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APPENDIX A
MULTIVIEW-BASED ITERATION TRAINING

Assign the first view, X1, as the time of the day, and
the second view, X5, as the power-derived features, and
let f,1 and f,o denote the classifiers based on the two
views respectively. Given the unlabeled dataset S =
{(xvt, 24?), -, (z¥}, 22?)}, where ¢! € X,; and 2?2 €

X2, MIT proceeds as follows:

1) Initialization: Set the initial training set L' =
{(.’1311)17.’1311)2,@1),"' a(mzlamzzagn)}/ where @1 =
Jo1(x¥h) according to the prior information pro-
vided by the time view, ie. (rough) occupancy
schedules (line[T]in Algorithm [T).

2)  Multiview training: For rounds ¢t = 1,2, ..., train the
power-based classifiers with L! to obtain L!,, =
{((I;i’l7 «’Ei’27 gl)a T (wzla :EZQ, gn)}/ where g; is the
majority votes among the power- and time-based
classifiers (lines 2| to[7).

3) Labeled set updates: In the next round,

LY ={L5n L} U Sample{ ALY a;} (1)
for j € {—1, 41}, where L§ = {((={", 2}*, §:)|0; =
j}, and L;m denote the set of new samples whose
labels are j, LYAL%, is the symmetric difference

7.
set operation, and «; is the sampling rate for label

j € {—1,+1} (line[3).
4)  Stopping condition: stop the iteration whenever (7) in
Theorem 3.3 is satisfied (line[9).

APPENDIX B
DERIVATION OF THE SURROGATE LoSsS

The basic learning problem (BL) is described by (I, F,e,),
where [ : Y x Y — R is the loss function to penalize mis-
detection, F is the class of classifiers, e, : D — (X, V)" is
the repetitive experiments performed to acquire the dataset,
S =A{(x1,y1), -, (Tn,yn)} ~ en(D), and D is the distri-
bution between power and occupancy,
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Algorithm 1: Pseudo-code of Multiview Iteration

Multiview Iteration(X, Prior, Maxlter)

Input: X: Feature matrix of size n x m, where n is the
number of samples, m is the number of views.
Prior: Expert knowledge for initialization.
Maxlter: Maximum iteration number.

Initialization:

1 LY, LY + Prior(X) // initial estimation by
Prior
stopCond <« false // stop condition
t+1 // iteration number
n < 0.5 // training noise rate

Main Program:

while —stopCond A t < Maxlter do

YMat < emptyMatrix(n, m)

2 for vipg € {1,...,v} do

3 EstMdl < Md1Est(X (-, vina), L1, L")
YMat(-, ving) < Md1Pred(EstMdl, X (-, ving))

5 for Sinq € {1,...,n} do

6 L Y (8ina) < Majvote(YMat(s;nd, )

7 | LY, « getSet(Y),j € {~1,+1}

8 L;H ={LiN L} yUsample{L;ALL s ),

J € {_17 +1}

Ne+1 < EstEta(Lt_L_H, Ltj1%+1a a1, e, V) (%)

9 | stopCond « checkStop(L’, |1, L' | niss1)

| tt+1

Output: L_1,Lyqy < L' |, LY,

// labeled datasets

To motivate the learning under corruption scheme, we
introduce the corruption process T : O — O as a Markov
kernel, which corrupts the outcome O of the experiments
tobe O, ie., é, =T (en). Each Markov kernel is associated
with a linear mapping, T : (R®)" — (RO)*, where (RO)" is
the dual space of (R®) for linear functionals. The learning
problem is characterized by (I, F,é,), as compared to the
original BL problem.

Definition B.1 (Reconstructible Markov kernel). The Markov
kernel T : O — O is reconstructible if there exists a linear
mapping Q : (RO)* — (R9)", such that QT = 1, where Q is
known as the reconstruction.

An immediate consequence of the reconstructible prop-
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[ | Static [ Chg/Th | Mag/Th | Prc/Th [ NaiveBayes | Logistics | AdaBoost | J48 | RandForest [ SVM |
u8 | 83(76/98) | 72(87/36) | 86 (97/62) | 69 (79/45) | 95 (96/93) 97 (98/94) | 96 (99/88) | 99 (99/98) | 99 (99/98) 98 (99/96)
ul7 | 65 (65/66) | 72 (69/36) | 86 (92/76) | 71 (83/49) | 91 (89/95) 94 (96/90) | 93 (98/82) | 98 (99/98) | 99 (99/98) 98 (98/98)
u20 | 82 (77/93) | 67 (67/67) | 86 (94/69) | 72 (87/40) | 90 (89/90) 91 (93/86) | 86 (87/85) | 98 (98/98) | 99 (99/98) 96 (95/97)
u26 | 81 (74/99) | 62 (80/14) | 90 (99/66) | 67 (87/15) | 92 (96/80) 97 (95/84) | 91(96/76) | 99 (99/98) | 99 (99/98) 96 (95/96)

TABLE 1: BL results for PC dataset, obtained by 10-fold cross-validation, where users (u8, ul?7, u20, u26) are anonymized.
The reporting format follows: overall accuracy (TNR / TPR). The methods, except for Chg/Th, Mag/Th, Prc/Th, are
implemented by Weka Machine Learning Toolkit [1]]. The static schedule is implemented by assuming occupancy between

8am to 6pm and vacancy otherwise.

[ | Static | Chg/Th [ Mag/Th | Prc/Th [ NaiveBayes | Logistic | AdaBoost | J48 | RandForest | SVM |
r1 | 76 (87/73) | 65 (30/73) | 37 (92/26) | 53 (44/55) | 79 (88/77) 85 (59/91) | 82 (0/100) | 87 (67/92) | 88 (58/94) 87 (79/89)
2 | 72(69/74) | 61 (56/63) | 52 (89/39) | 52 (52/51) | 51 (98/34) 92 (87/93) | 74 (0/100) | 91 (85/93) | 92 (36/94) 91 (91/91)
3 | 69 (63/70) | 48 (42/50) | 42 (93/25) | 51 (52/50) | 49 (91/36) 79 (40/91) | 79 (23/96) | 83 (66/88) | 84 (58/91) 82 (69/86)
4 | 66 (72/65) | 49 (57/49) | 24 (98/18) | 51 (57/50) | 54 (95/51) 92 (3/99) | 92 (0/100) | 92 (7/99) | 92 (10/98) 93 (25/9)
15 | 66 (73/65) | 54 (40/55) | 44 (27/46) | 53 (39/54) | 70 (89/68) 92 (0/100) | 92 (0/100) | 92 (0/100) | 93 (2/99) 85 (26/90)

TABLE 2: BL results for ECO dataset by 10-fold cross-validation, where households are anonymized, similar to Table|l} The
static schedule is implemented by assuming vacancy between 8am to 6pm and occupancy otherwise.

[ | Static [ MIT | y-weighted | Unbiased |
u8 | 83(76/98) | 89 (97/71) | 95 (99/85) 95 (99/84)
ul7 | 65 (65/66) | 87 (92/77) | 92 (97/81) 93 (97/84)
w20 | 82 (77/93) | 87 (94/63) | 86 (88/31) 86 (89/80)
u26 | 81 (74/99) | 93 (96/84) | 89 (97/66) 89 (97/68)
1 | 76 (87/73) | 74(5/89) | 83 (52/89) 83 (33/94)
2 | 72(69/78) | 74(1/98) | 75 (52/83) 77 (39/91)
3 | 69 (63/70) | 76 (50/82) | 78 (54/85) 77 (28/94)
4 | 66 (72/65) | 92(1/99) | 70 (25/84) 92 (1/99)

15 | 66 (73/65) | 67 (71/66) | 70 (17/86) 93 (1/99)

TABLE 3: NL results for PC and ECO, showing the accuracy
(TNR / TPR) for MIT, y-weighted, and unbiased losses.

[ [ SVM | Transfer A | Transfer B | Transfer C |
r1 | 18(99/0) | 82(26/94) | 83 (24/96) | 82 (26/95)
12 | 48 (71/39) | 77 42/89) | 78 (21/97) | 80 (41/94)
3 | 26 (9/5) | 75(@6/91) | 76 41/95) | 75 (45/92)
4 | 1097/3) | 90 (8/97) 92 (1/100) | 91 (1/98)
5 | 15 (91/9) | 91 (6/9%) 93 (1/100) | 92 (1/9)

TABLE 4: TL results when only 1% of target dataset is
available, averaged over 100 independent trials.

erty is that we have:

(D, 1(, f(-)) =(QT D), I(-, f(-))) =(D,Q*(I(-, f(1)))) (2)

where D is the original data distribution, T'(D) is the cor-
rupted distribution, Q*(I(-, f(+))) is the corruption corrected
loss function, and (D,I(, f())) = Em,y)~nl(y, f(x)) is
the expectation under the distribution . The above prop-
erty implies that working with the corrupted data with
Q*(I(-, f(+))) is equivalent to using the clean data with
the original loss function I(-, f(-)) associated with learner
ferF.

Since we are starting with noisy labels estimated by the
occupancy schedules, the corruption process is character-
ized by py1 = P(§ = —1ly = +1) and p_1 = P(y =
+1|y = —1); therefore, we can specify the Markov kernel T

and Q* as:
T = (1 —pP-1

P+1
o ) : ®

I=pp

* 1 L—py1 —pa )
= 4
© L—p_1—pt1 < =Py L—pa @

where Q)* is the conjugate transpose of @), and it can be
verified as the reconstruction of T, ie.,, QT = 1. With
elementary calculations, the surrogate loss (9) in the main
text follows.

APPENDIX C
DEFINITIONS OF DIVERGENCE METRICS

The more separable the feature, the easier it is to classify
[2]. The following divergence metrics for distributions have
been employed to measure feature separability, where we
use p and g to denote the discrete probabilities:

e Jensen-Shannon divergence:

1 1
Tss(p,q) = §TKL(P, m) + §TKL(Qam) 5)
where m = i(p + q), and Ygr(p,m) =
>ppk)lnZ ((]2)) is the Kullback-Leibler divergence.
o Hellinger distance:

Tuotpa) = 1503 (ot - Jan) @
k

o Total variation distance:

Trvpa)= 5 Y lp0) —atb) )

k

o Bhattacharyya distance:
Yep(p,q)=1-)_\/pk)a(k) ®)

APPENDIX D

RESULTS FOR BL, NL, AND TL

Additional results are listed for the evaluations of BL (Tables
), NL (Table 3), and TL (Tables ) on PC and ECO

datasets. For the detailed setup and implementations, please
refer to the main text.
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APPENDIX E
E.1 Proof of Lemma 3.2

Lemma 3.2. The training noise rate 1, and hypothesis classifica-
tion error €; can be estimated assuming we have access to any two
of the following quantities:

a) (prior information) the number of negative samples,
namely |LLy ,|+|LYy  [+|UL ] or LYy [+]LY |
for the labeled set

b) (Type I or II error) the misclassification rate for either

ILY |
the positive or negative samples, namely —————+—
P 3! P Yoo, HIL
Lt
or | ILL |

Liy o HILE 1
Proof. (Sketch) According to the update rule:
t+1 .
Lj+ = {Lé N L;n} U Sample{L.tjAL;m, o}, 9)

the number of elements in the labeled set of the next
iteration depends on the current iteration as follow:

L =L (=€) + (| Lo o |+ UL N A—eda (10)
|Lt—1,><|:|Li1,x e + (I1L 1 | + UL Derary (11)
|Li+11,/ :|Lil,/‘(1_6t)+(‘Lt71,x|+|Ui1|)(1_€t)a+1 (12)
|L:-+1}>< |= ‘qu,x e + (‘Lt—l,\/| + UL Deraya (13)

Since we can observe the number of samples in |L' | =
ILLy A Ly ] (L] = [LYy ]+ LY «], and (U] =
|U 1| +|U%,|, and also for those in round ¢+ 1, we can sum
the pairs of (10} [11), also [13). Together with two of the
quantities proposed in Lemma we can solve the system
of equations for the estimation of €, and 7;.

As a general remark, the system of equations to be solved
in Lemma [3.2)is non-linear, which makes it computationally
costly to solve. Since the problem is defined for 0 < ¢, <1,
we can perform a line search of ¢,. Given the value of ¢;, the
system becomes linear and is very easy to solve by taking
the inverse, or constrained quadratic programming. Then
the optimal ¢; that corresponds to the solution that best fits
the remaining single equation should be chosen.

E.2 Proof of Theorem 3.3
Theorem 3.3. If we draw a sequence of

> 72 lo (ﬂ>
T e (1-2p)?° s\

samples from a distribution and find any hypothesis f; that
minimizes disagreement with the training labels, where e denotes
the hypothesis worst-case classification error rate, 1) is the upper
bound on the training noise rate, N is the number of hypotheses,
and § is the confidence, then the following PAC property is
satisfied:

(14)

Pld(fi, [*) 2 €] <6

where d(,) is the sum over the probability of elements from the
symmetric difference between the two hypothesis sets f; and the
ground-truth f*.

(15)

Proof. (Sketch) Let ¢ = 2ulog () where p is chosen
to make the equality holds in (14), then we have n, =
2y, Where my = |LHE + |Lt+1| is the number of

3

samples in the labeled set. We introduce u; as follow for
the simplicity of computation:

C
Uy = -5 = Ty (1 — 27775)2
€t

(16)

Since u; is proportional to 1/ ef, we have €11 < ¢ given
that u;y1 > uy, thus the assertion follows. O

E.3 Proof of Lemma 3.8
Lemma 3.8. It can be shown that w§ = K)‘—/{Q Zle vy

The derivation is based on [3] by minimizing the auga-
mented Lagrangian function:

T (EW) 1 Ty (wo, v1) Z{Zv(k)g(k)

L(wOvvkv E }Yz(k))

+ 3 aun (57 (wo + vk, 2P) —14¢) }
i=1
from which we can derive that wj —
m(k k k * m k
2A22k DI E)wg),andvk:% (1)a():c()
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