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Abstract— We present analysis and results of a social game
encouraging energy efficient behavior in occupants by dis-
tributing points which determine the likelihood of winning in
a lottery. We estimate occupants utilities and formulate the
interaction between the building manager and the occupants
as a reversed Stackelberg game in which there are multiple
followers that play in a non-cooperative game. The estimated
utilities are used for determining the occupant behavior in the
non-cooperative game. Due to nonconvexities and complexity
of the problem, in particular the size of the joint distribution
across the states of the occupants, we solve the resulting the bi-
level optimization problem using a particle swarm optimization
method. Drawing from the distribution across player states, we
compute the Nash equilibrium of the game using the resulting
leader choice. We show that the behavior of the agents under
the leader choice results in greater utility for the leader.

I. INTRODUCTION

Energy consumption of buildings, both residential and
commercial, accounts for approximately 40% of all energy
usage in the U.S. [1]. Lighting is a major consumer of energy
in commercial buildings; one-fifth of all energy consumed in
buildings is due to lighting [2].

There have been many approaches to improve energy ef-
ficiency of buildings through control and automation as well
as incentives and pricing. From the meter to the consumer,
many control methods, such as model predictive control,
have been proposed as a means to improve the efficiency of
building operations (see, e.g., [3]-[8]). From the meter to the
energy utility, many economic solutions have been proposed,
such as dynamic pricing and mechanisms including incen-
tives, rebates, and recommendations, to reduce consumption
(see, e.g., [9], [10]).

Many of the past approaches to building energy manage-
ment only focus on heating and cooling of the building. We
are advocating that due to new technological advances in
building automation, incentives can be designed around more
than just heating, ventilation and air conditioning (HVAC)
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systems. In particular, our experimental set-up allows us to
design incentives based on lighting and individual plug-load
in addition to HVAC. In the set-up, the building manager
interacts with occupants through a social game.

Social games have been used to alleviate congestion in
transportation systems [11] as well as in the healthcare
domain for understanding the tradeoff between privacy and
desire to win by expending calories [12].

There are many ways in which a building manager can
be motivated to encourage energy efficient behavior. The
most obvious is that they pay the bill or, due to some
operational excellence measure, are required to maintain an
energy effcient building. Beyond these motivations, recently
demand response programs are being implemented by utility
companies with the goal of correcting for improper load
forecasting (see, e.g., [13], [14], [15]). In such a program,
consumers enter into a contract with the utiltiy company in
which they agree to change their demand in accordance with
some agreed upon schedule. In this scenario, the building
manager may now be required to keep this schedule.

Our approach to efficient building energy management
focuses on office buildings and utilizes new builiding au-
tomation products such as the Lutron lighting system'. We
design a social game aimed at incentivizing occupants to
modify their behavior so that the overall energy consumption
in the building is reduced. The social game consists of
occupants logging their vote for the lighting setting in the
office. They win points based on how energy efficient their
vote is compared to other occupants. After each vote is
logged, the average of the votes is implemented in the office.
The points are used to determine an occupant’s likelihood of
winning in a lottery.

We designed an online platform so that occupants can log
in and vote, view their points, and observe all occupants
consumption patterns and points. This platform also stores
all the past data allowing us to use it for estimating occupant
behavior.

In a recent paper, we described the experimental setup
and formulated the follower game [16]. At the core of our
approach is the fact that we modeled the occupants as non-
cooperative agents who play Nash. Under this assumption,
we were able to use necessary and sufficient first- and
second-order conditions [17] to cast the utility estimation
problem as a convex optimization problem in the param-
eters of the occupants’ utility functions. We showed that
estimating agent utility functions via this method results in
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a predictive model that out performs several other standard
techniques.

In this paper, we are able to leverage the fact that we mod-
eled the occupants as utility maximers in a game-theoretic
framework in the formulation of the building manager’s
problem as a reversed Stackelberg game. In particular, we
formulate the building manager’s optimization problem as a
bi-level optimization problem in which the inner optimization
problem is a non-cooperative game between the occupants
and the outer optimization problem is the maximization of
the building manager’s utility over the total points and default
lighting setting.

Given the data from our social game experiment, we
estimate the occupants’ utility functions. We determine a
distribution for each occupant over the set of events which
include the occupant states present and active, present and
remaining at the default, and absent. We refer to these as
the player states and shorten them to active, default, and
absent. Due to the number of events in the joint distribution
across possible occupant states, we employ a particle swarm
optimization method for solving the building manager’s bi-
level optimization problem for the total points and default
lighting setting. This results in a suboptimal solution; how-
ever, we show that the solution leads to a occupant behavior
that results in a larger utility for the building manager as
compared to previously implemented schemes.

The rest of the paper is organized as follows. We begin
in Section II by describing the experimental setup for our
social game test-bed. In Section III, we present the game
formulation. There are games at two levels; the inner non-
cooperative continuous game between the occupants and
the outer reversed Stackelberg game between the building
manager and the followers. We describe the utility estimation
and incentive design (solution to the building manager’s
optimization problem) in Section IV. We conclude with some
discussion and proposal for future work in Section V.

II. EXPERIMENTAL SETUP

In this section we briefly describe the experimental setup.
In [16], we provide a more detailed description of the setup.

The social game for energy savings that we have designed
is such that occupants in an office builing vote according to
their usage preferences of shared resources and are rewarded
with points based on how energy efficient their strategy
is in comparison with the other occupants. Having points
increases the likelihood of the occupant winning in a lottery.
The prizes in the lottery consist of three Amazon gift cards.

We have installed a Lutron system for the control of the
lights in the office. This system allows us to precisely control
the lighting level of each of the lights in the office. We use
it to set the default lighting level as well as implement the
average of the votes each time the occupants change their
lighting preferences.

There are 22 occupants in the office which is divided into
five lighting zones each with four occupants.

We have developed an online platform in which the occu-
pants can login and participate in the game. In the platform

the occupants can log their lighting setting votes, view point
balances of all occupants, and observe all the behavior
(voting) patterns of all occupants. Figure 1(a) shows a display
of how an occupant can select their lighting preference and
Figure 1(b) shows a sample of how occupants can see their
point balance.
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Fig. 1. (a) Display of how occupants can log their lighting vote. (b) Display
of an occupant’s point balance.

An occupant’s vote is for the lighting level in their zone
as well as for neighboring zones. The lighting setting that is
implemented is the average of all the votes.

There is a default lighting setting. An occupant can leave
the lighting setting as the default after logging in or they
can change it to some other value in the interval [0, 100]
depending on their preferences.

Each day when an occupant logs into the online platform
the first time after they enter the office, they are considered
present for the remainder of the day. If they actively change
their vote from the default to some other value, then we
consider them active. On the other hand, if they choose not
to change their vote from the default setting, then they are
considered default for the day. If they do not enter the office
on a given day, then they are considered absent.

III. GAME FORMULATION

We model the interaction between the building manager
(leader) and the occupants (followers) as a leader-follower
type game. We use the terms leader and building manager
interchageably and, similarly, for follower and occupant.

In this model the followers are utility maximizers that play
in a non-cooperative game for which we use the Nash equi-
lirbium concept. The leader is also a utility maximizer with a
utility that is dependent on the choices of the followers. The
leader can influence the equilibrium of the game amongst
the followers through the use of incentives which impact the
utility and thereby the decisions of each follower.

The leader desires to reduce the energy consumption in the
building as well as formulate a model of how the occupants
make decisions about their energy usage. In order to achieve
this goal, the leader implements a social game in which the
followers are pitted against one another. The occupants win
points based on their energy consumption choices. These
points are then used to determine the individual follower’s
chance at winning in a lottery. In the particular social game



we study in this paper, the occupants select a lighting setting
to be implemented in the office.

A. Follower Game

We begin by describing the game-theoretic framework
used for modeling the interaction between the occupants.

Let the number of occupants participating in the game be
denoted by n. We model the occupants as utility maximizers
having utility functions composed of two terms that capture
the tradeoff between comfort and desire to win. We model
their comfort level using a Taguchi loss function which is in-
terpreted as modeling occupant dissatisfaction as increasing
as variation increases from their desired lighting setting [18].
In particular, each occupant has the following Taguchi loss
function as one component of their utility function:

Yilwi,w) = — (T — ;) (1
where x; € R is occupant ¢’s lighting vote, x_; =
{l‘l, ey L1y Ljgly e - - ,J}n}, and
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is the average of all the occupant votes and is the lighting
setting which is implemented.

Each occupant’s desire to win is modeled using the
following function

Gi(wi,x_5) = —p (1%0)2 (3)

where p is the total number of points distributed by the
building manager. The points are distributed by the leader
using the relationship

Th — T4
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where z;, = 90 is the baseline setting for the lights, i.e. the
lighting setting that occurred before the implementation of
the social game in the office. In our previous work [16] we
modeled the function ¢;, i.e. the desire to win, using the
natural log of (4). We found that the form of ¢, as defined
in (3) provides a better estimation and prediction of all the
occupant’s behavior. It appears that it captures the occupants’
perceptions about how the points are distributed and the
value of the points as determined by each of the occupants
more accurately. We are currently exploring more general
non-parametric and data-driven methods for estimating the
occupants’ utility functions.

Each occupant’s utility function is then given by

filxi, i) = Yi(xi, v—5) + 0;pi (i, x_;) @)

where 0; is parameter unknown to the leader.
The i-th occupant faces the following optimization prob-
lem:

“4)

max f;(z;, x_;) (6)
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where S; = [0,100] C R is the constraint set for z;.

Note that each occupant’s optimization problem is depen-
dent on the other occupants’ choice variables.

We can explicitly write out the constraint set as follows.
Let h; ;(x;,x—;) for j € {1,2} denote the constraints on
occupant ¢’s optimization problem. In particular, following
Rosen [19], for occupant ¢, the constraints are

hi’l(mi) =100 — ZT; (7)
hia(x;) = 4 (8)

so that we can define C; = {x; € R| h; (x;) > 0, j €
{1,2}} and € = € X --- x C,. Thus, the occupants are
non-cooperative agents in a continuous game with convex
constraints. We model their interaction using the Nash equi-
librium concept.

Definition 1: A point x € C is a Nash equilibrium for
the game (f1,..., fn) on C if

filws,x_3) > filaj, ) V€S 9

for each ¢ € {1,...,n}.
The interpretation of the definition of Nash is as follows: no
player can unilaterally deviate and increase their utility.

If the parameters 6; > 0, then the game is a concave n-
person game on a convex set.

Theorem 1 ( [19]): A Nash equilibrium exists for every
concave n-person game.
Define the Lagrangian of each player’s optimization problem
as follows:

Li(zi, o, p15) = filwi, i) + Z i jhi g (x;)  (10)
JEA;(x4)

where A;(z;) is the active constraint set at z-;. We can define

Dy Ly(w, 1)
: 11
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where D;L; denoets the derivative of L; with respect to x;.

It is the local representation of the differential game
form [17] corresponding to the game between the occupants.

Definition 2 ( [17]): A point z* € C is a differen-
tial Nash equilibrium for the game (fi,...,f,) on C if
w(@*, p*) =0, 2Dy Li(x*, uf)z < 0 for all z # 0 such
that D;h; j(z;)T2 =0, and p; ; > 0 for j € A;(x}).

Proposition 1: A differential Nash equilibrium of the n-
person concave game (fi,...,f,) on C is a Nash equilib-
rium.

Proof: The proof is straightforward. Indeed, suppose
the assumptions hold. The constraints for each player do not
depend on other players’ choice variables. We can hold z* ,
fixed and apply Proposition 3.3.2 [20] to the i-th player’s
optimization problem

w(z) =

12)

max fi(zi, x7;)
Since each f; is concave and each C; is a convex set, x; is
a global optimum of the i-th player’s optimization problem
under the assumptions. Since this is true for each of the



i€ {1,...,n} players, 2* is a Nash equilibrium. [ ]
A sufficient condition guaranteeing that a Nash equilibrium x
is isolated is that the Jacobian of w(x, 1), denoted Dw(z, p),
is invertible [17], [19]. We refer to such points as being non-
degenerate.

B. Leader Optimization Problem — Incentive Design

A reverse Stackelberg game is a hierarchical control
problem in which sequential decision making occurs; in
particular, there is a leader that announces a mapping of
the follower’s decision space into the leader’s decision space,
after which the follower determines his optimal decision [21].

Both the leader and the followers wish to maximize
their pay-off determined by the functions fr(x,y) and
{fi(z,y(x)),..., falx,v(x))} respectively where we now
consider each of the follower’s utility functions to be a func-
tion of the incentive mechanism ~ : x — y where leader’s
decision is y = (d, p) with d being the default lighting setting
and p the total number of points. The followers’ decisions
is denoted by x. The leader’s strategy is 7.

The basic approach to solving the reversed Stackelberg
game is as follows. Let y and z take values in Y C R? and
S; C R, respectively and let fr, f; : R™ x R? — R for each
i € {1,...,n}. We define the desired choice for the leader
as

(a%y") =argmax {fr(z,y)| y €Y,z €€} (13)
The incentive problem can be stated as follows:

Problem 1: Find v : X — Y, v € T such that z*

is a differential Nash equilibrium of the follower game
(f1,--., fn) subject to constraints and v(z*) = y* where
T" is the set of admissible incentive mechanisms.
By insuring that the desired agent action z* is a non-
degenerate differential Nash equilibrium ensures structural
stability of equilibrium helping to make the solution robust
to measurement and environmental noise [22].

For the lighting social game, the leader’s utility function
is given as follows:

fL(x, y) =E —g(yw) -G Zﬂzfz(x“x*wy) - CQp(p)
=1

(14
where ¢(y,x) is the energy cost in kilowatt-hours (kWh),
p(+) is a cost function on the points p and c1,co € Ry are
scaling factors for the last two terms describing how much
utility and total points respectively the leader is willing to
exchange for 1 kWh. The second term is the benevolence
term where the (;’s are the benevolence factors. This term
captures the necessity for the leader to care about the
followers’ satisfaction which is related to their productivity
level (see [23] for a similar formulation). The expectation
is taken with respect to the joint distribution defined by
distributions across the player states absent, active, default
for each player.

Since the prize in the lottery is currently a fixed mone-
tary value delivered to the winner through an Amazon gift
card, varying the points does not cost the leader anything

explicitly. However, we model the cost of giving points
by a function p(-) which captures the fact that after some
critical value of p the points no longer see as valuable to
the followers. The followers’ perceive the points that they
receive has having some value towards winning the prize.
The leader’s goal is to choose p and d so they induce the
followers to play the game and choose the desired lighting
setting.

Currently we do not add individual rationality constraints
to the leader’s optimization problem which would ensure that
the players’ utilities are at least as much as what they would
get by selecting the default value. The impact being that this
constraint would ensure players are active. With respect to
economics literature, the default lighting setting compares to
the outside option in contract theory. It is interesting that in
the current situation the leader has control over the outside
option. We leave exploring this for future work.

Due to the complexity of computing the expectation for the
joint distribution across player states absent, active, default
for n = 22 players, we currently restrict the set of admissible
incentive mechanisms to be the map v(z) = (va(z), v,(x))
such that the i-th player’s utility is

fi(w,y(2)) = Yi(x) — 0y, () (%)2

where y(z) = p for all ¢ € {1,...,20}. In addition, the
nature of ~y4(z) is that it is an option provided to the
followers which they must actively vote in order for this
value not to be taken as their current vote when they are
present in the office. In sense, it is the outside option. Thus,
the leader only selects the constants (d, p). This reduces
the solution of the reversed Stackelberg game to a bi-level
optimization problem that we solve with a particle swarm
optimization (PSO) technique (see, e.g., [24]-[26]).

The particle swarm optimization method is a population
based stochastic optimization technique in which the algo-
rithm is initialized with a population of random solutions and
searches for optima by updating generations. The potential
solutions are called particles. Each particle stores its coor-
dinates in the problems space which are associated with the
best solution achieved up to the current time. The best over
all particles is also stored and at each iteration the algorithm
updates the particles’ velocities.

At the inner level of the bi-level optimization problem,
we replace the condition that the occupants play a Nash
equilibrium with the dynamical system determined by the
gradients of each player’s utility with respect to their own
choice variable, i.e.

5)

fEi = Difi(l’i7l’_i7y), x; € Gi, Vie {1, ‘e ,’fl}. (16)

It has been show that by using a projected gradient descent
method for computing stationary points of the dynamical (16)
derived from an n-person concave games on convex strategy
spaces converges to Nash equilibria [27]. In our simulations,
we add the constraint to the leader’s optimization problem
that at the stationary points of this dynamical system, i.e. the
Nash equilibria, the matrix —Dw be positive definite thereby



ensuring that each of the equilibria are isolated.

Denote the set of non-degenerate stationary points of the
dynamical system & as defined in (16) as Stat(#). The
leader then solves the following problem: given the joint
distribution across player states active, default, absent, find

max fr(y, x) (17)

s.t. ¢ € Stat(%)

For each particle in the PSO algorithm, we sample from
the distribution across player states and compute Nash for the
resulting game via simulation of the dynamical system (16).
We compute the mean of the votes at the Nash equilibrium
to get the lighting setting. We repeat this process and use
the mean of the lighting settings over all the simulations to
compute the leader’s utility for each of the particles.

We are currently exploring other techniques for solving
bi-level optimization problems in which the degree of com-
plexity of computing leader’s utility is very high.

IV. UTILITY ESTIMATION AND INCENTIVE DESIGN

In this section, we present our results on both the utility
estimation problem and the incentive design problem in
which the leader optimizes their cost with respect to the
total points to be distributed per day and the default lighting
setting.

A. Utility Estimation — Results

We briefly describe the utility estimation problem in this
section and refer the interested reader to [16] for a more
detailed description including results on the efficacy of our
estimations.

We formulate the utility estimation problem as a convex
optimization problem by using first-order necessary con-
ditions for Nash equilibria. In particular, the gradient of
each occupant’s Lagrangian should be identically zero at the
observed Nash equilibrium.

For each observation l’(k), we assume that it corresponds
to occupants playing a strategy that is approximately a Nash
equilibrium where the superscript notation (-)(*) indicates the
k-th observation. Thus, we can consider first-order optimality
conditions for each occupants optimization problem and
define a residual function capturing the amount of sub-
optimality of each occupants choice xgk) [28], [23].

We consider the residual defined by the stationarity and
complementary slackness conditions for each occupant’s
optimization problem:

r8(0:, 1) = Difi(a (k)+Zu Py as)
i) () = wdhi (@) j e {17 2} (19)
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Given observations {z(®¥)}}€ ~where each z(*) € €, we
can solve the following convex optimization problem:

K
mmZx 90, 1), () (20)
s.t. GiZO,uiZO Vie{l,...,n} (21)

where y : R" x R?” — R, is a nonnegative, convex penalty
function satisfying x(z1, 22) = 0 if and only if z; = 0 and
2o = 0, i.e. any norm on R™ x R?", and the inequality y; > 0
is elementwise.

Note the constraint that the 6;’s be non-negative. This is
to ensure that the estimated utility functions are concave. We
add this restriction so that we can employ techniques from
simulation of dynamical systems to the computation of the
Nash equilibrium in the resulting n-person concave game
with convex constraints. In particular, define a gradient-like
system using the local representation of the differential game
form [17] and using the estimated 6;’s

&y = D fi(wi,x_i;0;) Vie{l,...,n}, (22)

and consider the feasible set defined by the constraints

hi’l(aﬁi) =100 — ZT; Z 0
hio(z;) =z;>0

Then, the subgradient projection method applied to the
dynamics (22) and the constraint set defined by (23) is known
to converge to the unique Nash equilibrium of the constrained
n-person concave game [27].

By drawing from the joint distribution across player states
(active, default, absent), we simulate the game using the
estimated utility functions. In figure 2, we can see that our
model captures most of the variation in the true votes.

} vie{l,...,20} (23)

B. Incentive Design — Results

We collected data on the energy consumption of the lights
for different lighting settings (see Figure 3) and created a
piecewise affine map from the setting to energy consumption
in kilowatt-hours (kWh). Using this map, we formulate a
utility for the leader which takes the average lighting votes
as the input and returns the difference between the maximum
consumption in kWh, i.e. 25 kWh, and the piecewise affine
map for energy comsuption of the lights.

We include a second term in the leader’s utility which is a
benevolence term. The leader must care about the occupants’
satisfaction for various reasons including productivity and
safety. We include in the leader’s utility the sum of the
occupant utilities multiplied by a benevolence factor as is
described in Section III-B in (14).

We use the function p(-) = p? for the last term in the
leader’s utility so that it has the form

foly,z) =E | K —g(y,2) — a1 Z@z‘fz’(ﬂful"—uy) — cpp”
i=1

(24)
where K is the maximum consumption of the Lutron lighting
system in kWh’s and g(y,x) is the energy consumption at
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Blue dots are the true mean of the lighting votes for each day
over the druation of the experiment. The solid black line is the mean of the
mean of the Nash equilibria for each day obtained via simulating the game
with the estimated utilities. The two dashed black lines are one standard
deviation of the mean for the simulations. Notice that the mean of the Nash
equilibria for the simulated games is very near the true votes and all the
variation is captured with in one standard deviation of the mean.
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Fig. 3. Energy conumption data for the Lutron lighting system in kWh as
a function of the lighting setting.

a given (y,x). c¢1,co are constants converting the last two
terms to the correct units.

Using the past data, i.e. data collected for default settings
{10,20,60,90}, and 6; estimates for each occupant, we
create a piecewise affine map for interpolating the parameters
of the occupants utility functions for different default set-
tings. Similarly, we interpolated the joint distribution across
player states (absent, active, default) as a function of the
default setting. This allows use to optimize the leaders utility
function over both the total points p and the default setting d.
Due to the complexity of the expectation and the nature of the
bi-level optimization problem, we solve the leader’s problem

by employing a particle swarm optimization method.

Example 1 (Solution Leader Optimization Problem):

The following example is a sample solution to the leader’s
optimization problem under some selection of the parameters
¢1, c2 and the benevolence factor 8 = (81, ..., 0n).

In the implementation of the leader’s optimization problem
in this example we make the following choices for the
parameters and scaling of the leader’s utility function. For
each particle in the PSO algorithm, we map each follower’s
true utility f; to f; taking a value in the range [0,100] by
finding the global maximum and minimum of their utility
under the current particle to determine an appropriate affine
scaling of their original utility. We use fz in place of f; in
the leader’s utilty.

We use ¢; = 1/2 which represents the fact that the leader
is willing to exchange 1 kWh savings for a utility value of 2
in the total sum of the followers’ utilities Zi B; fi under the
current particle value for y = (d, p). Similarly, we use co =
1/500 which represents the fact that the leader is willing to
exchange 500 points in return for 1 kWh of savings.

At present the choice of these parameters is just for the
purpose of creating an example with interesting behavior and
we leave full exploration of these parameters to future work
in which we implement various solutions in practice and
obtain feedback from the occupants’ via survey about their
satisfaction.

Examining each of the occupant’s estimated utility func-
tions has given us a sense of which occupants are the most
sensitive to changes in p and d. Occupant 2 is quite inflexible
to changes in the points p and appears to care less about
winning and more about his comfort level (see Figure 4).
This fact is also reflected in the very low parameter estimate
for 6. It is also the case that occupant 2’s behavior is largely
affected by others’ votes.

0=l
100

50

Default lighting, d
Incentive value, p

Fig. 4. Utility of occupant 2 as a function of (d, p) at the mean Nash
equilibrium after running 1000 simulations. Notice that for fixed values of
d the utility value is near constant in p. Also, occupant 2 has very large
utility when the default setting is around 70.

In addition, occupants in the set C' = {2,6,8,14,20} are



(d,p Bl 090.1) | 075025 | (0.604) | 045055 | (0307 | (0208)
(10,7000) |  $2.01 $2.10 $2.19 $2.28 $2.37 $2.42
(20,7000) |  $1.98 $2.01 $2.06 $2.08 $2.10 $2.13
(60,7000) |  $1.70 $1.67 $1.66 $1.65 $1.65 $1.64
(90,7000) |  $1.35 $1.33 $1.32 $1.31 $1.31 $1.30

TABLE 1

LEADER’S UTILITY IN DOLLARS FOR THE PREVIOUSLY IMPLEMENTED (d, p) FOR VARIOUS BENEVOLENCE FACTORS 8 =

(B2, ZjEA Bj) WHERE

A = {6,8,14,20}. THE VALUE IS INTERPRETED AS THE ENERGY SAVED IN DOLLARS BY THE LEADER PLUS THE UTILITY AS MEASURED IN
DOLLARS. WE USE A RATE OF $0.12 PER KWH AS THIS IS THE APPROXIMATE RATE CHARGED BY THE BUILDINGS ON THE UC BERKELEY CAMPUS.

COMPARE TO TABLE II

(d,p, B2, 2 e4 B5) utility
(63,200 x 103,0.9,0.1) $4.56
(56,169.6 x 10°,0.75,0.25) | $4.73
(55.5,175.2 x 10%,0.6,0.4) | $4.67
(48,142.2 x 10°,0.45,0.55) | $4.69
(10.47,173 x 10%,0.3,0.7) | $5.07
(7.23,194.6 x 10%,0.2,0.8) | $5.43

TABLE 11
LEADER’S UTILITY IN DOLLARS FOR THE VALUES

(d*, p*, B2, Z].EA B;) WHERE 32 IS THE BENEVOLENCE FOACTOR FOR

USER2 AND 1 — B2 = ZjeA B; IS THE SUM OF THE BENEVOLENCE
FACTORS FOR THE OCCUPANTS A = {6, 8,14,20}. THE UTILITY VALUE
IS DETERMINED BY SOLVING THE LEADER’S OPTIMIZATION PROBLEM
USING THE PSO METHOD AND IS INTERPRETED AS THE ENERGY SAVED

IN DOLLARS BY THE LEADER PLUS THE UTILITY AS MEASURED IN
DOLLARS. WE USE A RATE OF $0.12 PER KWH.

the most active players in a probabilistic sense. As a result, in
this example we give non-zero benevolence terms to players
in this set. We refer to this set as the leader’s care-set. For
all i € {1,...,20}\C, we set 3; = 0. Further, we force
> jec B; = 1. Since occupant 2 has particularly interesting
behavior, we vary (2, and let §; = (1— Bg)ﬁ forall j € C
and where |C| is the cardinality of C.

Tables I and II contain the energy savings in dollars for
the leader per day given the energy cost of the lights and
how much of the occupants’ utility and the total points
distributed per day that the leader is willing to exchange
for 1 kWh in dollars using a cost per kWh of $0.12. Table
I has the leader’s utility in dollars for previous values of
(d,p) after the start of the social game. In Table II we
report the values after optimizing over (d, p) for some given
benevolence factor 5 = (f1,...,0,). We can see that
computing even the suboptimal (d, p) by solving the leader’s
bi-level optimization problem via PSO, the leader has a much
higher utility.

We have not yet factored in the cost of the prize in the
lottery. Currently it is at a value of $100 per week. The
values we report in Tables I and II are per day savings on
weekdays. Hence, with a prize cost of $20 per day for our
particular experimental set-up the leader does not save. Using
this case-study as proof-of-concept, we are in the process
of implementing a social game in an entire building in
Singapore with more than 1, 000 occupants. This social game
will include options for the consumer to choose lighting
setting, HVAC and personal cubicle plug-load consumption.
In addition, we plan to implement a social game of this nature
in Sutarja Dai Hall on the UC Berkeley campus. At this scale,
with a week-day lottery cost of $100 the building manager
stands to save a considerable amount.

In Figure 5 we show the results of simulating the game
under the (d, p)’s that we found for various benevolence
factors. We show the mean of the lighting votes averaged
over 1000 simulations. It is interesting to see that the
average Nash equilibrium under the various default settings
is actually less than the default setting itself except in the
case when the default setting is below a threshold below
which occupants actually log votes above the default setting.
For example, with a default setting of 10.74, the mean of the
Nash equilibria is ~ 15. The case when the default setting is
above this threshold of basic operation, the most aggressive
players’ desire to win pushes the Nash equilibrium below
the default. On the other hand, when the default is below
this threshold, all the players’ comfort comes into play and
shifts the Nash equilibrium above the default setting.

V. DISCUSSION AND FUTURE WORK

We presented the results of a social game for encouraging
energy efficient behavior in building occupants and mod-
eling of occupant behavior patterns. We briefly discussed
the utility estimation problem. Using the estimated utili-
ties, we formulated and solved the building manager’s bi-
level optimization problem for the total points and default
setting. Due to the large number of events underlying the
joint distribution across player states and non-convexities,
we utilized a particle swarm optimization method. We are
exploring more efficient methods for solving for the optimal
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Fig. 5. Mean of the Nash equilibria of the simulated games over 103 days
under estimated occupant utilities with leader incentives found via PSO and
parameters given by (d, Ps 6?’ ZjeA B;) Whe're A = {6, 8, 14, 20}. Note
that the mean Nash equilibrium in each case is slightly below the default
setting.

points and default setting as well as implementing the current
(d, p) that we found through PSO in our test bed.

The leader’s utility function contains a number of pa-
rameters such as c¢;,co and the benevolence factor which
represent how much utility or happiness the leader is willing
to exchange for savings. We are in the process of examing
the impact of these factors on the leader savings as well as
the occupant satisfaction in practice. We are implementing
surveys to collect additional data about the occupants’ satis-
faction which we plan to incorporate into our solution.

In addition, we did not include individual rationality
constraints in the leader’s optimization problem. It would be
interesting to explore incorporating such a constraint in the
optimization problem where we consider the outside good to
be the default setting. This problem is slightly different than
what is seen in the economics literature because the leader
here has control over the default setting, and thus, the outside
good.

Another interesting direction for future research that we
are exploring is understanding the type (parameter) space
of the occupants and how the Nash equilibria of the fol-
lower game depend on these parameters. Specificically it
is interesting to take a dynamical systems perspective and
understand under which parameter configurations the desired
Nash equilibrium from the leader perspective is structurally
stable.
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