations, maintenance, and required training period.

Energy Data Mining. The analysis of electricity data
has been conducted to cluster households [50] to estimate
socio-economic status [51], identify usage patterns for pre-
diction [52], [53], and provide tailor-made information to the
families [54]. LBNL used ACme system to measure a large
building space and demonstrated reliable performance [55].
Non-intrusive load monitoring (NILM), pioneered by Hart
[56], has also been popular. It infers device-level ON/OFF
states from the aggregate signal based on various power
features [38].

Power for Occupancy Detection. Molina et al. [13]
demonstrated the capability of power for occupancy de-
tection through visual inspection, while Dong et al. [10],
Chen et al. [14], and Kleiminger et al. [15] quantitatively
assessed the results of using power for occupancy detection.
Kleiminger et al. [16] subsequently reported improvement
from 82% to 90% for the ECO dataset [15] based on a com-
prehensive set of features from three power phases, which
were processed by feature selection and principal compo-
nent analysis (PCA). Yang et al. [17] also experimented with
a range of classifiers, such as random forest, decision tree,
multilayer perceptron, using the Weka Machine Learning
Toolkit [29].

BL in § 3.1 is conducted in a similar fashion as BL in the
antecedent literature as baselines. However, the major dif-
ference is our solution to the data scarcity problem, or NL,
as an extension of our previous work [23], which carries out
learning without collecting presence data, and TL, which
exploits the potential for improvement by incorporating
data from other sources.
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6 CONCLUSION AND FUTURE WORK

Occupancy detection for residential and commercial build-
ings alike is crucial to improving energy efficiency, user
comfort, and space utility. The pervasiveness of elec-
tricity meters eliminates the additional system cost and
setup/maintenance efforts. Hence, electricity meters are
viable candidates for presence sensing, with the added
benefits of safeguarding privacy information (compared to
cameras), and improving reliability (compared to environ-
mental measurements).

The potential of energy meters is thoroughly explored
by studying data from both residential (ECO and Smart*)
and commercial (PC) buildings. Various power features,
e.g., magnitude, MAC, SOF, MAD, SD, are investigated.
The capability of power for presence detection is first
demonstrated in BL with methods like SVM and random
forest. For non-intrusive learning without training data of
occupancy, or NL, the proposed multiview-based iteration
and surrogate loss approaches use common schedules as
rough estimates to learn refined ones that are much closer
to the ground truth. As a result, accuracy rates are 74 to
89% for residential buildings and about 90% for offices. TL
approach tackles the case when data from other sources are
used in the current learning task. Its results further confirm
the appropriateness of using power to detect occupancy by
producing superior performance as compared to standard
SVM.

For the future work, it will be meaningful to extend
NL and TL from indicating occupancy (classification) to
estimating the number of people (regression). Additionally,
it will be promising to perform sensor fusion with other
mobile nodes, such as smart phones, fitness trackers, and
automobiles, for further improvement. Last but not least, as
shown in this paper’s inferences, smart meters can be used
to infer various user characteristics, raising the important
issue of preserving user privacy while maintaining system
functions, which are worth exploring.
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