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Appendix: Virtual Occupancy Sensing:
Using Smart Meters to Indicate Your Presence
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APPENDIX A
MULTIVIEW-BASED ITERATION TRAINING

Assign the first view, Xv1, as the time of the day, and
the second view, Xv2, as the power-derived features, and
let fv1 and fv2 denote the classifiers based on the two
views respectively. Given the unlabeled dataset S =
{(xv11 ,xv21 ), · · · , (xv1n ,xv2n )}, where xv1i ∈ Xv1 and xv2i ∈
Xv2, MIT proceeds as follows:

1) Initialization: Set the initial training set L1 =
{(xv11 ,xv21 , ŷ1), · · · , (xv1n ,xv2n , ŷn)}, where ŷi =
fv1(xv1i ) according to the prior information pro-
vided by the time view, i.e. (rough) occupancy
schedules (line 1 in Algorithm 1).

2) Multiview training: For rounds t = 1, 2, ..., train the
power-based classifiers with Lt to obtain Ltnew =
{(xv11 ,xv21 , ỹ1), · · · , (xv1n ,xv2n , ỹn)}, where ỹi is the
majority votes among the power- and time-based
classifiers (lines 2 to 7).

3) Labeled set updates: In the next round,

Lt+1
j = {Ltj ∩ Ltj,n} ∪ Sample{Ltj∆Ltj,n;αj} (1)

for j ∈ {−1,+1}, where Ltj = {((xv1i ,xv2i , ŷi)|ŷi =
j}, and Ltj,n denote the set of new samples whose
labels are j, Ltj∆L

t
j,n is the symmetric difference

set operation, and αj is the sampling rate for label
j ∈ {−1,+1} (line 8).

4) Stopping condition: stop the iteration whenever (7) in
Theorem 3.3 is satisfied (line 9).

APPENDIX B
DERIVATION OF THE SURROGATE LOSS

The basic learning problem (BL) is described by (l,F , en),
where l : Y × Y → R is the loss function to penalize mis-
detection, F is the class of classifiers, en : D → (X ,Y)n is
the repetitive experiments performed to acquire the dataset,
S = {(x1, y1), · · · , (xn, yn)} ∼ en(D), and D is the distri-
bution between power and occupancy,
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Algorithm 1: Pseudo-code of Multiview Iteration

Multiview Iteration(X , Prior, MaxIter)
Input: X : Feature matrix of size n×m, where n is the

number of samples, m is the number of views.
Prior: Expert knowledge for initialization.
MaxIter: Maximum iteration number.

Initialization:
1 L1

+1, L
1
−1 ← Prior(X) // initial estimation by

Prior
stopCond← false // stop condition
t← 1 // iteration number
η1 ← 0.5 // training noise rate

Main Program:
while ¬stopCond ∧ t < MaxIter do

YMat← emptyMatrix(n,m)
2 for vind ∈ {1, ..., ν} do
3 EstMdl← MdlEst(X(·, vind), Lt+1, L

t
−1)

4 YMat(·, vind)← MdlPred(EstMdl, X(·, vind))
5 for sind ∈ {1, ..., n} do
6 Y (sind)← MajVote(YMat(sind, ·))
7 Ltj,n ← getSet(Y ), j ∈ {−1,+1}
8 Lt+1

j = {Ltj ∩ Ltj,n} ∪ Sample{Ltj∆Ltj,n;αj},
j ∈ {−1,+1}
ηt+1 ← EstEta(Lt−1,+1, L

t+1
−1,+1, α−1, α+1, V

est)(∗)
9 stopCond← checkStop(Lt−1,+1, L

t+1
−1,+1, ηt,t+1)

t← t+ 1

Output: L−1, L+1 ← Lt−1, L
t
+1 // labeled datasets

To motivate the learning under corruption scheme, we
introduce the corruption process T : O → Õ as a Markov
kernel, which corrupts the outcome O of the experiments
to be Õ, i.e., ẽn = T (en). Each Markov kernel is associated
with a linear mapping, T : (RO)

∗ → (RÕ)
∗
, where (RO)

∗
is

the dual space of (RO) for linear functionals. The learning
problem is characterized by (l,F , ẽn), as compared to the
original BL problem.

Definition B.1 (Reconstructible Markov kernel). The Markov
kernel T : O → Õ is reconstructible if there exists a linear
mapping Q : (RÕ)

∗
→ (RO)

∗, such that QT = 1, where Q is
known as the reconstruction.

An immediate consequence of the reconstructible prop-
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Static Chg/Th Mag/Th Prc/Th Naı̈veBayes Logistics AdaBoost J48 RandForest SVM

u8 83 (76/98) 72 (87/36) 86 (97/62) 69 (79/45) 95 (96/93) 97 (98/94) 96 (99/88) 99 (99/98) 99 (99/98) 98 (99/96)
u17 65 (65/66) 72 (69/36) 86 (92/76) 71 (83/49) 91 (89/95) 94 (96/90) 93 (98/82) 98 (99/98) 99 (99/98) 98 (98/98)
u20 82 (77/93) 67 (67/67) 86 (94/69) 72 (87/40) 90 (89/90) 91 (93/86) 86 (87/85) 98 (98/98) 99 (99/98) 96 (95/97)
u26 81 (74/99) 62 (80/14) 90 (99/66) 67 (87/15) 92 (96/80) 92 (95/84) 91 (96/76) 99 (99/98) 99 (99/98) 96 (95/96)

TABLE 1: BL results for PC dataset, obtained by 10-fold cross-validation, where users (u8, u17, u20, u26) are anonymized.
The reporting format follows: overall accuracy (TNR / TPR). The methods, except for Chg/Th, Mag/Th, Prc/Th, are
implemented by Weka Machine Learning Toolkit [1]. The static schedule is implemented by assuming occupancy between
8am to 6pm and vacancy otherwise.

Static Chg/Th Mag/Th Prc/Th Naı̈veBayes Logistic AdaBoost J48 RandForest SVM

r1 76 (87/73) 65 (30/73) 37 (92/26) 53 (44/55) 79 (88/77) 85 (59/91) 82 (0/100) 87 (67/92) 88 (58/94) 87 (79/89)
r2 72 (69/74) 61 (56/63) 52 (89/39) 52 (52/51) 51 (98/34) 92 (87/93) 74 (0/100) 91 (85/93) 92 (86/94) 91 (91/91)
r3 69 (63/70) 48 (42/50) 42 (93/25) 51 (52/50) 49 (91/36) 79 (40/91) 79 (23/96) 83 (66/88) 84 (58/91) 82 (69/86)
r4 66 (72/65) 49 (57/49) 24 (98/18) 51 (57/50) 54 (95/51) 92 (3/99) 92 (0/100) 92 (7/99) 92 (10/98) 93 (25/98)
r5 66 (73/65) 54 (40/55) 44 (27/46) 53 (39/54) 70 (89/68) 92 (0/100) 92 (0/100) 92 (0/100) 93 (2/99) 85 (26/90)

TABLE 2: BL results for ECO dataset by 10-fold cross-validation, where households are anonymized, similar to Table 1. The
static schedule is implemented by assuming vacancy between 8am to 6pm and occupancy otherwise.

Static MIT γ-weighted Unbiased

u8 83 (76/98) 89 (97/71) 95 (99/85) 95 (99/84)
u17 65 (65/66) 87 (92/77) 92 (97/81) 93 (97/84)
u20 82 (77/93) 87 (94/68) 86 (88/81) 86 (89/80)
u26 81 (74/99) 93 (96/84) 89 (97/66) 89 (97/68)
r1 76 (87/73) 74 (5/89) 83 (52/89) 83 (33/94)
r2 72 (69/74) 74 (1/94) 75 (52/83) 77 (39/91)
r3 69 (63/70) 76 (50/82) 78 (54/85) 77 (28/94)
r4 66 (72/65) 92 (1/99) 70 (25/84) 92 (1/99)
r5 66 (73/65) 67 (71/66) 70 (17/86) 93 (1/99)

TABLE 3: NL results for PC and ECO, showing the accuracy
(TNR / TPR) for MIT, γ-weighted, and unbiased losses.

SVM Transfer A Transfer B Transfer C

r1 18 (99/0) 82 (26/94) 83 (24/96) 82 (26/95)
r2 48 (71/39) 77 (42/89) 78 (21/97) 80 (41/94)
r3 26 (96/5) 75 (46/91) 76 (41/95) 75 (45/92)
r4 10 (97/3) 90 (8/97) 92 (1/100) 91 (1/98)
r5 15 (91/9) 91 (6/98) 93 (1/100) 92 (1/98)

TABLE 4: TL results when only 1% of target dataset is
available, averaged over 100 independent trials.

erty is that we have:

〈D, l(·, f(·))〉=〈QT (D), l(·, f(·))〉=〈D, Q∗(l(·, f(·)))〉 (2)

where D is the original data distribution, T (D) is the cor-
rupted distribution,Q∗(l(·, f(·))) is the corruption corrected
loss function, and 〈D, l(·, f(·))〉 = E(x,y)∼D l(y, f(x)) is
the expectation under the distribution D. The above prop-
erty implies that working with the corrupted data with
Q∗(l(·, f(·))) is equivalent to using the clean data with
the original loss function l(·, f(·)) associated with learner
f ∈ F .

Since we are starting with noisy labels estimated by the
occupancy schedules, the corruption process is character-
ized by ρ+1 = P (ỹ = −1|y = +1) and ρ−1 = P (ỹ =
+1|y = −1); therefore, we can specify the Markov kernel T
and Q∗ as:

T =

(
1− ρ−1 ρ+1

ρ−1 1− ρ+1

)
, (3)

Q∗ =
1

1− ρ−1 − ρ+1

(
1− ρ+1 −ρ−1
−ρ+1 1− ρ−1

)
(4)

where Q∗ is the conjugate transpose of Q, and it can be
verified as the reconstruction of T , i.e., QT = 1. With
elementary calculations, the surrogate loss (9) in the main
text follows.

APPENDIX C
DEFINITIONS OF DIVERGENCE METRICS

The more separable the feature, the easier it is to classify
[2]. The following divergence metrics for distributions have
been employed to measure feature separability, where we
use p and q to denote the discrete probabilities:

• Jensen-Shannon divergence:

ΥJS(p, q) =
1

2
ΥKL(p,m) +

1

2
ΥKL(q,m) (5)

where m = 1
2 (p + q), and ΥKL(p,m) =∑

k p(k) ln p(k)
m(k) is the Kullback-Leibler divergence.

• Hellinger distance:

ΥHD(p, q) =
1√
2

√√√√∑
k

(√
p(k)−

√
q(k)

)2

(6)

• Total variation distance:

ΥTV (p, q) =
1

2

∑
k

|p(k)− q(k)| (7)

• Bhattacharyya distance:

ΥBD(p, q) = 1−
∑
i

√
p(k)q(k) (8)

APPENDIX D
RESULTS FOR BL, NL, AND TL
Additional results are listed for the evaluations of BL (Tables
1, 2), NL (Table 3), and TL (Tables 4) on PC and ECO
datasets. For the detailed setup and implementations, please
refer to the main text.



IEEE TRANSACTIONS ON MOBILE COMPUTING 3

APPENDIX E
E.1 Proof of Lemma 3.2
Lemma 3.2. The training noise rate ηt and hypothesis classifica-
tion error εt can be estimated assuming we have access to any two
of the following quantities:

a) (prior information) the number of negative samples,
namely |Lt−1,X|+|Lt+1,×|+|U t−1|, or |Lt−1,X|+|Lt+1,×|
for the labeled set

b) (Type I or II error) the misclassification rate for either
the positive or negative samples, namely

|Lt
−1,×|

|Lt
−1,×|+|Lt

+1,X|

or
|Lt

+1,×|
|Lt

+1,×|+|Lt
−1,X|

.

Proof. (Sketch) According to the update rule:

Lt+1
j = {Ltj ∩ Ltj,n} ∪ Sample{Ltj∆Ltj,n;αj}, (9)

the number of elements in the labeled set of the next
iteration depends on the current iteration as follow:

|Lt+1
−1,X|= |Lt−1,X|(1−εt)+(|Lt+1,×|+|U t−1|)(1−εt)α−1 (10)

|Lt+1
−1,×|= |Lt−1,×|εt + (|Lt+1,X|+ |U t+1|)εtα−1 (11)

|Lt+1
+1,X|= |Lt+1,X|(1−εt)+(|Lt−1,×|+|U t+1|)(1−εt)α+1 (12)

|Lt+1
+1,×|= |Lt+1,×|εt + (|Lt−1,X|+ |U t−1|)εtα+1 (13)

Since we can observe the number of samples in |Lt−1| =
|Lt−1,X| + |Lt−1,×|, |Lt+1| = |Lt+1,X| + |Lt+1,×|, and |U t| =
|U t−1|+ |U t+1|, and also for those in round t+ 1, we can sum
the pairs of (10, 11), also (12, 13). Together with two of the
quantities proposed in Lemma 3.2, we can solve the system
of equations for the estimation of εt and ηt.

As a general remark, the system of equations to be solved
in Lemma 3.2 is non-linear, which makes it computationally
costly to solve. Since the problem is defined for 0 ≤ εt ≤ 1,
we can perform a line search of εt. Given the value of εt, the
system becomes linear and is very easy to solve by taking
the inverse, or constrained quadratic programming. Then
the optimal εt that corresponds to the solution that best fits
the remaining single equation should be chosen.

E.2 Proof of Theorem 3.3
Theorem 3.3. If we draw a sequence of

n ≥ 2

ε2 (1− 2η)
2 log

(
2N

δ

)
(14)

samples from a distribution and find any hypothesis fi that
minimizes disagreement with the training labels, where ε denotes
the hypothesis worst-case classification error rate, η is the upper
bound on the training noise rate, N is the number of hypotheses,
and δ is the confidence, then the following PAC property is
satisfied:

P [d (fi, f
∗) ≥ ε] ≤ δ (15)

where d(, ) is the sum over the probability of elements from the
symmetric difference between the two hypothesis sets fi and the
ground-truth f∗.

Proof. (Sketch) Let c = 2µ log
(
2N
δ

)
where µ is chosen

to make the equality holds in (14), then we have nt =
c

ε2t (1−2ηt)
, where mt = |Lt+1

−1 | + |Lt+1
+1 | is the number of

samples in the labeled set. We introduce ut as follow for
the simplicity of computation:

ut =
c

ε2t
= nt (1− 2ηt)

2 (16)

Since ut is proportional to 1/ε2t , we have εt+1 < εt given
that ut+1 > ut, thus the assertion follows.

E.3 Proof of Lemma 3.8
Lemma 3.8. It can be shown that ω∗0 = λ1

Kλ2

∑K
k=1 v

∗
k.

The derivation is based on [3] by minimizing the auga-
mented Lagrangian function:

L(ω0,vk,α
(k)
i ,γ

(k)
i ) = J1(ξ

(k)
i )+J2(ω0,vk)−

K∑
k=1

[m(k)∑
i=1

γ
(k)
i ξ

(k)
i

+

m(k)∑
i=1

αik
(
y
(k)
i 〈ω0 + vk,x

(k)
i 〉 − 1 + ξ

(k)
i

) ]
from which we can derive that ω∗0 =
1

2λ2

∑K
k=1

∑m(k)
i=1 α

(k)
i x

(k)
i , and v∗k = T

2λ1

∑m(k)
i=1 α

(k)
i x

(k)
i .
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